
		
			[image: cover image]
		

	
		About this ebook

		This ebook is taken from an Open University module, which was originally
 published as an open educational resource on the OpenLearn website.
 For
 more information on OpenLearn, and to access the study units published there,
 visit http://openlearn.open.ac.uk/.

		Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the
 “Creative Commons Licence”. Copyright and rights falling outside
 the terms of the Creative Commons Licence are retained or controlled by The Open
 University. Please read the full text before using any of the content of this
 ebook.

		Cover photograph © sumnersgraphicsinc.

		
			
				Show full text
			

		

	
		
			David Hume
			

			
			
			
			
			
			
			
			
			
		
		Introduction

		This unit examines David Hume's reasons for being complacent in the face of death, as these are laid out in his suppressed essay of 1755, ‘Of the immortality of the soul’. More generally, they examine some of the shifts in attitude concerning death and religious belief that were taking place in Europe at the end of the eighteenth century, through examination of this and other short essays.

		
			Learning outcomes

		

		Having studied this unit, you should gain:

		
				familiarity with debates in the late Enlightenment concerning suicide, immortality, the nature of evidence, the existence of God and related topics, plus some experience of participating in these debates;

				acquaintance with some characteristic shifts and continuities in the move from Enlightenment ideals towards Romantic ones, including the new respect for sentiment; the increased emphasis on individualism, privacy and personal response; new conceptions of nature, including human nature; the continuing fascination with non- European cultures;

				confidence that study can transform a centuries-old text into an enjoyable, informative, articulate and reasoned discussion of a familiar topic, even if at first that text seems obscure or arcane;

				direct experience of this transformative process, through careful examination of the set readings and appreciation of some necessary background information.

		

	
		1 Prelude: Hume's death

		In mid-August 1776 crowds formed outside the family home of David Hume. Hume was a pivotal figure in the Scottish Enlightenment, and his imminent death was widely anticipated. The crowds were anxious to know how he was facing up to his coming demise.

		Hume is best known today as a historian (through his History of England of 1754–62) and a philosopher. His Treatise of Human Nature is regarded by many as one of the most significant philosophical works to have been written in English. But when it originally appeared in 1739 it had, in Hume's words, ‘fallen dead-born from the press’ (Hume, 1962, p. 305). Hume attributed this lack of commercial success to an overly academic style, and set about publishing a more reader-friendly version in the form of two Enquiries in 1748 and 1751 (Hume, 1975). He dithered over whether or not to include some new material in the first of these, eventually choosing to do so in a chapter called ‘On miracles’. The choice led to instant notoriety. In the chapter he argued that no reasonable person should believe in miracles, particularly not the miracles described in religious scripture. (To his regret, few at the time bothered to read the other parts of the Enquiries.)

		As a result of that chapter, along with several later essays, Hume became infamous in his day as a critic of ‘religious superstition’. His views on religion were rarely published openly, but this did not prevent them becoming known (and often distorted). In 1755 he nearly went too far. In an essay called ‘Of the immortality of the soul’ he cast doubt on a doctrine that was, and is, central to most religions: that we survive the death of our bodies. After consulting with some eminent reviewers, his publisher withdrew the essay from the printers. A few pre-publication copies escaped into the public arena all the same, and Hume's scandalous reputation was sealed. The reason people gathered at his home in 1776 was to see if ‘the great infidel’ would succumb to the promise of an afterlife by recanting his unpopular views.

		Samuel Johnson (1709–84) was a defender of the solace provided by thoughts of an afterlife, and had anticipated this moment as early as 1768. His biographer James Boswell (1740–95) reports the following exchange:

		
			
				Boswell: David Hume said to me he was no more uneasy to think he should not be after this life, than that he had not been before he began to exist.

			
				Johnson: Sir, if he really thinks so, his perceptions are disturbed; he is mad. If he does not think so, he lies. He may tell you he holds his finger in the flame of a candle, without feeling pain; would you believe him? When he dies, he at least gives up all that he has.

		

		
			[image:]
		

		
			
				Figure 1: Joseph Wright of Derby, The Old Man and Death, 1773, oil on canvas, 101.6 x 127 cm, Wadsworth Atheneum, Hartford. Photo: reproduced by courtesy of Wadsworth Atheneum, Hartford, CT, Ella Gallup Sumner and Mary Catlin Sumner Collection
		

		Many would regard fear at his approaching death as indicating Hume to be disingenuous in his scepticism about religion: to deny God was to risk damnation. But Hume had in fact dismissed many years earlier the supposition that mortal fear indicated belief in an afterlife (see section 4), claiming it should properly be seen as attachment to one's present and only existence.

		Fear of death is the theme of the painting by Wright of Derby (1734–97). The skeleton, presumably taken from an anatomical print, would have been more alarming, or at least less funny, two centuries ago, but the fear on the man's face is clear enough. The painting is based on a fable by Aesop called Death and the Woodsman, as adapted in one of a popular series of poems by Jean de la Fontaine (1621–95). The moral of the painting is expressed in the final lines of the poem:

		A poor woodsman, covered in foliage,

		Burdened by branches and years,

		Groaning and bent, walks in heavy steps,

		Struggling to reach his smoky cottage.

		Finally, out of energy and in great pain,

		He lays down his load and ponders his misery.

		‘What pleasure have I had since entering this world?

		Is anyone on this globe worse off?

		So often without bread, never any rest!’

		His wife, his children, soldiers, tax officers,

		Debt, and drudgery

		Complete for him this image of misfortune.

		He calls on Death, who comes without delay,

		Asking what is required.

		‘I want you’, he says, ‘to help me

		Reload this wood. Then you can go.’

		Death cures all;

		But let us not hurry things along.

		Sooner to suffer than to die,

		That is the maxim of men.

		(Fontaine, 1946, pp. 19–21; trans. Barber and Poirier)

		
			
				Boswell: Foote, Sir, told me that when he was very ill he was not afraid to die.

			
				Johnson: It is not true, Sir. Hold a pistol to Foote's breast, or to Hume's breast, and threaten to kill them, and you'll see how they behave.

			(Boswell, 1986, p. 148)

		

		Eight years later, Boswell travelled to Hume's house with ‘a strong curiosity to be satisfied if he persisted in disbelieving a future state even when he had death before his eyes’ (Wain, 1990, p. 247).

		Boswell found Hume to be:

		
			lean, ghastly, and quite of an earthy appearance. He was dressed in a suit of grey cloth with white metal buttons, and a kind of scratch wig. He was quite different from the plump figure which he used to present … He seemed to be placid and even cheerful … He said he was just approaching to his end … He then said flatly that the morality of every religion was bad, and, I really thought, was not jocular when he said that when he heard a man was religious, he concluded he was a rascal … I asked him if it was not possible that there might be a future state. He answered it was possible that a piece of coal put upon the fire would not burn; and he added that it was a most unreasonable fancy that we should exist for ever … I left him with impressions which disturbed me for some time.

			(Wain, 1990, pp. 247–50)

		

		The economist Adam Smith (1723–90) was a close friend and colleague of Hume, and reported the same high spirits in letters first to Hume himself (22 August 1776):

		
			You have, in a declining state of health, under an exhausting disease, for more than two years together now looked at the approach of death with a steady cheerfulness such as very few men have been able to maintain for a few hours, though otherwise in the most perfect health.

			(Mossner and Ross, 1987, p.206)

		

		and later to Hume's literary executor, William Strahan (9 November 1776):

		
			His symptoms, however, soon returned with their usual violence, and from that moment he gave up all thoughts of recovery, but submitted with the utmost cheerfulness, and the most perfect complacency and resignation. Upon his return to Edinburgh, though he found himself much weaker, yet his cheerfulness never abated and he continued to divert himself, as usual, with correcting his own works for a new edition, with reading books of amusement, with the conversation of his friends; and, sometimes in the evening, with a party at his favourite game of whist. His cheerfulness was so great, and his conversation and amusements run so much in their usual strain, that, notwithstanding all bad symptoms, many people could not believe he was dying. ‘I shall tell your friend, Colonel Edmondstone,’ said Doctor Dundas to him one day, ‘that I left you much better, and in a fair way of recovery.’ ‘Doctor,’ said he, ‘as I believe you would not choose to tell anything but the truth, you had better tell him that I am dying as fast as my enemies, if I have any, could wish, and as easily and cheerfully as my best friends could desire.’ …

			I told him that, though I was sensible how very much he was weakened, and that appearances were in many respects very bad, yet his cheerfulness was still so great, the spirit of life seemed still to be so very strong in him, that I could not help entertaining some faint hopes. He answered, ‘Your hopes are groundless. An habitual diarrhoea of more than a year's standing, would be a very bad disease at any age: at my age it is a mortal one. When I lie down in the evening, I feel myself weaker than when I rose in the morning; and when I rise in the morning, weaker than when I lay down in the evening. I am sensible, besides, that some of my vital parts are affected, so that I must soon die.’

			‘Well,’ said I, ‘if it must be so you have at least the satisfaction of leaving all your friends, your brother's family in particular, in great prosperity.’ He said that he felt that satisfaction so sensibly, that when he was reading, a few days before, Lucian's Dialogues of the Dead, among all the excuses which are alleged to Charon for not entering readily into his boat he could not find one that fitted him; he had no house to finish, he had no daughter to provide for, he had no enemies upon whom he wished to revenge himself. ‘I could not well imagine’, said he, ‘what excuse I could make to Charon in order to obtain a little delay. I have done everything of consequence which I ever meant to do, and I could at no time expect to leave my relations and friends in a better situation than that in which I am now likely to leave them; I, therefore, have all reason to die contented.’ He then diverted himself with inventing several jocular excuses, which he supposed he might make to Charon, and with imagining the very surly answers which it might suit the character of Charon to return to them. ‘Upon further consideration’, said he, ‘I thought I might say to him: “Good Charon, I have been correcting my works for a new edition. Allow me a little time, that I may see how the public receives the alterations.” But Charon would answer, “When you have seen the effect of these, you will be for making other alterations. There will be no end of such excuses; so, honest friend, please step into the boat.” But I might still urge, “Have a little patience, good Charon. I have been endeavouring to open the eyes of the public. If I live a few years longer, I may have the satisfaction of seeing the downfall of some of the prevailing systems of superstition.” But Charon would then lose all temper and decency. “You loitering rogue, that will not happen these many hundred years. Do you fancy I will grant you a lease for so long a term? Get into the boat this instant, you lazy loitering rogue.“

			(Mossner and Ross, 1987, pp. 217–21)

		

		Charon is a character in Greek mythology (later recorded and satirised by the Greek writer Lucian) who ferries often reluctant souls across the river Styx to Hades on their journey to an afterlife.

		Hume died shortly after this reported exchange.

		
			See Plate 1 (portrait of David Hume by Allan Ramsay, 1713–84), which relates to the comment below.

			Lord Charlemont said of Hume: ‘Nature, I believe, never formed any man more unlike his real character than David Hume … The powers of physiognomy were baffled by his countenance; neither could the most skilful in that science pretend to discover the smallest trace of the faculties of his mind in the unmeaning features of his visage. His face was broad and fat, his mouth wide and without any other expression than that of imbecility. His eyes vacant and spiritless, and the corpulence of his whole person was far better fitted to communicate the idea of a turtle-eating alderman than of a refined philosopher’ (quoted in Warburton, 2002, p. 41).

			Spiritless though his eyes may have been, his vacant stare had disturbing effects. The philosophe d'Alembert advised him in 1766: ‘It is not necessary to gaze intently at the people you are speaking to … it might play you a nasty trick’. It did. After a collapse in their friendship, Rousseau wrote of Hume: ‘The external features and the demeanour of le bon David denote a good man. But where, Great God, did this good man get those eyes with which he transfixes his friends?’ Hume's ‘ardent and mocking’ stare so unnerved Rousseau on their last evening together, he claimed, that he attempted to stare back but fell into a ‘giddy and confused state’, leading to their split. Hume claimed to be unaware of his habit (quotations in this paragraph Mossner, 1980, pp. 477, 529, 522 respectively).

		

		
			
				View
 document
			

		

		Hume's reportedly high spirits in the face of death struck a dissonant chord with many of his religious opponents. Johnson insisted to Boswell that Hume must have been pretending to be cheerful (Boswell, 1971, p.155). The following comment on Adam Smith's letter to Strahan was sent anonymously to the Weekly Magazine, or Edinburgh Amusement (1777, vol.36, pp. 139–41):

		
			Doubtless the doctor [i.e. Smith] intends a panegyric upon his friend; but in truth the publication of his frolicsome behavior in dying is a satire which must expose Mr Hume's memory to the pity, if not to the contempt, of the truly wise … From the doctor's narrative of Mr Hume's dying behavior, a Christian cannot easily allow that the concluding eulogy of his character fairly follows. [In his letter, Smith had described Hume as ‘approaching as nearly to the idea of a perfectly wise and virtuous man, as perhaps the nature of human frailty will permit’.] … It is an affecting picture the doctor exhibits to view. A man of distinguished intellectual powers acting the fool at his end – dying indecently humorous – … dying in a manner that betrayed the darkest ignorance of an Indian savage … Can anything be more frivolous, more childish, more indecently wanton and presumptuous in a dying man, perceiving himself on the verge of time, than Mr Hume's sportful dialogue with Charon? … We are told that Mr Hume was quite resigned. Resigned! To what? Not to the will of God … How miserable the comforter, who could minister no other consolation to his dying friend, than that he was to leave his friends in great prosperity!… Compare together a sceptical philosopher and a scripture saint in dying, and see the abject meanness into which the one sinks, the grandeur, in hope of everlasting glory, to which the other rises.

		

		Reacting to the same letter by Smith, the Bishop of Norwich, George Horne (1730–92), wrote anonymously to Adam Smith in 1777. Though addressed to individuals, such letters were in effect public statements (this one was eventually published in Horne, 1806, pp. xvii–xxi):

		
			You have been lately employed in embalming a philosopher - his body, I believe I must say, for concerning the other part of him, neither you nor he seem to have entertained an idea, sleeping or waking …

			Sir, friend as I am to freedom of opinion, … I am rather sorry, methinks, that men should judge so variously of Mr Hume's philosophical speculations. For since the design of them is to banish out of the world every idea of truth and comfort, salvation and immortality, a future state, and the providence and even existence of God, it seems a pity that we cannot be all of a mind about them, though we might have formerly liked to hear the author crack a joke, over a bottle, in his lifetime. And I would have been well pleased to have been informed by you, Sir, that, before his death, he had ceased to number among his happy effusions tracts of this kind and tendency …

			Are you sure, and can you make us sure, that there really exist no such things as a God, and a future state of rewards and punishments? If so, all is well. Let us then, in our last hours, read Lucian, and play at whist, and droll upon [i.e. joke about] Charon and his boat; let us die as foolish and insensible, as much like our brother philosophers, the calves of the field and the asses of the desert, as we can … But if such things be [i.e. if God and a future state exist], as they most certainly are, is it right in you, Sir, to hold up to our view, as ‘perfectly wise and virtuous’, the character and conduct of one who seems to have been possessed with an incurable antipathy to all that is called religion; and who strained every nerve to explode, suppress, and extirpate the spirit of it among men, that its very name, if he could effect it, might no more be had in remembrance? Are we, do you imagine, to be reconciled to a character of this sort, and fall in love with it, because its owner was good company, and knew how to manage his cards? Low as the age is fallen, I will venture to hope it has grace enough yet left to resent such usage as this.

		

		The vehemence and explicitness of these and other attacks on Hume's character is at odds with the charity often extended to those who have recently died. Ten years later Smith expressed his amazement at the reaction to Hume's temperament before his death, and to his own description of it in the letter to Strahan:

		
			A single, and as I thought, a very harmless sheet of paper which I happened to write concerning the death of our late friend, Mr Hume, brought upon me ten times more abuse than the very violent attack I had made upon the whole commercial system of Great Britain [i.e. Smith's The Wealth of Nations, 1776, a groundbreaking work in economics].

			(Quoted in Scott, 1937, p. 283)

		

	
		2 From enlightenment to romanticism

		2.1 Working through the section

		This section examines Hume's reasons for being complacent in the face of death, as these are laid out in his suppressed essay of 1755, ‘Of the immortality of the soul’. More generally, they examine some of the shifts in attitude concerning death and religious belief that were taking place in Europe at the end of the eighteenth century, through examination of this and other short essays.

		These changes were wide ranging and driven by many factors. Religion touched every aspect of cultural life, as you will witness. The focus for the present unit will be on debates surrounding the existence of God and an afterlife and the moral permissibility of suicide. These discussions are as fascinating today as they were then, but beyond this they shed light on the altering shape of the commitment to reason. Commitment to a particular conception of reason came under increasing strain as the century progressed, and this strain shows up well in the present context.

		You will be looking at two short texts by David Hume (1711–76) Unlike the letters seen in the prelude, these pieces do not address one another explicitly. That said, many of the notions, arguments and assertions discussed were in the air at the time, and at a number of points they offer what are in effect replies to one another. Such disagreements will be highlighted in my commentary.

		Opinions and disputes are as much a part of the cultural life of a society as paintings, music and literature. Just as portraits, operas and novels can be interpreted and evaluated, so can contributions to a debate. This was especially true during the mid-to-late eighteenth century, the culmination of the Age of Reason. At no time in European history has the importance of reasoned opinion been given greater recognition than it was then, save perhaps in classical antiquity, a period looked back on at the time with such admiration precisely because of this fact.

		It was in the written medium that the precision required for these particular debates could be most readily achieved, so written texts will be our primary focus. But the images accompanying this unit indicate the extent to which intellectual debates were given vivid expression in media other than the written word. If nothing else, they served to carry certain messages home. That is one way in which they will be used here, and you should not treat the images and the associated comments as mere decoration. These comments will occasionally offer interpretations of the images that are tentative or that do not necessarily capture what was central to the painter's intentions; their main purpose will be to supplement my commentary.

		One of the few commitments the writers of this time had in common was the need to persuade their reader, not merely through the use of elegant turns of phrase but through transparent and effective reasoning. In view of this, any proper engagement with these texts must involve a suitable response to these attempts at reasoned persuasion. In several of the exercises I encourage you to enter the fray and develop your own opinion of the matter under discussion. By the end of your work on these sections you ought to be in a better position to understand, compare and assess the views presented and defended in the readings. In other words, you should have become a participant in the discussion.

		The readings have not been selected as typical for their time and context. On the contrary, each departs from the prevalent norms in unpredictable and often surprising ways, and always at personal cost to the author. Hume's deviation from religious norms cost him dearly in his professional life in Scotland, which was heavily Calvinist.

		Their atypicality does not prevent the readings from being used as vehicles for the appreciation of tendencies in that period. Studying cultural history would be a dull process if it consisted of being given a checklist of themes to mark off against a series of typical cultural artefacts. The pieces you will be reading have been chosen because of their enduring value as contributions to a discussion; their service in the illustration and explanation of cultural trends would have been a happy by-product from the author's’ perspectives.

		Because our authors were writing more than 200 years ago, their style is likely to be unfamiliar. Eighteenth-century prose had different punctuation, spelling and grammatical rules, and sentences could be long, complex and mannered. Punctuation and spelling have been modernised in the anthology, but there is no getting around the other factors.

		
			
				
					Exercise 1

				

			

			You have been exposed to eighteenth-century English already in the letters in the prelude. Reread the letter from George Horne to Adam Smith. Aim to appreciate the prose itself and not merely to pick up the general drift of his remarks. A good test of your having done this is if you can read it out aloud as if saying it yourself, putting the stress in the appropriate places.

			Hopefully you will come to enjoy this elegantly expressed diatribe (without necessarily agreeing with its claims). You would not be alone if you found it takes time to come to terms with stylistic conventions of the eighteenth century. You will have further practice.

		

		You should eventually expect to become practised at confronting and interpreting historical documents without the crutch provided by a running commentary, but at this stage the strategy will be to ask you to read the original documents only after you have been told what to expect to find contained within them. This strategy may give rise to a temptation to rely on the commentary and read the primary material less thoroughly than you otherwise would. If you ever feel the force of such a temptation, do not succumb! It is your engagement with the texts themselves that matters; the commentary matters only to the extent that it helps you to do this in a rewarding way. The exercises are designed with this in mind, and can normally be tackled only after the relevant portion of text has been read.

	
		3 The intellectual background

		3.1 Introduction

		Hume often assumes familiarity with views that were popular at the time of writing. To have done otherwise would have been tedious for the original readership. Many of these views are no longer so widespread, so in this section I want to describe three features of the eighteenth-century intellectual backdrop against which all the readings were written. The three features are: empiricism (a view about knowledge), deism (a view about religious belief), and the main arguments for the existence of God.

		3.2 Empiricism

		The Enlightenment is also known as the Age of Reason, but it was a very specific conception of reason that held sway. Seventeenth- and eighteenth-century Europe had seen a boom in knowledge brought about by the birth of modern science. This boom was accompanied by both optimism and a wish to identify what it was that investigators were suddenly getting right. What was it about science that made it so reasonable, and hence so successful?

		
			See Plate 2 (Lecture on the Orrery in which a Candle is used to create an Eclipse by Joseph Wright of Derby), which relates to the comment below.

			This painting shows a scientist (who perhaps intentionally resembles the physicist Isaac Newton, 1642–1727) giving a lecture using an orrery, a model of the solar system. Reverence for science is manifest in several ways. First, the demonstration, surrounded by the darkness of ignorance and prejudice, is giving off the light of knowledge. This distribution of light expresses what was seen as positive about science: its capacity to fight against ignorance and prejudice. (The metaphor of light was eventually adopted in the labels for the Age of Reason in all the main European languages, e.g. le siecle des lumieres in French, Aufklarung in German, illuminismo in Italian, and Enlightenment in English.) Second, the heads of the characters are themselves like planets rotating around the sun. This is perhaps intended to suggest optimism about the progress being made in the early scientific study of humanity itself. And third, the variety in age and sex of the people in the picture suggests that science could infiltrate and benefit the whole of society.

			In many of Wright's paintings, including his An Experiment on a Bird in the Air Pump (1768), admiration of science was tempered by a fear of the power of this new knowledge, and uncertainty about the unquenchable thirst it could give rise to. In this instance, however, his representation seems to be wholly favourable.

		

		
			
				View
 document
			

		

		Many hoped to be able to classify all opinion as either reasonable or unreasonable according to how it compared with scientific opinion. An opinion would be classified as reasonable if arrived at in the same fashion as scientific opinions; it would be classified as unreasonable if arrived at in some other, less reputable fashion (e.g. superstition, reliance on tradition, idle speculation, etc.). But before this splitting of opinions into the reasonable and the unreasonable could be achieved, an explanation was needed of scientific success. The hunt was on for the magic ingredient that constituted the essence of the scientific attitude.

		The most popular account of what set this new scientific age apart from the pre-Enlightenment era was and is empiricism (a nineteenth-century term). The backbone of empiricism is a simple claim:

		
			
				Empiricism (roughly characterised): opinions are reasonable if, and only if, they are supported by evidence that is ultimately grounded in experience.

		

		‘Experience’, here, can mean everyday observation using one or more of the five senses, but it is also meant to include rigorous scientific experimentation. Respect for this principle is what supposedly sets the scientific age apart from the pre-scientific age. In that earlier age, unsupported speculation was purportedly rampant; since the scientific revolution, experience served to constrain such speculation.

		
			[image:]
		

		
			
				Figure 2: Louis-Leopold Boilly, Les Cinq Sens (The Five Senses), 1823, colour lithograph, 21 x 18cm. Photo: © Leonard de Selva/CORBIS
		

		Empiricists claimed that experience was the source of all genuine knowledge; claims that didn‘t ultimately spring from the senses were to be dismissed as fanciful. This caricatured personification (Figure 2) of the senses reveals how not everyone was so convinced of the effectiveness of scientific methods at yielding all the truth and only the truth.

		Expressed more negatively, empiricists are claiming that we should refuse to accept as true anything that has not been observed to be true. By this criterion, many religious doctrines are no more than unsupported speculation. Empiricists often denounced them as such in the period under discussion.

		Empiricism as expressed in the simplified statement above has some embarrassing consequences. Moral and mathematical platitudes (e.g. that torturing people for fun is morally objectionable, or that 55 plus 55 necessarily equals 110) do not seem to require observational support, yet few would be prepared to denounce these judgements as unreasonable. The evidence for these and other reasonable opinions must come from some other source than the senses.

		Empiricists tried to get around this difficulty in a variety of ways. They were anxious not to create any excuses for a return to the unscientific guesswork of previous eras, but were forced to acknowledge a limited role for reasoning that was not simply a response to experience. Though it would be interesting to look at the details of their efforts, this would take us too far afield. For our purposes it will be enough to sum up the empiricist agenda as follows: all opinions should be rejected unless backed up with evidence that is grounded either in experience or in one of some small number of permitted principles of abstract reasoning (e.g. mathematical principles).

		Hume was empiricism's most eloquent advocate, as these uncompromising closing words of his Enquiry Concerning Human Understanding (1748) show:

		
			When we run over libraries, persuaded of these [empiricist] principles, what havoc must we make? If we take in our hand any volume, of divinity or school metaphysics for instance, let us ask: Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning concerning matter of fact and existence? No. Commit it then to the flames, for it can contain nothing but sophistry and illusion.

			(Hume, 1975, p. 165)

		

		The reference to flames, here, is almost certainly just a dramatic device. Enlightenment thinkers were or ought to have been hostile to censorship of opinion. For one thing, they held that reason and not force should be what determines public opinion. For another, most of them had themselves suffered censorship or repercussions for having published unpopular ideas. In actual fact, Hume did on at least one occasion seek to suppress material he found objectionable: in 1764 he tried and failed to prevent the publication of a mocking review of a friend's book by Voltaire (Mossner, 1980, p. 412). But whether he really wanted to burn library books for failing to pass his test is not relevant to our concerns. What is relevant is just that, in Hume's view, such books are entirely without value.

		The empiricists' uncompromising attitude had risks as well as benefits. The benefits were evident in the explosive growth in scientific knowledge of the world about us and increasingly of ourselves. The main risk was that, by setting such high standards on what can permissibly count as a reasonable belief, empiricists would end up having to abandon many dearly held beliefs. Opinions on topics that weren't susceptible to empirical (i.e. scientific, experience-based) investigation would need to be dropped, leaving us floundering in ignorance on many important matters.

		Hume claimed that such scepticism is really just realism about our predicament. On a wide number of topics – whether the sun will rise tomorrow, whether we have souls, whether these souls survive the death of our bodies, whether the external world exists – he insisted that, though we are unable to stop ourselves holding opinions, these opinions are not ones to which we are properly entitled. Hume's philosophy was a high water mark for classical empiricism. Rightly or wrongly, most of those who came after him were not prepared to embrace his resulting scepticism. They began instead to search for and defend alternative sources of evidence – alternative to the evidence of the senses, that is. By the late eighteenth century, the empiricists’ rigidity on this matter was beginning to unravel.

		3.3 Deism

		In the readings you will often come across allusions to the contrast between revealed religion and natural religion (or deism). The distinction turns on what the nature of the evidence is for a particular religious outlook. Deism is a form of natural religion that was prevalent in eighteenth- and nineteenth-century Europe.

		The evidence underpinning revealed religion typically consists of a god supposedly revealing himself (or herself or itself) to an individual or small number of individuals, perhaps on a unique occasion. The report in scripture of, for example, a burning bush speaking to Moses, where the voice is said to have had a divine source, is revelatory evidence.

		Natural religion, by contrast, is based exclusively on non-revelatory evidence. In particular, it does not call for acceptance of the testimony of a single individual, an organisation or a religious text. It is ‘natural’ in the sense that the evidence for it is available to all of us as reasoning and experiencing human beings; it is not a special privilege of some subset of humanity.

		A helpful way to think of the difference is to imagine what it would be like if all bibles, all priests, all mullahs, all torahs and all holy relics, etc. disappeared overnight, along with all our memories of their ever having existed. Any evidence of God's existence and character that would survive such a disappearance is natural evidence, not revelatory evidence. Natural religion consists solely of doctrines that are supposedly supported by natural evidence. You may be wondering what evidence for God's existence would remain once mosques, churches, popes, rabbis, and so forth are set to one side. As it happens there are several traditional arguments for the existence of God that do not appeal to the trappings of established religion (see below). It is to these that deists looked in defending their views.

		For our purposes we can divide the main religious perspectives available at the time into four:

		
				
				
					Atheists denied that there was any god.

			

				
				
					Agnostics denied that there is sufficient evidence for or against God's existence; they abstained from believing either in his existence or in his non-existence. Hume insisted he was an agnostic rather than an atheist.

			

				
				
					Deists believed that we have natural, non-revelatory evidence of God's existence and nature. Several of the philosophes had deist leanings, Voltaire, d'Alembert, and Rousseau being the most notable among them. None had anything but scorn for revelatory evidence.

			

				
				
					Revealed religion was adopted by those who accepted the testimony of scripture, and in particular of the Bible as interpreted by the established churches.

			

		

		The Enlightenment movement as a whole was an accelerated part of a drift away from appeals to authority that has continued in western culture to this day. Entrusting oneself and one's opinions to the dictates of an institutional religion was anathema to such thinking. All the old authorities, including the Church, were held to be subject to the authority of reason tempered by experience. Inevitably, there were exceptions such as Samuel Johnson, quoted above, but it is undeniable that pressure on the Church was growing in this period.

		3.4 Proving God's existence

		Deists had at their disposal three traditional ways of arguing for the existence of God.

		The most popular in the late eighteenth century was the argument from design (also known as the teleological argument, from the Greek word telos, meaning end or purpose). This argument begins with an observation: the world around us is not chaotic but ordered and harmonious. Some examples: whenever the tide comes in it goes out again shortly after; without an ability to inhale air we could not survive, but we have lungs so we can; plants need to be pollinated to survive, and bees do it for them, benefiting in turn from the nectar. According to proponents of the argument from design, the only plausible explanation of all this observable order and harmony involves supposing that an intelligent, benign and all-powerful being – God, in other words – created the universe.

		Notice that this argument does not depend on accepting the Gospels as true. This is what makes it useable by a deist. Someone who used it enthusiastically was Voltaire. In the following passage from a book introducing Newton's empirical discoveries to the French world (Elements de la philosophie de Newton, 1738), he suggests that Newton's law of gravitation was proof of God's presence in the world:

		
			The whole philosophy of Newton leads of necessity to the knowledge of a Supreme Being, who created everything, arranged all things of his own free will … If matter gravitates, as has been proved, it does not do so by virtue of its very nature, as it is extended by reason of its nature. Therefore it received gravitation from God. If the planets rotate through empty space in one direction rather than another, their creator's hand, acting with complete freedom, must have guided their course in that direction.

			(Quoted in Hampson, 1968, p. 79)

		

		Voltaire's thought here is that God's will is evident in the fact that all of nature, without exception, obeys the simple laws discovered by Newton.

		A second popular argument for God's existence was the cosmological argument. As with the argument from design, the hypothesis that God exists is adopted as the only plausible explanation of an observable phenomenon. This time the observable phenomenon is not order and harmony but motion in the material universe (or the ‘cosmos’). Something must have made things move in the first place, and God is an obvious suspect. In this guise he is sometimes referred to as the ‘first mover’.

		According to a variant of the cosmological argument, God is needed to explain not only motion in the universe but the very existence of the universe. God, conceived of as the all-powerful creator, once again fits the bill.

		The third traditional argument for the existence of God, known as the
				ontological argument
			, was out of fashion at this time, perhaps because it did not rest upon empirical observation. It will not figure in these units, but for the sake of completeness it goes like this: God is, by definition, a perfect being. He is ‘that being than which no more perfect being can be conceived’. So he cannot possess anything but perfect properties. Since the property of not existing would be an imperfection, God cannot possess it. Therefore he must exist.

		
			See Plate 3 (portrait of Isaac Newton by William Blake, 1757–1827), which relates to the comment below.

			Painted a decade or more after the period with which these units are concerned, Blake's portrait shows Newton at work modelling the cosmos, and unlike Wright's Orrery painting (Plate 2) is filled with religious intent. But this is not an easy work to interpret, and indeed there is no agreed way of reading Blake's intentions here.

			On first examination it seems as though Blake is following Voltaire in claiming that we can discover God through Newton's laws using the argument from design. Nature, behind Newton, is more powerful than he is, seeming to embody a higher being; this higher being is then represented on the page with Newton serving almost as a kind of magnifying glass. And on the page we see, in place of Newton's laws, a graphical representation of the Trinity.

			But Blake is known to have been hostile to the widespread lionisation of Newton as the man who has revealed the underlying nature of reality. This suggests we should look for a different interpretation. A possible clue is in the way Newton is made to resemble Adam in Michelangelo's Creation of Adam (1508–12). As Newton is creating a diagram on the page, so God is creating Newton. But Newton is oblivious to all of this as he peers at his page; he is looking the wrong way. Were he to turn around and use his imagination, he would see his creator in nature. Instead he is reason's slave. Using his intellect and outer senses alone, he has sought to regiment nature into a tiny number of laws and measurements, erasing all trace of God in the process; and yet from his relatively puny ‘Laws of Nature’ he is desperately attempting to reproduce religious knowledge. Blake himself made the same claim in a related text: ‘He who sees the Infinite in all things, sees God. He who sees the Ratio only, sees himself only’ (There is no Natural Religion, 1788, quoted in Butlin, 1983, p. 7). Blake's position is the precise opposite of Voltaire's.

		

		
			
				View
 document
			

		

	
		4 Hume on life after death

		4.1 Why was our immortality an issue?

		When reading about Hume's death you may have been puzzled as to why people became so worked up about Hume's attitude. The question of what, if anything, happens after death is something most of us are at least curious about, just as most of us are curious to know what we will be doing in a few years’ time. But curiosity cannot explain the venom evident in the condemnations of Hume.

		The reason for the hostility can be approached by considering the opera Don Giovanni. The opera is, on the surface at least, a morality tale. The bulk of the opera consists of Don Giovanni refusing to acknowledge an unwelcome implication of his actions: eternal damnation. The narrative of the opera would be meaningless without the scene in which he is made to recognise his lifelong selfishness through confrontation with its consequences. The statue of Donna Anna's father is chosen as the symbol of his entrance into hell precisely because it is also symbolic of his reckless existence. This aspect of the story brings out what was so important about the assumption of an afterlife in a Christian context: the afterlife plays an important moral role. It is where accounts are settled and justice is done. Don Giovanni is made to pay for his sinful existence. If there were no afterlife, justice could not be done.

		The mortality of the soul – the failure of the individual to survive beyond the demise of her or his body – would have been an intolerable supposition for many at the time because it would remove this scope for justice's execution. No longer could those who behaved wickedly in this life be made to suffer in the next; no longer could those who behaved well or who suffered in this life be rewarded or compensated in the next.

		The disappearance of justice would be bad enough, but the perceived consequences of such a disappearance are likely to have compounded the anxiety and animosity of Hume's critics. For example, belief in the soul's mortality, were it to become widespread, would lead to a breakdown in the moral order as people lost the incentive to behave morally. Few would be willing to put up with suffering on earth without the prospect of reward in heaven. Another feature of Hume's position is that a less than perfectly just universe reflects poorly on God the creator. Hume's claim that when his body dies he would die with it was taken to suggest that God himself was incapable of acting justly.

		Hume did not take himself to be insulting God's design, for the simple reason that he saw no reason to suppose God exists in the first place. This agnostic stance was argued for elsewhere by Hume, notably in Dialogues Concerning Natural Religion (1750) and ‘Of miracles’ (in An Enquiry Concerning Human Understanding, 1748). The first of these has become the classic statement of the case against the argument from design and the cosmological argument. We will not be considering Hume's broader agnosticism here, since it is not presupposed in ‘Of the immortality of the soul’. In this essay Hume takes the unusual approach of granting that God exists, and then arguing that even so there are no grounds for the assumption that we survive bodily death.

		
			
				View
 document
			

		

		
			
				
					Exercise 2

				

			

			Read the short opening paragraph of this essay. The essay has three subsections. Try to predict from this paragraph what the structure and conclusion of the essay will be.

			
				
					Show
 discussion
				

			

		

		Hume's explicit conclusion and what he really wants to claim – his implicit conclusion – are not the same thing. To understand what the implicit conclusion is, recall again how the Enlightenment was characterised by a shift away from revealed religion and towards either natural religion (especially deism) or outright agnosticism/atheism. It is against this background that Hume's essay should be read. Hume argues explicitly that there are no reasons save those given to us by revelation for believing in the immortality of the soul. To Hume's readership, many of whom would have shared his assumption that the only real competition is between natural religion and no religion, this is tantamount to saying that there are in fact no reasons at all for believing in life after death.

		Hume pays no more than lip service to the possibility that we should take it on trust from the Bible that the soul is immortal, once in the opening paragraph and again in the final one. Readers of the final paragraph would have detected the ironic tone in Hume's claim that we are infinitely indebted to divine revelation (i.e. religion as revealed in the Bible) for letting us in on the ‘great and important truth’ of our immortality, which ‘no other medium could ascertain’.

		With this subtlety recognised, Hume's essay can be read as an attempt to demonstrate our lack of evidence for the soul's immortality, or at least our lack of natural evidence, the only kind of evidence worth bothering with. Hume shows this, he thinks, by dividing the potential evidence into three kinds and refuting each in turn, one per section. We will be looking at sections II and III only.

		
			
				
					Exercise 3

				

			

			Begin reading section II. (Do not read section I, which is on ‘metaphysical reasons’ and concerns arguments based on the supposed independence of the mind from the body.) You will almost certainly find it difficult and obscure at this stage. The sole point of this exercise is for you to take note of this difficulty and obscurity. After five minutes, stop reading and go to the discussion below.

			
				
					Show
 discussion
				

			

		

		4.2 Moral grounds for thinking we are immortal

		The moral reason (as Hume calls it) for thinking that there is an afterlife has already been touched on. God, being just, would surely see to it that we are punished or rewarded for our aberrant or commendable actions; this punishment or reward doesn't take place in this life, so it must take place after our body's demise. Here is a simple statement of the reasoning:

		
			
				The moral argument for supposing there is an afterlife: the universe as created by God is a just universe; in a just universe, actions are rewarded or punished adequately, but actions are not rewarded or punished adequately in this life; therefore, there must be some other life in which actions are rewarded or punished.

		

		The final clause of this argument expresses the claim that Hume wishes to reject. So he must find a fault with the reasoning that leads to it.

		Hume would have been happy to reject this reasoning by rejecting the assumption of God's existence that lies at his heart. But as already mentioned, he does not want to adopt this strategy in this essay. Instead he seeks to persuade those sympathetic to natural religion that even they should reject this argument for the immortality thesis.

		
			
				
					Exercise 4

				

			

			(a) Go to paragraph 7 and notice how little time Hume spends laying out the position he is about to criticise. This position would already have been familiar to his readership.

			(b) How impressed are you by the moral reason for believing in an afterlife? Can you think of an objection to it that does not involve simply denying the existence of God?

			
				
					Show
 discussion
				

			

		

		Our task now is to interpret and assess Hume's objections to this attempt to justify a belief in an afterlife. He offers three distinct replies, though he does not number them as such.

		His first objection is very short, and is set out in paragraph 8, just after he has given the truncated statement of the moral reason. It draws heavily on his empiricist assumption that one ought not to make judgements that go beyond what we can infer from experience. We should not make claims about God's attributes – such as that he is just – without evidence, and that evidence must come from experience. But what experience do we have of the justice of God?

		Our experience of God's justice, confined as it is to our experiences in this life, is not particularly persuasive, Hume implies. Experience contains plenty of instances of what to us seem to be injustices. Though he does not give examples, he could have had in mind catastrophic events such as the Lisbon earthquake of 1755, ironically on All Soul's Day. On that day some 60,000 people died as a modern European capital was flattened, then swamped beneath a tidal wave, and finally engulfed in flames. 1755 was also the year Hume was writing his essay.

		
			
				
					Exercise 5

				

			

			Read paragraph 8. Which clause of my representation of the moral argument (above) is Hume calling into question, and how?

			
				
					Show
 discussion
				

			

		

		Hume does not develop this first objection to the moral argument. Instead he moves quickly on to an independent and more developed response that does not call God's justice into question (paragraphs 9–11). In rough outline, this second objection is that almost everything about us seems to be directed towards this life and not a next life. In particular, the ‘structure of … [our] mind and passions’ make us ill-prepared for an afterlife in which we are punished or rewarded for our earlier actions. Hume infers, from these supposedly observable design flaws, that there is no afterlife.

		To understand and evaluate this more developed response, we need to understand and evaluate his claim about our apparent design flaws, and his inference from this claim to the non-existence of an afterlife. We can begin with the claim, before looking at the inference.

		In paragraph 9 Hume seeks to establish the truth of the claim that our minds and passions are ill-adapted to the existence of any afterlife. He asks us to notice how less persuaded we are by the ‘floating idea’ of a post-death existence than we are even by ‘common life’ facts (by which he could mean, perhaps, some trivial memory of what we did last week). So if there really is an afterlife, our minds are manifestly not equipped to recognise this fact. Moreover, our everyday concerns – our ‘passions’ – are not the concerns we ought to have if this life is but a preparation for eternity. We constantly let ‘worldly’ considerations govern our actions. Don Giovanni does not let the prospect of eternal damnation guide his actions. Instead he is guided by lust.

		But, you may be thinking, some people are quite strongly persuaded of the existence of an afterlife, and seek to behave accordingly in this life. Perhaps you yourself are such a person. Hume acknowledges this fact and attempts to accommodate it. Such people, he says, have been effectively brainwashed (to use modern terminology) by the clergy. He even suggests, with some cheek, that the ‘zeal and industry’ of the clergy in seeking to gain ‘power and riches in this world’ by perpetrating their unsupported ideas prove that even they do not have much expectation of an afterlife.

		Having established (he thinks) that our minds and passions could be counted as well designed only if there is no life beyond the present one, Hume goes on to infer from this that there cannot be an afterlife. He offers us two quite independent ways of making this inference, in paragraph 10 and paragraph 11 respectively.

		In the moral argument, God's justice is used to show that there is an afterlife. In paragraph 10 Hume suggests that God's justice would really require the exact opposite: that there isn't an afterlife. A just god would only have designed our minds and passions to be the way they are if there is no afterlife. Doing otherwise would be cruel and deceptive. It would be unfair on Don Giovanni and the rest of us to be held so much to account for our God-given inclination to act as if there is no afterlife.

		
			[image:]
		

		
			
				Figure 3: Johann Friedrich Bolt, after Vinzenz Kininger, title page from the printed music score of Don Giovanni, 1801, engraving, Gesellschaft der Musikfreunde, Vienna
		

		The second version of the inference (paragraph 11) starts with the same assumption – that we are ill-equipped for an eternal existence – and reaches the same conclusion – that there is no afterlife – but it does so via a different route. The bridging assumption this time is that a creature's abilities are matched (‘proportionate’) to the tasks facing that creature. This is an observably true generalisation, showing up once again Hume's empiricist leanings. Hume notices that, for example, the tasks facing ‘foxes and hares’ are well served by these animals’ abilities. Hares have no capacity to appreciate opera, but such appreciation would be superfluous to the requirements of a life as a hare. Since a match between tasks and abilities is true of all other creatures, it is reasonable to infer (‘from parity of reason’) that we humans, too, have abilities that are matched to the tasks facing us. The existence of an afterlife would be in violation of this observable truth, since the task of preparing for this afterlife would far outstrip our ability to carry it out effectively – something shown once again by the recklessness of Don Giovanni.

		Softly spoken, intelligent, witty, kind and unpretentious, Hume was reportedly ‘the darling of all the pretty women’ of the Parisian salons in which much of the Enlightenment took place (Mme de Verdelin to Rousseau, quoted in Dufour and Plan, 1924–34, vol.11, p. 106). This did not stop him being – as we would put it today – sexist in his writing. You will find evidence of this in the second half of paragraph 11. He attempts to draw out still further the significance of the fact that abilities are generally suited to requirements. Women are less able than men, he asserts. This can only be because the demands placed on women are lower than those placed on men. An inequality of skills between the sexes is to be expected if the only life is this life, since women are well suited to the less onerous domestic sphere. But an inequality of skills makes no sense if both sexes have the same task to perform: to prepare for eternity. Once again, an ‘observable truth’ (inequality between the sexes in respect of capacities) is used to argue for the absence of an afterlife.

		
			
				
					Exercise 6

				

			

			Read paragraphs 9–11. Does the sexism of Hume's remark, noted above, undermine this second objection to the moral argument?

			
				
					Show
 discussion
				

			

		

		In the remainder of section II (paragraphs 12–17), Hume presents the third and final objection to the moral argument. He proposes in paragraph 12 that we be guided by our conception of justice, not the imagined preferences of a deity, when we make judgements about what would count as appropriate punishment or reward. His point is simply that our conception is the only one we have. If God's conception of punishment is different from ours, then all bets are off since we would be ignorant of what that conception is. He makes the same point later (paragraph 17):

		
			To suppose measures of approbation and blame different from the human confounds every thing. Whence do we learn that there is such a thing as moral distinctions, but from our own sentiments?

		

		Again and again, Hume reminds us that we must assess God's justness by our own lights or, as he often puts it, by the lights of our own sentiments. To do otherwise – to say that God's ways are a mystery – is to abandon the perspective of natural religion and move to mysticism. Mysticism is, if anything, even worse than revealed religion in Hume's eyes.

		In paragraphs 13–16 he presents four features of just punishment (i.e. punishment that our sentiments regard as just), each of which is incompatible with a traditional Christian conception of an afterlife: that is, an afterlife equipped with facilities for eternal damnation for those of us who have been wicked in our first life, and eternal bliss for the rest. In the next exercise you are asked to extract these four features.

		
			
				
					Exercise 7

				

			

			Read paragraphs 12–17. In paragraphs 13–16, what are four features of punishment and reward that, according to our sentiments, speak against the existence of an afterlife as conceived in the Christian tradition, according to Hume? (Warning: paragraph 13 is quite elliptical and possibly confused; you may wish to come to it last.)

			
				
					Show
 discussion
				

			

		

		
			[image:]
		

		
			
				Figure 4: William Blake, Capaneus the Blasphemer, illustration to Dante's Divine Comedy, Hell Canto 14, 1824–7, pen, ink and watercolour, 37.4 x 52.7 cm, National Gallery of Victoria, Melbourne, Australia (Felton Bequest, 1920)
		

		In Dante's Inferno (part of the Divine Comedy, c.1314), for which this image is an illustration, Dante (1265–1321) and Virgil (70–19 BC) travel through the different circles of hell and meet those who have committed a variety of sins. In the seventh circle they meet Capaneus, who boasted in his mortal life that even the great God Jove could not defeat him in war. For this he is now receiving his punishment: ‘Eternal fire descended in such profusion [that] sand kindled like tinder under flint, and made the pain redouble’ (Pinsky, 1994, p. 113). Hume claims (paragraph 15) that, according to our ordinary sentiments, an eternity of extreme pain is an overly harsh punishment for most human sins.

		Classical allusions aside, paragraph 17 is mostly repetition, but in its closing sentence Hume notes a final aspect of our ordinary attitude towards punishment. We do not punish people if they are not responsible for their actions. Infants could not really be said to be responsible for their actions, and yet those that die – ‘half of mankind’ in those days – are supposedly assessed and either condemned or saved. The death of infants is, he thinks, an especially vivid illustration of why the moral argument fails.

		4.3 Physical grounds for thinking we are immortal

		In section III Hume discusses what he calls physical reasons for thinking there is an afterlife. A sensible guess as to what he means by a physical reason is that it is one based on observation and experience of the physical world. He begins by asserting that physical reasons are the ones he has most respect for. (This assertion is unsurprising: his objections to moral reasons, and the metaphysical reasons we skipped, turn on the allegation that they depend on claims that go beyond what is observable.) He goes on to claim, further, that all evidence that is based on observation – all ‘physical’ evidence – points not towards there being an afterlife, but rather towards our being fully mortal.

		Before looking at how Hume seeks to vindicate this further claim, it will help to have a better appreciation of how he thinks we reason from experience. For although I have stressed the importance to Hume and his contemporaries of treating experience as the sole source of evidence, I have not said much about how reasoning from observation is supposed to work.

		Consider how, whenever we have touched snow in the past, we have felt coldness. These past experiences tell us that the next time we touch snow, it will once again feel cold. Or at least that is what we think they tell us. That is because we are tacitly using what Hume calls the rule of analogy. (It later came to be called a principle of induction, but I will keep to Hume's terminology.) The rule of analogy is named but not explicitly stated by Hume in this essay. According to it:

		
			If all experiences of one type (e.g. seeing snow) have been followed by an experience of another type (e.g. feeling it to be cold) in the past, then experiences of the first type will be followed by experiences of the second type in the future.

		

		It is thus a rule of reasoning that allows us to infer from what we observed already to what we have not yet observed.

		It is no exaggeration to say that early empiricists held this rule of analogy, or some variant of it, to be the golden gateway to all genuine knowledge. The legitimacy of analogical reasoning is what, according to many, lay at the heart of the success of the scientific method. By conducting experiments and observing the results, scientists were able to make accurate predictions about the future, building theories on that basis. Hume too takes this rule of reasoning to be central to scientific advancement. He doesn't think rules of reasoning can get any more basic than this one. What we must now turn to is Hume's application of the rule to the question of our immortality.

		In paragraphs 18–19, Hume makes his first application of the rule to the question of our mortality. It is also the most complex; be prepared to skip to the second application rather than become bogged down in this first application. The key passage is:

		
			Where any two objects are so closely connected that all alterations which we have ever seen in the one, are attended with proportionable [i.e. proportional] alterations in the other, we ought to conclude by all rules of analogy, that, when there are still greater alterations produced in the former, and it is totally dissolved, there follows a total dissolution of the latter.

		

		The relevant ‘two objects’ are the mind and the body. Hume's basic idea is this. The mind and the body show ‘proportionable’ alterations: as the body grows feeble so does the mind (or soul), and so they can also be assumed to ‘dissolve’ (by which Hume appears to mean ‘to cease to exist’) together. From this he concludes that when the body ceases to function entirely, or ‘dissolves’, so does the mind. The complexity comes with trying to see how this is an application of the rule of analogy as I have stated it above.

		To see that it is, consider what the relevant previous experiences are. Hume does not bother to say what he has in mind, but we can help him out here:

		
			The forward acceleration of a bicycle is proportional to the force applied to its pedals; elimination of this force leads to elimination of acceleration.

			The population size of the fish in a pond varies in proportion to the quantity of water; elimination of water leads to elimination of fish.

		

		In all our previous experience, Hume is claiming, whenever alterations between two objects are ‘proportionable’, it is also the case that total dissolution of the one object is accompanied by total dissolution of the other. And now the rule of analogy tells us to infer that this will be the case in the future too. Thus, if all experiences of one type (e.g. alterations between two objects being proportional) have been followed by an experience of a second type (e.g. total dissolution of the one object being accompanied by total dissolution of the other) in the past, then experiences of the first type will be followed by experiences of the second type in the future.

		The future case he has in mind is that of the soul when the body ‘dissolves’. The proportionality or close interconnection observable between soul and body must mean that the dissolution of the body will be accompanied by the dissolution of the soul.

		
			
				
					Exercise 8

				

			

			Read to the end of paragraph 19. (The next question is optional; you may prefer instead to jump straight to Hume's second application of the rule of analogy in paragraph 20, which I examine below.) Why in paragraph 19 does Hume list some ways in which deterioration in the functioning of the body is often accompanied by deterioration in the functioning of the soul (or mind): in sleep, in infancy, in sickness and in ageing?

			
				
					Show
 discussion
				

			

		

		
			
				
					Exercise 9

				

			

			Read up to the end of paragraph 20. (The following question is optional unless you skipped the optional question in the previous exercise.) Hume suggests in paragraph 20 that a purely spiritual, bodiless afterlife is even less plausible than metempsychosis, the transmigration of the soul from one body to another, perhaps across species boundaries. What are his grounds for this claim?

			
				
					Show
 discussion
				

			

		

		
			[image:]
		

		
			
				Figure 5: Jean-Baptiste Greuze, The Paralytic, 1763, oil on canvas, 115.5 x 146 cm, The State Hermitage Museum, St Petersburg. Photo: Scala
		

		Metempsychosis (mentioned jestingly by Hume), in which souls migrate from body to body across species boundaries after each successive death, was one of several popular secular alternatives to Christian conceptions of the afterlife. Another is expressed in this painting: that we can live on in our children. The presence of the Bible on the left of the painting is swamped by the presence of the children. This doctrine of filial piety was even associated with a moral injunction: if you are good in this life (i.e. raise your children well), your survival into posterity will be all the more assured. This is explicit in the title Greuze gave to a preparatory study for the painting, ‘The fruits of a good education’.

		The remainder of section III contains three diverse objections to the theory that we survive beyond our death. The relation of these to the rest of the essay is slim, and Hume is occasionally only half-serious when he presents them. We can proceed through them quite quickly.

		In paragraph 21 Hume asserts that supporters of the thesis that we have an afterlife have an accommodation crisis: the place where souls go will be populated by an ever-growing number of individuals. Ready replies to this thought were available at the time. Since souls are supposedly immaterial, by definition this means they do not occupy space so there would be no danger of overcrowding. Moreover, what justification had Hume for supposing that heaven or hell had a limited size?

		In a different objection (paragraph 22), he suggests that our soul's non-existence prior to birth increases the probability of its non-existence after death. This is the opinion attributed to him by Boswell, as quoted above (‘David Hume said to me he was no more uneasy to think he should not be after this life, than that he had not been before he began to exist.’). Hume offers some discussion of this in section I of his essay (paragraph 5), which we are not focusing on. No further support is provided in the present paragraph, just a quotation from a classical source.

		In paragraph 23 Hume is implicitly responding to an attitude that would have been common. Fear of death in a person was assumed to be evidence in favour of their belief in an afterlife in which non-believers are damned. Fear of death could therefore reveal a profession of agnosticism to be disingenuous. This, in part, is why people were so curious about whether Hume would recant his views on his deathbed.

		Hume makes the point that belief in an afterlife is not the only available explanation of fear of death. This fear could be accounted for easily enough as attachment to happiness in this, the only, life. (In fact, he says, many of those who do believe in an afterlife should be placid, since for them our mortal death is not really the end of our existence.) In view of this claim, Hume went beyond the call of duty in dying with:

		
			great cheerfulness and good humour and with more real resignation to the necessary course of things than any whining Christian ever died with pretended resignation to the will of God.

			(Adam Smith, letter to Alexander Wedderburn, 14 August 1776, quoted in Mossner and Ross, 1987, p. 203)

		

		Paragraph 23 ends with a speculation: it is a passionate hope to live on that irrationally gives rise in us to a belief that we do live on. Paragraph 24 merely repeats earlier material, and the ironic final paragraph has been discussed already.

		
			
				
					Exercise 10

				

			

			Finish reading to the end of the essay. How persuaded are you by his discussion of fear of death in paragraph 23?

			
				
					Show
 discussion
				

			

		

		You should by now appreciate just how careful a writer Hume was. Aside from one or two light-hearted paragraphs near the end, not a single sentence is included that doesn't have an important purpose. Every paragraph develops his case in some unpredictable but thoughtful way. Repetition is minimal. That is why we have gone through the essay in such a painstaking way, paragraph by paragraph. All the same, it helps to step back and gain an appreciation of the whole essay, and in the next exercise you are asked to read it through in a single sitting.

		
			
				
					Exercise 11

				

			

			Reread ‘Of the immortality of the soul’ from beginning to end (omitting section I). Look out for the three objections to the moral reasoning in section II, and the role of Hume's appeals to experience as the final arbiter throughout the essay.

			
				
					Show
 discussion
				

			

		

	
		5 Hume on suicide

		5.1 The reception of Hume's views

		‘Of suicide’ was received with the same degree of public hostility as his essay on immortality. Here is what an anonymous reviewer of the 1777 posthumous edition of both essays had to say in the Monthly Review (1784, vol. 70, pp. 427–8):

		
			Were a drunken libertine to throw out such nauseous stuff in the presence of his Bacchanalian companions, there might be some excuse for him; but were any man to advance such doctrines in the company of sober citizens, men of plain sense and decent manners, no person, we apprehend, would think him entitled to a serious reply, but would hear him with silent contempt.

		

		This reviewer, unfortunately, is true to her or his word and does not provide a serious reply to Hume, preferring instead to hold up one or two statements in the essays and jeer:

		
			Mr Hume affirms that it is as clear as any purpose of nature can be that the whole scope and intention of man's creation is limited to the present life, and that those who inculcate the doctrine of a future state have no other motive but to gain a livelihood and to acquire power and riches in this world … The life of a man, he says, is of no greater importance to the universe than that of an oyster. It would be no crime, we are told, in any man, to divert the Nile or Danube from their courses, were he able to effect such purpose. Where then is the crime, Mr Hume asks, of turning a few ounces of blood from their natural channel?

		

		The first sentence of this passage alludes to remarks made in ‘Of the immortality of the soul’ (paragraph 9), remarks that in fact play a relatively marginal role in the essay. The remainder of the passage cites claims in ‘Of suicide’ that are similarly peripheral.

		Other commentators were equally disrespectful towards Hume the person, but more respectful of the need to respond at greater length to Hume's reasoning. In his lengthy tome, A Full Inquiry into the Subject of Suicide, Charles Moore describes Hume as ‘a more pernicious and destructive member of society than even the profligate and abandoned liver’ (1790, vol. 2, p. 54). In The Dreadful Sin of Suicide: A Sermon, George Clayton calls him a ‘source of incalculable evil’ (1812, p. 48n).

		In the essay Hume claims that the act of taking one's own life should be ‘free from every imputation of guilt or blame’ (paragraph 4). Suicide, he argues, can be morally unobjectionable or even admirable. As the reviews suggest, this was a controversial claim: to commit suicide was generally regarded as sinful, and to attempt suicide was a criminal act. What was peculiarly unsettling about Hume's perspective was that he did not bother to reject the core religious assumptions from which hostility to suicide more commonly sprang. Hume was, we know, an agnostic, but his agnosticism does not figure in this essay. His claim is that suicide can be shown to be morally permissible even after granting God's existence. In this respect the present essay resembles the one we have already studied: admitting suicide to be morally permissible, like rejecting the doctrine of immortality, will not depend on denying the existence of God.

		The essay does not have explicitly numbered sections as did the previous essay. This does not mean it lacks a structure. Rather, the structure is something for us to uncover as we study it. As before, we will be working through the essay stage by stage. You will then be asked to read it through as a whole.

		5.2 Philosophy, religion and everyday life

		Perhaps because he is aware he will be stirring up trouble by publishing his views on this topic, Hume warms to his theme by talking in paragraphs 1–4 about how he conceives of the relation between philosophy, religious ‘superstition’ and ordinary life. The rest of the essay can be read independently of this opening, but these early ruminations are worth pausing over. They reveal subtleties in Hume's sceptical outlook that are drowned out in the more polemical parts of the two essays.

		Hume is concerned with which of these three elements – philosophy, superstition, ordinary life – is most effective at dominating the other two. He is especially vocal about how philosophical reason is an ‘antidote’ to superstition, where this is clearly meant to include religious belief. But he also discusses the relation of both religion and philosophy to the views and emotions (‘passions’) that serve us so well in ordinary life -what he describes as ‘plain good sense and the practice of the world’.

		He notes with regret that religious superstition can and does distort our ordinary outlook, and in a ‘pernicious’ way. He gives one or two examples, including the example of superstition surrounding death and suicide. A clear statement of what he sees as the negative effects of religious beliefs on human happiness is found later in the essay (paragraph 12):

		
			It is impious, says the old Roman superstition, to divert rivers from their course, or invade the prerogatives of nature. It is impious says the French superstition, to inoculate for the smallpox, or usurp the business of providence by voluntarily producing distempers and maladies. It is impious, says the modern European superstition, to put a period to our own life and thereby rebel against our Creator.

		

		The result of this pernicious influence of superstition on common sense is that dams don't get built, smallpox doesn't get eradicated, and those for whom it is rational to do so do not commit suicide. (Women in particular, he remarks, are particularly susceptible to superstition. It is not clear whether he is recommending they study philosophy, given that, as we saw earlier, he thought women have relatively poor powers of reasoning.)

		Hume's position can be summarised as: religious superstition can triumph over our ordinary views and emotions. And since philosophy is a ‘sovereign antidote’ to religion, philosophy can triumph over religious superstition. We might therefore expect Hume to think that philosophy triumphs over the views and emotions that ordinarily serve us so well in life, as and when these fall short. But Hume surprises us here. Our emotions are curiously immune to the influence of reason, he says; and in other writings he insists that our ordinary views and expectations, the habits or customs of our minds, will not bend to accommodate philosophical reasoning (A Treatise of Human Nature, I.IV.1). The relationship between the three elements – philosophy, religious superstition, ordinary views and emotions – is not hierarchical after all. None of them dominates the other two. The situation is closer to the children's game in which each participant simultaneously brings a hand out from behind her or his back in the shape of either scissors, paper or stone. Scissors shred paper; paper smothers stone; and stone blunts scissors. Hume's view is that philosophy cuts through religion; religion distorts ordinary views and emotions; and ordinary views and emotions are immune to revision through the application of reason.

		Hume does not offer any lengthy reasons here for supposing that ordinary life is impermeable to philosophy. It is, however, a salient feature of his other work. Far from being a straightforward supporter of Enlightenment rationality, he was notoriously sceptical of the power of reason. For example, although you would never be able to guess it from the previous essay, he did not think the rule of analogy could be defended using reason. He thought this rule was simply something we blindly follow out of ‘habit'; the philosophical indefensibility of the rule can never alter this habit. So his appeal to this rule is actually an appeal to our common sense, which he thinks incapable of being grounded in reason. Hume is a celebrator of ordinary life, which is perhaps why he is so keen to defend it against the perceived threat of religion.

		Evidence of this fondness for ordinary life was reflected in his personality. Famously, he enjoyed recovering from philosophical reflection by playing cards or board games. In A Treatise of Human Nature Hume describes how playing games allows him to ‘dispel the clouds’ of scepticism, cure himself of ‘philosophical melancholy and delirium’, and ‘obliterate the chimeras’ that abstract reflection has led him to conjure up (I.IV.7; Hume, 1978, p. 269):

		
			I dine, I play a game of backgammon, I converse, and am merry with my friends; and when after three or four hours’ amusement I would return to these speculations, they appear so cold and strained and ridiculous that I cannot find [it] in my heart to enter into them any farther.

		

		This aspect of his personality divided those commenting on his death in the letters you read earlier. Adam Smith described the dying Hume as ‘continu[ing] to divert himself, as usual, with … a party at his favourite game of whist’ (quoted in section 1 above). The Bishop of Norwich lamented how low the age has fallen that we are to admire someone because he ‘knew how to manage his cards’ (also quoted above). The symbolism of backgammon and whist is that just as philosophy is an antidote to religion, ordinary life is an antidote to philosophy, and to sceptical paralysis in particular.

		
			
				View
 document
			

		

		
			
				
					Exercise 12

				

			

			Read paragraphs 1–2 of the essay on suicide. Identify sentences that express Hume's view that (1) philosophy cuts through religion, (2) religious superstition distorts ordinary views, and (3) ordinary emotional reactions are immune to philosophical reason.

			
				
					Show
 discussion
				

			

		

		Paragraph 5 is where the essay really gets underway. In it Hume indicates the aim and structure of his argument and of the essay as a whole. Hume's stated aim is to persuade his reader that suicide is not ‘criminal’, i.e. is not morally objectionable. If suicide is morally objectionable, he insists, it must violate (‘transgress’) some duty we owe, either to God, to other people, or to ourselves. So the essay considers in turn our duties to (i) God, (ii) to others, and (iii) to ourselves, finding in each case that the act of suicide violates no such duty. Most of his energy is directed towards considering our duties to God. Duties to others and to ourselves receive relatively short shrift near the end.

		
			
				
					Exercise 13

				

			

			Find and read the brief fifth paragraph. Although they are not numbered as such, there are three further subsections. Duties to God are discussed in paragraphs 6–14, duties to others in paragraphs 15–17, and duties to ourselves in paragraphs 18–19. Find and make a note of these boundaries.

		

		5.3 Do we have a duty to God not to commit suicide?

		Why, you may be wondering, would anyone think that we have a duty to God not to take our own lives? Because it would have been so familiar to his original readership, Hume barely bothers to state the position he is opposing before criticising it. His concern is to refute the charge that in taking our own lives we would be ‘encroaching on the office of divine providence, and disturbing the order of the universe’ (paragraph 8). This position can be expressed less elegantly but more transparently as follows:

		
			
				The sanctity-of-life argument against suicide: life ought not to be taken by anyone save God; so one ought not to take one's own life.

		

		In a later idiom, the charge against suicide is that it involves playing God, i.e. making and acting on a decision that properly belongs to God and God alone. The phrase ‘playing God’ is often used even in a non-religious context to describe any action that involves the agent going beyond their proper station in the universe. In the Second World War some military strategists declared themselves uncomfortable at being called on to make decisions that would determine which of two cities would be heavily bombed. Their discomfort did not necessarily have a religious basis, and their use of the phrase ‘playing God’ in that context would often have been metaphorical. But the origins of the idiom lie in a genuine worry about literally taking God's decisions for him.

		Without seeking to undermine the arguments for God's existence, Hume sets out to show that taking one's own life is unobjectionable. The thought that we have a duty not to take God's decisions for him, and in particular not to take the decision to end our own life, is, Hume suggests, preposterous even from the most reasonable theological perspective.

		In order to show that from the most reasonable theological perspective available we should not condemn suicide, Hume must first establish what the most reasonable theological perspective available actually is. This task occupies him in paragraphs 6–7. At the very least, he suggests, the most reasonable theological perspective will assume the legitimacy of the argument from design (see the glossary if you need a reminder); this is the only argument for the existence of God that he believes is even remotely plausible.

		Central to the argument from design is the assumption that order and harmony are evidence of a benign and powerful creator. Anyone who accepts the argument – in other words, anyone with a reasonable theological perspective – is committed to seeing order and harmony as God's handiwork. Any denial of the inference from order and harmony to divine influence would undermine the only plausible reason for accepting that God exists at all.

		If the first component of any reasonable theological perspective is a commitment to the argument from design, the second is a recognition that order and harmony permeate every aspect of the universe. Each is observable within nature, within us, and within our relation to our environment. Since harmony and order are to be regarded as evidence of God's handiwork, this must mean that no part of the universe is free from God's influence.

		The all-pervasiveness of harmony and order throughout the universe is something we can easily observe, says Hume (paragraph 6):

		
			[A]ll bodies, from the greatest planet to the smallest particle of matter, are maintained in their proper sphere and function.

		

		Hume is insistent on this point about the all-pervasiveness of harmony and order, and hence of God's influence (paragraph 6):

		
			These two distinct principles of the material and animal world, continually encroach upon each other, and mutually retard or forward each other's operation.

		

		In other words, all entities, including both inanimate and animate, appear subject to a single system of interlocking laws.

		The significance of this is reached in paragraph 7:

		
			When the passions play, when the judgement dictates, when the limbs obey, this is all the operation of God …

		

		Consider the last of these three phenomena, the ‘obedience’ of our limbs to our decisions to move them. What he seems to have in mind here is that when you act – to scratch your ankle, for example – you are usually able to do so because the physical world accommodates your mental decision. In a non-harmonious world, your decision to scratch could just as easily be followed by your hand flying up towards the ceiling as its moving down towards your ankle. The fact that your hand moves down towards your ankle is a sign that human decision making is just as permeated by harmony as any other event in the universe, and so equally subject to God's benign influence as the rest of the universe.

		A useful term to know here is ‘providence’. Divine providence includes all goings-on in the universe that are the direct result of God's influence. Many theologians have held that human action falls outside of divine providence, that our individual choices are not part of God's plan at all, and that we alone bear responsibility for them. Hume is arguing to the contrary that the entire universe, including each of our actions, falls within God's providential reach. His ground for thinking this, to repeat, is that harmony and order are manifest in human action just as they are manifest in the non-human sphere, and harmony and order are the surest sign there is of God's presence.

		In paragraph 7 Hume addresses the thought that some of our actions do not really seem to be anyone's but our own. We cannot see God's hand at work in our actions looked at in isolation, he acknowledges. But seen as part of a harmonious system, our actions are as much permeated by God's influence as is the rest of the universe.

		
			[image:]
		

		
			
				Figure 6(a): J.P. Le Bas, Ruins of the Opera House (after the Lisbon earthquake of 1755), 1757, from the Le Bas series, Bibliotheque Nationale de France, Paris. Photo: courtesy National Information Service for Earthquake Engineering, University of California, Berkeley
		

		
			[image:]
		

		
			
				Figure 6(b): J.P. Le Bas, Ruins of the Praca de Patriarchal (Patriachal Square) (after the Lisbon earthquake of 1755), 1757, from the Le Bas series, Bibliotheque Nationale de France, Paris. Photo: courtesy National Information Service for Earthquake Engineering, University of California, Berkeley

		

		The Lisbon earthquake was mentioned earlier in a different connection. This event gave rise to debates that reflected issues salient at the time. Many focused on trying to understand the disaster as a natural phenomenon, and the science of seismology began in earnest around that time. Others were more concerned with reconciling such a cataclysmic event with their preferred conception of divinity. In particular, theologians struggled with the so-called problem of evil: if God is all-powerful and benevolent, why does he let terrible things happen?
A popular answer to this problem prior to the Lisbon earthquake was that evil is brought into the world by human weakness. This was one reason why many, unlike Hume, thought that human action fell beyond God's providence. But while political corruption, murder and war could be understood in this way, earthquakes were clearly a different matter. A few tried to account for the earthquake as God's punishment for the sinfulness of Lisbon, which was perceived as a decadent city. But this was hard to reconcile with the fact that the ‘decadent’ opera house (Figure 4.6(a)) was joined in ruin by the cathedral and other religious buildings. In fact, five of Le Bas's six etchings contain one or more religious buildings. Figure 4.6(b) shows the patriarchal palace, which was the only major religious building to survive the tremor and the tidal wave. It served as an impromptu prayer centre before it too was lost in the fires that followed.

		
			
				
					Exercise 14

				

			

			Read paragraphs 6–7. Their meaning is occasionally quite elusive. A useful maxim to adopt when this happens is to aim to get the author's basic gist, then move on, coming back later if you have to. With this in mind, what is the basic gist of these two paragraphs?

			
				
					Show
 discussion
				

			

		

		Having established that, on pain of having to reject design as a sign of God's existence, all our actions need to be treated equally as a part of God's plan, Hume unveils the relevance of this for the morality of suicide (paragraph 8).

		It is absurd, he claims, to condemn an act of suicide as ‘encroaching on the office of divine providence’, that is, as doing what God and only God may do. Such condemnation would be absurd because every action would then have to be condemned for the same reason. If we condemn acts of suicide for encroaching on God, we would also need to condemn acts of ankle scratching. Both actions fall inside the scope of divine providence. Both have equal status as part of God's grand design.

		Hume is criticising any attempt to establish a division between ordinary decisions and sacred decisions. Decisions of the first kind would belong to us alone; decisions of the second kind would belong to God alone. His long discussion of divine providence is meant to have shown that such a division is misguided. ‘Shall we assert’, asks Hume in paragraph 8,

		
			that the Almighty has reserved to himself in … [some] peculiar manner the disposal of the lives of men, and has not submitted that event [i.e. the disposal of human life], in common with others, to the general laws by which the universe is governed? This is plainly false.

		

		It is ‘plainly false’ because having a specially reserved sphere of influence is incompatible with the universality of divine providence. All types of action, from ankle scratching to suicide, are on the same footing; indeed, they are on the same footing as every event in the universe. All are subject to the universal laws of nature. These regular, ordered and harmonious laws of nature are our only assurance that God exists at all, so must be taken as a sign of God's influence.

		
			
				
					Exercise 15

				

			

			Read paragraph 8. How does Hume's view of providence bear on his views on the moral acceptability of suicide?

			
				
					Show
 discussion
				

			

		

		By the end of paragraph 8 Hume has stated the main argument of his essay. The principal value of the essay lies in this discussion of the all-pervading presence of divine providence, and its relevance for the morality of suicide. The remainder is repetition or else it introduces some short and relatively easy-to-grasp theological considerations. So now would be a good time to state Hume's reply to the sanctity-of-life argument in as simple a way as possible:

		
			
				Hume's reply to the sanctity-of-life argument: any reasonable theology will see order and harmony as a sign of God's influence; order and harmony are present equally in all human actions; so there is no distinction to be made between actions (e.g. suicide) that belong to God and actions (e.g. ankle scratching) that do not.

		

		
			
				
					Exercise 16

				

			

			Read paragraphs 9–14. Paragraphs 11–14 recapitulate the core ‘providence’ argument discussed already, so treat this as an opportunity to cement your understanding of his position. Before that, jot down a sentence capturing the objection Hume is responding to in paragraph 9. Then do the same for paragraph 10.

			
				
					Show
 discussion
				

			

		

		You may have recognised in Hume's reply to the objection in paragraph 9 the comments that so annoyed the anonymous commentator for Monthly Review quoted earlier. Actually, Hume presents several different replies in quick succession. In the first of these he suggests that ‘the life of a man is of no greater importance to the universe than that of an oyster’. It is not clear what Hume means by ‘importance to the universe’, but on the face of it this is a bizarre claim. He makes a similar-sounding claim in comparing diverting the Nile with diverting the flow of blood through human veins. This is a case where, as interpreters, we have to make a decision. Either Hume had a good but obscure point to make with these examples, and we should pause to work out what that point is. Alternatively he was just being sloppy, in which case we should ignore his remark and move on to his other responses. I am going to adopt the latter strategy.

		A more promising reply (I suggest) is embedded elsewhere within paragraph 9. Hume points out that we don't condemn those who save their own lives by ‘turn[ing] aside a stone which is falling upon … [their] head’ for stepping on God's toes. Yet deciding to save a life is just as significant as deciding to end one. Why then should we make this complaint when it is a matter of ending our lives? The same reasoning used to condemn those who take their own lives could be used to condemn those who save their own lives. Both the taker and the saver could be said to be acting ‘presumptuously’ in taking such huge decisions. Hume treats this as showing the reasoning to be equally absurd in each case.

		In paragraph 10 Hume is responding to the thought that by killing oneself one is destroying God's greatest creation. This would be insulting to God, rather as destroying a watch would be insulting to the watch's maker. Hume, however, is concerned with acts of suicide that are motivated by inconsolable misery and incurable illness. So a better analogy would be with the act of destroying a watch that is already permanently broken down and useless. Throwing out such a watch is in fact an act of respect for the watchmaker.

		
			
				
					Exercise 17

				

			

			Remind yourself of the structure of the essay as stated in paragraph 5. Then read the remaining paragraphs of the essay. Paragraphs 15–16 deal with duties to society; paragraphs 17–18 deal with duties to self.

		

		5.4 Assessing Hume's views

		The main value of Hume's essay lies in its discussion of our duties to God. Here Hume's arguments initially seem quite convincing. But arguments almost always seem convincing when they are first heard and understood. The real test comes when we try to think of possible objections. Here is one such objection, based on what has become known as the problem of evil, the problem of reconciling God's benevolence and omnipotence with the fact that evil exists in the world:

		
			Hume thinks that divine providence extends to all human action. But how can this be true? If it were, we would have to say that God is responsible for the actions of every cruel or brutal ruler.

			This would be incompatible with the assumption that God is a benevolent being. At least some human actions must fall outside of divine providence. Hume's claim that from the most reasonable theological perspective all actions belong equally to God's grand design looks suspect.

		

		
			
				
					Exercise 18

				

			

			Reread ‘On suicide’. Has Hume shown that suicide is not always wrong in principle? Try to come up with an objection, or reproduce in your own words the objection having to do with the problem of evil outlined above.

		

	
		References

		Boswell, J. (1971) Boswell in Extremes: The Private Papers of James Boswell, 1776–1778, ed. C. McC. Weis and F.A. Pottle, London, Heinemann.

		Boswell, J. (1986) The Life of Samuel Johnson, ed. C. Hibbert, Harmondsworth, Penguin (first published 1791).

		Butlin, M. (1983) William Blake, London, Tate Gallery.

		Clayton, G. (1812) The Dreadful Sin of Suicide: A Sermon, London, Black, Parry and Kingsbury.

		Dufour, T. and Plan, P.-P. (eds) (1924–34) Jean-Jacques Rousseau: Correspondance Générale, 20 vols, Paris.

		Fontaine, J. de la (1946) ‘La mort et le bûcheron’, in Fables: Édition Complete, London, Commodore Press.

		Hampson, N. (1968) The Enlightenment, Harmondsworth, Penguin.

		Horne, G. (1806) Letters on Infidelity. The Second Edition. To which is prefixed a Letter to Dr Adam Smith, Oxford, N. Bliss.

		Hume, D. (1962) ‘My own life’, in A. Flew (ed.) David Hume on Human Nature and Understanding, London, Collier Macmillan.

		Hume, D. (1975) Enquiries Concerning Human Understanding and Concerning the Principles of Morals, ed. L.A. Selby-Bigge and P.H. Nidditch, 3rd edn, Oxford, Clarendon Press (first published 1748, 1751).

		Mossner, E.C. (1980) The Life of David Hume, 2nd edn, Oxford, Oxford University Press.

		Mossner, E.C. and Ross, I.S. (eds) (1987) The Correspondence of Adam Smith, Oxford, Oxford University Press.

		Scott, W.R. (1937) Adam Smith as Student and Professor, Glasgow, Jackson, Son & Co.

		Wain, J. (ed.) (1990) The Journals of James Boswell 1762–1795 (selections), London, Mandarin.

		Warburton, N. (2002) ‘Art and illusion’, The Philosopher's Magazine, 19, pp. 40–2.

		Acknowledgements

		The content acknowledged below is Proprietary (see terms and conditions) and is used under licence.

		Grateful acknowledgement is made to the following sources for permission to reproduce material within this product.

		 David Hume, Of Suicide, reproduced with the kind permission of the National Library of Scotland

		Of the Immortality of the Soul, reproduced with the kind permission of the National Library of Scotland

		Allan Ramsay, David Hume, 1766, oil on canvas, 76.2 x 63.5 cm, Scottish National Portrait Gallery, Edinburgh. Photo: SNPG/Bridgeman Art Library.

		Joseph Wright of Derby, Lecture on the Orrery in which a Candle is used to create an Eclipse, 1766, oil on canvas, 147.3 x 203 cm, Derby Museum and Art Gallery. Photo: reproduced by courtesy of Derby Museum and Art Gallery/Bridgeman Art Library/John Webb.

		William Blake, Isaac Newton, c.1795, colour print finished in ink and watercolour on paper, Tate Gallery, London. Photo: © Tate, London 2002.

		
			
				Figure 1
			: Joseph Wright of Derby, “The Old Man and Death” 1773, oil on canvas, 101.6 x 127cm, Wadsworth Atheneum, Hartford, CT, Ella Gallup Sumner and Mary Catlin Sumner Collection

		
			
				Figure 2
			: Louis-Léopold Boilly, “Les Cinq Sens (The Five Senses)”, 1823, colour lithograph, 21 x 18cm, Photo © Leonard de Selva/CORBIS

		
			
				Figure 3
			: Johann Friedrich Bolt, after Vinzenz Kininger, title page from the printed music score of “Don Giovanni”, 1801, engraving, Gesellschaft der Musikfreunde, Vienna

		
			
				Figure 4
			: William Blake, “Capaneus the Blasphemer”, illustration to Dante’s “Divine Comedy”, Hell Canto 14, 1824-7, pen, ink and watercolour, 37.4 x 52.7cm, courtesy of the National Gallery of Victoria, Melbourne, Australia (Felton Bequest, 1920)

		
			
				Figure 5
			: Jean-Baptiste Greuze, “The Paralytic”, 1763, oil on canvas, 115.5 x 146cm, The State Hermitage Museum, St Petersburg. Photo: Scala

		
			
				Figure 6a
			: J.P. Le Bas, “Ruins of the Opera House” (after the Lisbon Earthquake of 1755), 1757, from the Le Bas series, Bibliothèque Nationale de France, Paris. Photo: National Information Service for Earthquake Engineering, University of California, Berkeley.

		
			
				Figure 6b
			: J.P. Le Bas, “Ruins of the Praca de Patriarchal (Patriarchal Square)” (after the Lisbon Earthquake of 1755), 1757, from the Le Bas series, Bibliothèque Nationale de France, Paris. Photo: National Information Service for Earthquake Engineering, University of California, Berkeley.

		Every effort has been made to trace all the copyright owners, but if any have been inadvertently overlooked, the publishers will be pleased to make the necessary arrangements at the first opportunity

	
		Version

		 ID: A207
			
 Build: 1.3.0
			
Stamp: 2010-10-26T01:13:15+01:00
		

		Copyright © 2010 The Open University

	OEBPS/js/jquery.columnmanager.js
/*

 * jQuery columnManager plugin

 * Version: 0.2.5

 *

 * Copyright (c) 2007 Roman Weich

 * http://p.sohei.org

 *

 * Dual licensed under the MIT and GPL licenses

 * (This means that you can choose the license that best suits your project, and use it accordingly):

 * http://www.opensource.org/licenses/mit-license.php

 * http://www.gnu.org/licenses/gpl.html

 *

 * Changelog:

 * v 0.2.5 - 2008-01-17

 *	-change: added options "show" and "hide". with these functions the user can control the way to show or hide the cells

 *	-change: added $.fn.showColumns() and $.fn.hideColumns which allows to explicitely show or hide any given number of columns

 * v 0.2.4 - 2007-12-02

 *	-fix: a problem with the on/off css classes when manually toggling columns which were not in the column header list

 *	-fix: an error in the createColumnHeaderList function incorectly resetting the visibility state of the columns

 *	-change: restructured some of the code

 * v 0.2.3 - 2007-12-02

 *	-change: when a column header has no text but some html markup as content, the markup is used in the column header list instead of "undefined"

 * v 0.2.2 - 2007-11-27

 *	-change: added the ablity to change the on and off CSS classes in the column header list through $().toggleColumns()

 *	-change: to avoid conflicts with other plugins, the table-referencing data in the column header list is now stored as an expando and not in the class name as before

 * v 0.2.1 - 2007-08-14

 *	-fix: handling of colspans didn't work properly for the very first spanning column

 *	-change: altered the cookie handling routines for easier management

 * v 0.2.0 - 2007-04-14

 *	-change: supports tables with colspanned and rowspanned cells now

 * v 0.1.4 - 2007-04-11

 *	-change: added onToggle option to specify a custom callback function for the toggling over the column header list

 * v 0.1.3 - 2007-04-05

 *	-fix: bug when saving the value in a cookie

 *	-change: toggleColumns takes a number or an array of numbers as argument now

 * v 0.1.2 - 2007-04-02

 * 	-change: added jsDoc style documentation and examples

 * 	-change: the column index passed to toggleColumns() starts at 1 now (conforming to the values passed in the hideInList and colsHidden options)

 * v 0.1.1 - 2007-03-30

 * 	-change: changed hideInList and colsHidden options to hold integer values for the column indexes to be affected

 *	-change: made the toggleColumns function accessible through the jquery object, to toggle the state without the need for the column header list

 *	-fix: error when not finding the passed listTargetID in the dom

 * v 0.1.0 - 2007-03-27

 */

(function($)

{

	var defaults = {

		listTargetID : null,

		onClass : '',

		offClass : '',

		hideInList: [],

		colsHidden: [],

		saveState: false,

		onToggle: null,

		show: function(cell){

			showCell(cell);

		},

		hide: function(cell){

			hideCell(cell);

		}

	};

	

	var idCount = 0;

	var cookieName = 'columnManagerC';

	/**

	 * Saves the current state for the table in a cookie.

	 * @param {element} table	The table for which to save the current state.

	 */

	var saveCurrentValue = function(table)

	{

		var val = '', i = 0, colsVisible = table.cMColsVisible;

		if (table.cMSaveState && table.id && colsVisible && $.cookie)

		{

			for (; i < colsVisible.length; i++)

			{

				val += (colsVisible[i] == false) ? 0 : 1;

			}

			$.cookie(cookieName + table.id, val, {expires: 9999});

		}

	};

	

	/**

	 * Hides a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to hide.

	 */

	var hideCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(hideCell = function(c)

			{

				c.style.setAttribute('display', 'none');

			})(cell);

		}

		else

		{

			(hideCell = function(c)

			{

				c.style.display = 'none';

			})(cell);

		}

	};

	/**

	 * Makes a cell visible again.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to show.

	 */

	var showCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(showCell = function(c)

			{

				c.style.setAttribute('display', 'block');

			})(cell);

		}

		else

		{

			(showCell = function(c)

			{

				c.style.display = 'table-cell';

			})(cell);

		}

	};

	/**

	 * Returns the visible state of a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to test.

	 */

	var cellVisible = function(cell)

	{

		if (jQuery.browser.msie)

		{

			return (cellVisible = function(c)

			{

				return c.style.getAttribute('display') != 'none';

			})(cell);

		}

		else

		{

			return (cellVisible = function(c)

			{

				return c.style.display != 'none';

			})(cell);

		}

	};

	/**

	 * Returns the cell element which has the passed column index value.

	 * @param {element} table	The table element.

	 * @param {array} cells		The cells to loop through.

	 * @param {integer} col	The column index to look for.

	 */

	var getCell = function(table, cells, col)

	{

		for (var i = 0; i < cells.length; i++)

		{

			if (cells[i].realIndex === undefined) //the test is here, because rows/cells could get added after the first run

			{

				fixCellIndexes(table);

			}

			if (cells[i].realIndex == col)

			{

				return cells[i];

			}

		}

		return null;

	};

	/**

	 * Calculates the actual cellIndex value of all cells in the table and stores it in the realCell property of each cell.

	 * Thats done because the cellIndex value isn't correct when colspans or rowspans are used.

	 * Originally created by Matt Kruse for his table library - Big Thanks! (see http://www.javascripttoolbox.com/)

	 * @param {element} table	The table element.

	 */

	var fixCellIndexes = function(table)

	{

		var rows = table.rows;

		var len = rows.length;

		var matrix = [];

		for (var i = 0; i < len; i++)

		{

			var cells = rows[i].cells;

			var clen = cells.length;

			for (var j = 0; j < clen; j++)

			{

				var c = cells[j];

				var rowSpan = c.rowSpan || 1;

				var colSpan = c.colSpan || 1;

				var firstAvailCol = -1;

				if (!matrix[i])

				{

					matrix[i] = [];

				}

				var m = matrix[i];

				// Find first available column in the first row

				while (m[++firstAvailCol]) {}

				c.realIndex = firstAvailCol;

				for (var k = i; k < i + rowSpan; k++)

				{

					if (!matrix[k])

					{

						matrix[k] = [];

					}

					var matrixrow = matrix[k];

					for (var l = firstAvailCol; l < firstAvailCol + colSpan; l++)

					{

						matrixrow[l] = 1;

					}

				}

			}

		}

	};

	

	/**

	 * Manages the column display state for a table.

	 *

	 * Features:

	 * Saves the state and recreates it on the next visit of the site (requires cookie-plugin).

	 * Extracts all headers and builds an unordered() list out of them, where clicking an list element will show/hide the matching column.

	 *

	 * @param {map} options		An object for optional settings (options described below).

	 *

	 * @option {string} listTargetID	The ID attribute of the element the column header list will be added to.

	 *						Default value: null

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {array} hideInList	An array of numbers. Each column with the matching column index won't be displayed in the column header list.

	 *						Index starting at 1!

	 *						Default value: [] (all columns will be included in the list)

	 * @option {array} colsHidden	An array of numbers. Each column with the matching column index will get hidden by default.

	 *						The value is overwritten when saveState is true and a cookie is set for this table.

	 *						Index starting at 1!

	 *						Default value: []

	 * @option {boolean} saveState	Save a cookie with the sate information of each column.

	 *						Requires jQuery cookie plugin.

	 *						Default value: false

	 * @option {function} onToggle	Callback function which is triggered when the visibility state of a column was toggled through the column header list.

	 *						The passed parameters are: the column index(integer) and the visibility state(boolean).

	 *						Default value: null

	 *

	 * @option {function} show		Function which is called to show a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to block (visible)

	 *

	 * @option {function} hide		Function which is called to hide a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to none (invisible)

	 *

	 * @example $('#table').columnManager([listTargetID: "target", onClass: "on", offClass: "off"]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and sets the CSS classes for the visible("on") and hidden("off") states.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", hideInList: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" but without the first and fourth column.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", colsHidden: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and hides the first and fourth column by default.

	 *

	 * @example $('#table').columnManager([saveState: true]);

	 * @desc Enables the saving of visibility informations for the columns. Does not create a column header list! Toggle the columns visiblity through $('selector').toggleColumns().

	 *

	 * @type jQuery

	 *

	 * @name columnManager

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.columnManager = function(options)

	{

		var settings = $.extend({}, defaults, options);

		/**

		 * Creates the column header list.

		 * @param {element} table	The table element for which to create the list.

		 */

		var createColumnHeaderList = function(table)

		{

			if (!settings.listTargetID)

			{

				return;

			}

			var $target = $('#' + settings.listTargetID);

			if (!$target.length)

			{

				return;

			}

			//select headrow - when there is no thead-element, use the first row in the table

			var headRow = null;

			if (table.tHead && table.tHead.length)

			{

				headRow = table.tHead.rows[0];

			}

			else if (table.rows.length)

			{

				headRow = table.rows[0];

			}

			else

			{

				return; //no header - nothing to do

			}

			var cells = headRow.cells;

			if (!cells.length)

			{

				return; //no header - nothing to do

			}

			//create list in target element

			var $list = null;

			if ($target.get(0).nodeName.toUpperCase() == 'UL')

			{

				$list = $target;

			}

			else

			{

				$list = $('');

				$target.append($list);

			}

			var colsVisible = table.cMColsVisible;

			//create list elements from headers

			for (var i = 0; i < cells.length; i++)

			{

				if ($.inArray(i + 1, settings.hideInList) >= 0)

				{

					continue;

				}

				colsVisible[i] = (colsVisible[i] !== undefined) ? colsVisible[i] : true;

				var text = $(cells[i]).text(),

					addClass;

				if (!text.length)

				{

					text = $(cells[i]).html();

					if (!text.length) //still nothing?

					{

						text = 'No label'; // GNS - was: 'undefined'

					}

				}

				if (colsVisible[i] && settings.onClass)

				{

					addClass = settings.onClass;

				}

				else if (!colsVisible[i] && settings.offClass)

				{

					addClass = settings.offClass;

				}

				var $li = $('<li class="' + addClass + '">' + text + '').click(toggleClick);

				$li[0].cmData = {id: table.id, col: i};

				$list.append($li);

			}

			table.cMColsVisible = colsVisible;

		};

		/**

		 * called when an item in the column header list is clicked

		 */

		var toggleClick = function()

		{

			//get table id and column name

			var data = this.cmData;

			if (data && data.id && data.col >= 0)

			{

				var colNum = data.col,

					$table = $('#' + data.id);

				if ($table.length)

				{

					$table.toggleColumns([colNum + 1], settings);

					//set the appropriate classes to the column header list

					var colsVisible = $table.get(0).cMColsVisible;

					if (settings.onToggle)

					{

						settings.onToggle.apply($table.get(0), [colNum + 1, colsVisible[colNum]]);

					}

				}

			}

		};

		/**

		 * Reads the saved state from the cookie.

		 * @param {string} tableID	The ID attribute from the table.

		 */

		var getSavedValue = function(tableID)

		{

			var val = $.cookie(cookieName + tableID);

			if (val)

			{

				var ar = val.split('');

				for (var i = 0; i < ar.length; i++)

				{

					ar[i] &= 1;

				}

				return ar;

			}

			return false;

		};

 return this.each(function()

 {

			this.id = this.id || 'jQcM0O' + idCount++; //we need an id for the column header list stuff

			var i,

				colsHide = [],

				colsVisible = [];

			//fix cellIndex values

			fixCellIndexes(this);

			//some columns hidden by default?

			if (settings.colsHidden.length)

			{

				for (i = 0; i < settings.colsHidden.length; i++)

				{

					colsVisible[settings.colsHidden[i] - 1] = true;

					colsHide[settings.colsHidden[i] - 1] = true;

				}

			}

			//get saved state - and overwrite defaults

			if (settings.saveState)

			{

				var colsSaved = getSavedValue(this.id);

				if (colsSaved && colsSaved.length)

				{

					for (i = 0; i < colsSaved.length; i++)

					{

						colsVisible[i] = true;

						colsHide[i] = !colsSaved[i];

					}

				}

				this.cMSaveState = true;

			}

			//assign initial colsVisible var to the table (needed for toggling and saving the state)

			this.cMColsVisible = colsVisible;

			//something to hide already?

			if (colsHide.length)

			{

				var a = [];

				for (i = 0; i < colsHide.length; i++)

				{

					if (colsHide[i])

					{

						a[a.length] = i + 1;

					}

				}

				if (a.length)

				{

					$(this).toggleColumns(a);

				}

			}

			//create column header list

			createColumnHeaderList(this);

 });

	};

	/**

	 * Shows or hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. The display state(visible/hidden) for each column with the matching column index will get toggled.

	 *							Column index starts at 1! (see the example)

	 *

	 * @param {map} options		An object for optional settings to handle the on and off CSS classes in the column header list (options described below).

	 * @option {string} listTargetID	The ID attribute of the element with the column header.

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 * @option {function} show		Function which is called to show a table cell.

	 * @option {function} hide		Function which is called to hide a table cell.

	 *

	 * @example $('#table').toggleColumns([2, 4], {hide: function(cell) { $(cell).fadeOut("slow"); }});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for the columns "two" and "four". Use custom function to fade the cell out when hiding it.

	 *

	 * @example $('#table').toggleColumns(3, {listTargetID: 'theID', onClass: 'vis'});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for column "three" and sets or removes the CSS class 'vis' to the appropriate column header according to the visibility of the column.

	 *

	 * @type jQuery

	 *

	 * @name toggleColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.toggleColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i, toggle, di,

				rows = this.rows,

				colsVisible = this.cMColsVisible;

			if (!columns)

				return;

			if (columns.constructor == Number)

				columns = [columns];

			if (!colsVisible)

				colsVisible = this.cMColsVisible = [];

			//go through all rows in the table and hide the cells

			for (i = 0; i < rows.length; i++)

			{

				var cells = rows[i].cells;

				for (var k = 0; k < columns.length; k++)

				{

					var col = columns[k] - 1;

					if (col >= 0)

					{

						//find the cell with the correct index

						var c = getCell(this, cells, col);

						//cell not found - maybe a previous one has a colspan? - search it!

						if (!c)

						{

							var cco = col;

							while (cco > 0 && !(c = getCell(this, cells, --cco))) {} //find the previous cell

							if (!c)

							{

								continue;

							}

						}

						//set toggle direction

						if (colsVisible[col] == undefined)//not initialized yet

						{

							colsVisible[col] = true;

						}

						if (colsVisible[col])

						{

							toggle = cmo && cmo.hide ? cmo.hide : hideCell;

							di = -1;

						}

						else

						{

							toggle = cmo && cmo.show ? cmo.show : showCell;

							di = 1;

						}

						if (!c.chSpan)

						{

							c.chSpan = 0;

						}

						//the cell has a colspan - so dont show/hide - just change the colspan

						if (c.colSpan > 1 || (di == 1 && c.chSpan && cellVisible(c)))

						{

							//is the colspan even reaching this cell? if not we have a rowspan -> nothing to do

							if (c.realIndex + c.colSpan + c.chSpan - 1 < col)

							{

								continue;

							}

							c.colSpan += di;

							c.chSpan += di * -1;

						}

						else if (c.realIndex + c.chSpan < col)//a previous cell was found, but doesn't affect this one (rowspan)

						{

							continue;

						}

						else //toggle cell

						{

							toggle(c);

						}

					}

				}

			}

			//set the colsVisible var

			for (i = 0; i < columns.length; i++)

			{

				this.cMColsVisible[columns[i] - 1] = !colsVisible[columns[i] - 1];

				//set the appropriate classes to the column header list, if the options have been passed

				if (cmo && cmo.listTargetID && (cmo.onClass || cmo.offClass))

				{

					var onC = cmo.onClass, offC = cmo.offClass, $li;

					if (colsVisible[columns[i] - 1])

					{

						onC = offC;

						offC = cmo.onClass;

					}

					$li = $("#" + cmo.listTargetID + " li").filter(function(){return this.cmData && this.cmData.col == columns[i] - 1;});

					if (onC)

					{

						$li.removeClass(onC);

					}

					if (offC)

					{

						$li.addClass(offC);

					}

				}

			}

			saveCurrentValue(this);

		});

	};

	/**

	 * Shows all table columns.

	 * When columns are passed through the parameter only the passed ones become visible.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will become visible.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').showColumns();

	 * @desc Sets the visibility state of all hidden columns to visible.

	 *

	 * @example $('#table').showColumns(3);

	 * @desc Show column number three.

	 *

	 * @type jQuery

	 *

	 * @name showColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.showColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = [],

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns && columns.constructor == Number)

					columns = [columns];

				for (i = 0; i < cV.length; i++)

				{

					//if there were no columns passed, show all - or else show only the columns the user wants to see

					if (!cV[i] && (!columns || $.inArray(i + 1, columns) > -1))

						cols.push(i + 1);

				}

				

				$(this).toggleColumns(cols, cmo);

			}

		});

	};

	/**

	 * Hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will get hidden.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').hideColumns(3);

	 * @desc Hide column number three.

	 *

	 * @type jQuery

	 *

	 * @name hideColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.hideColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = columns,

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns.constructor == Number)

					columns = [columns];

				cols = [];

				for (i = 0; i < columns.length; i++)

				{

					if (cV[columns[i] - 1] || cV[columns[i] - 1] == undefined)

						cols.push(columns[i]);

				}

				

			}

			$(this).toggleColumns(cols, cmo);

		});

	};

})(jQuery);

OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/titlepage.html
David Hume

	The Open University

OEBPS/images/a207_3_004i.jpg

OEBPS/media/oftheimmortalityofthesoul.pdf

chap 2 17/7/03 11:09 am Page 17

Faith and death in the

late Enlightenment

David Hume, Of the Immortality of the Soul

Of the Immortality of the Soul was due to go into a collection of
short essays by Hume (1711–76) called Five Dissertations. Hume
argues that there are no grounds, whether metaphysical, moral or
physical, for supposing we have an afterlife. (‘Metaphysical’
grounds have to do with the soul’s immateriality and its capacity to
survive the body’s demise; ‘moral’ grounds have to do with God’s
need for a time and place where justice can be done for acts com-
mitted in this life; ‘physical’ grounds are grounds that respect
Hume’s empiricist scruples.)

Pre-publication copies proved so controversial that it was
replaced, along with another essay (Of Suicide, the next item in this
anthology), by a single essay on aesthetic judgement. The collection
was renamed Four Dissertations (1757). The contents of both essays
circulated as rumour and in a small number of clandestine copies of
the original Five Dissertations, then anonymously in French, then
anonymously and posthumously in English. Only in 1783 did an edi-
tion appear under Hume’s name as Two Essays – and even then it
was surrounded by a hostile editor’s comments, ‘intended as an anti-
dote to the poison contained in these performances’.

The text below is based on Hume’s hand-corrected copy of the
1755 proofs, now in the National Library of Scotland (MS 509).
These corrections are missing from previously available editions.
Spelling and punctuation have been modernised, with some para-
graphs split for ease of comprehension.

By the mere light of reason it seems difficult to prove the immortality of
the soul. The arguments for it are commonly derived either from meta-
physical topics, or moral or physical. But in reality it is the gospel and
the gospel alone that has brought life and immortality to light.

17

chap 2 17/7/03 11:09 am Page 18

Death of the Old Regime?

i

1	 Metaphysical topics are founded on the supposition that the soul is
immaterial, and that it is impossible for thought to belong to a mate-
rial substance.

2 But just metaphysics teach us that the notion of substance is
wholly confused and imperfect, and that we have no other idea of
any substance than as an aggregate of particular qualities, inhering
in an unknown something. Matter, therefore, and spirit, are at
bottom equally unknown, and we cannot determine what qualities
may inhere in the one or in the other.

3 They likewise teach us that nothing can be decided a priori con-
cerning any cause or effect; and that experience being the only source
of our judgements of this nature, we cannot know from any other
principle whether matter, by its structure or arrangement, may not
be the cause of thought. Abstract reasonings cannot decide any ques-
tion of fact or existence.

4 But admitting a spiritual substance to be dispersed throughout the
universe, like the ethereal fire of the Stoics,1 and to be the only inher-
ent subject of thought, we have reason to conclude from analogy
that nature uses it after the manner she does the other substance,
matter. She employs it as a kind of paste or clay; modifies it into a
variety of forms and existences; dissolves after a time each modifica-
tion, and from its substance erects a new form. As the same material
substance may successively compose the bodies of all animals, the
same spiritual substance may compose their minds. Their conscious-
ness, or that system of thought which they formed during life, may
be continually dissolved by death. And nothing interests them in the
new modification. The most positive asserters of the mortality of the
soul never denied the immortality of its substance. And that an
immaterial substance, as well as a material, may lose its memory or
consciousness appears, in part, from experience, if the soul be imma-
terial.

5 Reasoning from the common course of nature, and without sup-
posing any new interposition of the supreme cause, which ought
always to be excluded from philosophy, what is incorruptible must
also be ingenerable.2 The soul therefore, if immortal, existed before
our birth; and if the former existence no wise3 concerned us, neither
will the latter.

1 Stoics: members of a school of philosophy founded c. 300 BC in Athens and committed to
the ideals of virtue, endurance and self-sufficiency.

2 ingenerable: incapable of being generated.
3 no wise: in no way.

18

chap 2 17/7/03 11:09 am Page 19

Faith and death in the late Enlightenment

6 Animals undoubtedly feel, think, love, hate, will, and even reason,
though in a more imperfect manner than men. Are their souls also
immaterial and immortal?

i i

7 Let us now consider the moral arguments, chiefly those derived from
the justice of God, which is supposed to be farther interested in the
farther punishment of the vicious and reward of the virtuous.

8 But these arguments are grounded on the supposition that God
has attributes beyond what he has exerted in this universe, with
which alone we are acquainted. Whence do we infer the existence of
these attributes? It is very safe for us to affirm that whatever we
know the Deity to have actually done, is best; but it is very danger-
ous to affirm that he must always do what to us seems best. In how
many instances would this reasoning fail us with regard to the pres-
ent world?

9 But if any purpose of nature be clear, we may affirm that the whole
scope and intention of man’s creation, so far as we can judge by nat-
ural reason, is limited to the present life. With how weak a concern,
from the original inherent structure of the mind and passions, does
he ever look farther? What comparison either for steadiness or effi-
cacy, between so floating an idea, and the most doubtful persuasion
of4 any matter of fact that occurs in common life? There arise indeed
in some minds some unaccountable terrors with regard to futurity;5

but these would quickly vanish were they not artificially fostered by
precept and education. And those who foster them, what is their
motive? Only to gain a livelihood, and to acquire power and riches
in this world. Their very zeal and industry therefore is an argument
against them.

10 What cruelty, what iniquity, what injustice in nature, to confine all
our concern, as well as all our knowledge, to the present life, if there
be another scene still awaiting us, of infinitely greater consequence?
Ought this barbarous deceit to be ascribed to a beneficent and wise
being?

11 Observe with what exact proportion the task to be performed and
the performing powers are adjusted throughout all nature. If the
reason of man gives him great superiority above other animals, his
necessities are proportionably multiplied upon him. His whole time,
his whole capacity, activity, courage, and passion, find sufficient

4 doubtful persuasion of: weakly held opinion concerning.

5 futurity: the future.

19

chap 2 17/7/03 11:09 am Page 20

Death of the Old Regime?

employment in fencing against the miseries of his present condition,
and frequently, nay almost always, are too slender for the business
assigned them. A pair of shoes perhaps was never yet wrought to the
highest degree of perfection which that commodity is capable of
attaining. Yet it is necessary, at least very useful, that there should be
some politicians and moralists, even some geometers,6 historians,
poets, and philosophers among mankind. The powers of men are no
more superior to their wants, considered merely in this life, than
those of foxes and hares are, compared to their wants and to their
period of existence. The inference from parity of reason is therefore
obvious. On the theory of the soul’s mortality, the inferiority of
women’s capacity is easily accounted for. Their domestic life requires
no higher faculties, either of mind or body. This circumstance van-
ishes and becomes absolutely insignificant, on the religious theory:
the one sex has an equal task to perform with the other; their powers
of reason and resolution ought also to have been equal, and both of
them infinitely greater than at present.

12 As every effect implies a cause, and that another, till we reach the
first cause of all, which is the Deity; everything that happens is
ordained by him, and nothing can be the object of his punishment or
vengeance. By what rule are punishments and rewards distributed?
What is the divine standard of merit and demerit? Shall we suppose
that human sentiments have place in the Deity? How bold that
hypothesis. We have no conception of any other sentiments.

13 According to human sentiments, sense, courage, good manners,
industry, prudence, genius, etc. are essential parts of personal merits.
Shall we therefore erect an Elysium7 for poets and heroes like that of
the ancient mythology? Why confine all rewards to one species of
virtue?

14 Punishment, without any proper end or purpose, is inconsistent
with our ideas of goodness and justice, and no end can be served by
it after the whole scene is closed.

15 Punishment, according to our conception, should bear some pro-
portion to the offence. Why then eternal punishment for the tempo-
rary offences of so frail a creature as man? Can any one approve of
Alexander’s rage, who intended to exterminate a whole nation
because they had seized his favourite horse Bucephalus?8

6 geometers: engineers, surveyors, designers, architects or geometrists.

7 Elysium: heaven in ancient Greek religion or mythology.

8 Alexander the Great (356–323 BC): king of Macedonia, and conqueror of much of Asia

Minor. The nation referred to is Lydia, east of the Caspian; the incident is described in Quintus
Curtis’s History of Alexander, 6.5.

20

chap 2 17/7/03 11:09 am Page 21

Faith and death in the late Enlightenment

16 Heaven and hell suppose two distinct species of men, the good
and the bad; but the greatest part of mankind float between vice and
virtue. Were one to go round the world with an intention of giving a
good supper to the righteous, and a sound drubbing to the wicked,
he would frequently be embarrassed in his choice, and would find
that the merits and the demerits of most men and women scarcely
amount to the value of either.

17 To suppose measures of approbation and blame different from the
human confounds every thing. Whence do we learn that there is such
a thing as moral distinctions, but from our own sentiments? What
man who has not met with personal provocation (or what good-
natured man who has) could inflict on crimes, from the sense of
blame alone, even the common, legal, frivolous punishments? And
does anything steel the breast of judges and juries against the senti-
ments of humanity but reflection on necessity and public interest? By
the Roman law those who had been guilty of parricide9 and confessed
their crime, were put into a sack alone with an ape, a dog, and a ser-
pent, and thrown into the river. Death alone was the punishment of
those who denied their guilt, however fully proved. A criminal was
tried before Augustus and condemned after a full conviction; but the
humane emperor, when he put the last interrogatory, gave it such a
turn as to lead the wretch into a denial of his guilt. You surely, said
the prince, did not kill your father.10 This lenity11 suits our natural
ideas of right even towards the greatest of all criminals, and even
though it prevents so inconsiderable a sufferance. Nay even the most
bigoted priest would naturally without reflection approve of it—pro-
vided the crime was not heresy or infidelity, for as these crimes hurt
himself in his temporal interest and advantages, perhaps he may not
be altogether so indulgent to them. The chief source of moral ideas is
the reflection on the interest of human society. Ought these interests,
so short, so frivolous, to be guarded by punishments eternal and infi-
nite? The damnation of one man is an infinitely greater evil in the uni-
verse, than the subversion of a thousand millions of kingdoms.
Nature has rendered human infancy peculiarly frail and mortal, as it
were on purpose to refute the notion of a probationary state;12 the
half of mankind die before they are rational creatures.

9 parricide: murder of one’s father.

10 The incident is described in Suetonius, Lives of the Caesars, ‘Life of Augustus’, ch. 3.

Gaius Julius Caesar Octavianus Augustus (27 BC–14 AD) was the first emperor of Rome.
11 lenity: leniency.
12 probationary state: period in which assessment or testing takes place prior to punishment

or reward.

21

chap 2 17/7/03 11:09 am Page 22

Death of the Old Regime?

i i i

18 The physical arguments from the analogy of nature are strong for the
mortality of the soul, and are really the only philosophical argu-
ments which ought to be admitted with regard to this question, or
indeed any question of fact. Where any two objects are so closely
connected that all alterations which we have ever seen in the one, are
attended with proportionable alterations in the other, we ought to
conclude by all rules of analogy, that, when there are still greater
alterations produced in the former, and it is totally dissolved, there
follows a total dissolution of the latter.

19 Sleep, a very small effect on the body, is attended with a
temporary extinction, at least a great confusion in the soul. The
weakness of the body and that of the mind in infancy are exactly
proportioned: their vigour in manhood, their sympathetic disorder
in sickness, their common gradual decay in old age. The step further
seems unavoidable: their common dissolution in death. The last
symptoms which the mind discovers are disorder, weakness, insensi-
bility, and stupidity, the fore-runners of its annihilation. The farther
progress of the same causes increasing, the same effects totally extin-
guish it.

20 Judging by the usual analogy of nature, no form can continue
when transferred to a condition of life very different from the origi-
nal one, in which it was placed. Trees perish in the water, fishes in the
air, animals in the earth. Even so small a difference as that of climate
is often fatal. What reason then to imagine that an immense alter-
ation, such as is made on the soul by the dissolution of its body and
all its organs of thought and sensation, can be effected without the
dissolution of the whole? Everything is in common between soul and
body. The organs of the one are all of them the organs of the other.
The existence therefore of the one must be dependent on that of the
other. The souls of animals are allowed to be mortal; and these bear
so near a resemblance to the souls of men, that the analogy from one
to the other forms a very strong argument. Their bodies are not more
resembling; yet no one rejects the argument drawn from compara-
tive anatomy. The metempsychosis13 is therefore the only system of
this kind that philosophy can so much as hearken to. Nothing in this
world is perpetual, everything however seemingly firm is in contin-

13 The (theory of) metempsychosis holds that souls pass from body to body (‘transmigrate’)
upon the death of a body. In particular, that they can pass across species boundaries. Hume’s
point is not that he accepts this thesis, but that even this non-Christian view is better supported
than the Christian one in which souls leave the material world entirely.

22

chap 2 17/7/03 11:09 am Page 23

Faith and death in the late Enlightenment

ual flux and change. The world itself gives symptoms of frailty and
dissolution. How contrary to analogy, therefore, to imagine that one
single form, seemingly the frailest of any, and from the slightest
causes subject to the greatest disorders, is immortal and indissolu-
ble? What daring theory is that! How lightly, not to say how rashly
entertained!

21 How to dispose of the infinite number of posthumous existences
ought also to embarrass the religious theory. Every planet in every
solar system we are at liberty to imagine peopled with intelligent
mortal beings, at least we can fix on no other supposition. For these,
then, a new universe must every generation be created beyond the
bounds of the present universe, or one must have been created at first
so prodigiously wise as to admit of this continual influx of beings.
Ought such bold suppositions to be received by any philosophy, and
that merely on the pretence of a bare possibility? When it is asked
whether Agamemnon, Thersites, Hannibal, Varro,14 and every
stupid clown that ever existed in Italy, Scythia, Bactria, or Guinea,
are now alive, can any man think that a scrutiny of nature will fur-
nish arguments strong enough to answer so strange a question in the
affirmative? The want of argument without revelation sufficiently
establishes the negative.

22 Quanto facilius, says Pliny,15 certiusque sibi quemque credere, ac
specimen securitatis antigentali sumere experimento. Our insensibil-
ity before the composition of the body, seems to natural reason a
proof of a like state after dissolution.

23 Were our horrors of annihilation an original passion, not the
effect of our general love of happiness, it would rather prove the
mortality of the soul. For as nature does nothing in vain, she would
never give us a horror against an impossible event. She may give us
a horror against an unavoidable; yet the human species could not be
preserved had not nature inspired us with an aversion toward it. All
doctrines are to be suspected which are favoured by our passions,
and the hopes and fears which gave rise to this doctrine are very
obvious.

14 Agamemnon and Thersites were Greeks who according to legend fought against Troy;
Hannibal (247–183 BC) was the Carthaginian commander who, in the Second Punic War, led
his army, with its elephants, across the Alps to invade Italy (218 BC); Gaius Terentius Varro was
a Roman general defeated by Hannibal at Cannae in 216 BC.

15 Pliny the Elder (23–79 AD): Roman administrator. This quotation (from his Natural His-
tory 7: 56) translates as: ‘How much easier and more certain for each of us to trust in ourselves,
and to derive our example of tranquility from our experience before birth.’

23

chap 2 17/7/03 11:09 am Page 24

Death of the Old Regime?

24 It is an infinite advantage in every controversy to defend the neg-
ative. If the question be out of the common experienced course of
nature, this circumstance is almost, if not altogether, decisive. By
what arguments or analogies can we prove any state of existence
which no one ever saw, and which no way resembles any that ever
was seen? Who will repose such trust in any pretended philosophy
as to admit upon its testimony the reality of so marvellous a scene?
Some new species of logic is requisite for that purpose, and some
new faculties of the mind that may enable us to comprehend that
logic.

25 Nothing could set in a fuller light the infinite obligations which
mankind have to divine revelation, since we find that no other
medium could ascertain this great and important truth.

Source: David Hume, Of the Immortality of the Soul, reproduced
with the kind permission of the National Library of Scotland.

David Hume, Of Suicide

At the heart of this essay by Hume is a criticism of the ‘sanctity of
life’ argument, widely appealed to in the moral condemnation of
those who commit suicide. According to this, to take one’s own life
is to take a decision that belongs to God and to God alone. Hume
was in fact an agnostic; but here he is trying to show that even if one
adopts a religious stance, suicide must be regarded as morally per-
missible.

The essay opens with some general thoughts about the relation
between religion, philosophy, and our ordinary emotions, view-
points, and drives. It ends by rejecting several other reasons for con-
demning acts of suicide.

The text is based on Hume’s hand-corrected proofs from the
aborted 1755 publication (see the introduction to Of the Immor-
tality of the Soul, the previous item in this anthology).

1 One considerable advantage that arises from philosophy consists in
the sovereign antidote which it affords to superstition and false reli-
gion. All other remedies against that pestilent distemper are vain, or
at least uncertain. Plain good sense and the practice of the world,
which alone serve most purposes of life, are here found ineffectual.

24

hac73

Cross-Out

hac73

Replacement Text

OEBPS/discussion02.html

		
			

			
Discussion

		
			

Hume was both a philosopher and a historian. In this essay he is being a philosopher. Philosophy is not written to be read as a novel is read. It can take the same time to work effectively through five pages of philosophy as it takes to read fifty or more pages of a novel. Hume's essay cannot be described as a poem, but it is similar in respect of its density and the level of concentration it calls for from its readership. This is one reason why these readings are short. We will be working through them with considerable attention to detail, paragraph by paragraph. Afterwards you will be asked to reread the essay from the beginning (again skipping section I) so as to get a sense of the whole.

			It is common for those who are relatively new to philosophy to think that finding it difficult reflects somehow on them. Philosophy never gets easy, even for those who have spent an entire life at it. It is important not to let the difficulty everyone experiences stand in the way of your progress and enjoyment. Remember that you are at the very beginning of a process in which Hume's essay will appear to transform itself from an unstructured and barely comprehensible string of words into an articulate, well-organised and lucid discussion! That, at least, is the hope.

			A final tip: you are advised when working through these two units to take detailed notes, and to have a pen and a jotting pad for the exercises.

		

	

OEBPS/images/a207_3_003i.jpg

OEBPS/discussion09.html

		
			

			
Discussion

		
			

You will almost certainly have come up with your own conclusion, but here is mine: Hume is unfair in suggesting that fear of death is incompatible with belief in an afterlife. Fear of death could easily be explained as fear of the possibility of an eternity of pain. It needn't be put down to an irrational attempt to match false hopes with false beliefs.

		

	

OEBPS/discussion06.html

		
			

			
Discussion

		
			

According to Hume, our sentiments tell us that:

			
						
					Paragraph 13: the Christian virtue of unconditional love for one's God and neighbours is not the only virtue there is. There is also value in being a good poet or brave soldier. Yet it would be contrary to common sense to suppose that good poets or brave soldiers have their own special kinds of heaven.

				

						
					Paragraph 14: punishment should serve a purpose; no purpose is served by punishing people after they have left this life.

				

						
					Paragraph 15: punishment should be kept in proportion. Eternal damnation can never be in proportion to an offence committed in the present life. He makes the same point in paragraph 17: ‘The [eternal] damnation of one man is an infinitely greater evil in the universe, than the subversion of a thousand millions of kingdoms.’

				

						
					Paragraph 16: punishment in the Christian tradition divides everyone up into the good and the bad without distinguishing degrees of desert within each group.

				

			

		

	

OEBPS/images/audiobook-cover.png

OEBPS/discussion07.html

		
			

			
Discussion

		
			

The sharpness of the human mind is observed always to match or be proportional to the robustness of the human body, he claims. By the rule of analogy, based on other examples that he doesn't make explicit (such as the bicycle or fish examples above), he thinks it reasonable to conclude that when the body declines completely, the mind (or soul) ceases to exist as well.

			A second and more straightforward application of the rule of analogy can be found in paragraph 20. There are many observable situations in which transplanting something into a new and alien environment tends to kill it. We don't see fishes surviving away from water or trees thriving beneath water. In other words, a change to an organism's environment is always associated with a change in its capacity to thrive. The bigger the change in the environment, the more likely it is that the organism will cease to exist. Given this, says Hume, why should we expect the soul to be able to survive without its body? Loss of our bodies is the biggest change we could possibly undergo, making it more likely that we simply cease to exist entirely.

		

	

OEBPS/discussion01.html

		
			

			
Discussion

		
			

Hume distinguishes and names three potential reasons for assuming that individuals survive the death of their bodies: a ‘metaphysical’ reason, a ‘moral’ reason and a ‘physical’ reason. He will present and refute these three reasons in turn, one per section. A fourth reason for assuming the existence of an afterlife is that this is what it says in the Bible. Hume's explicit conclusion, then, is that we should be grateful to the Gospels for revealing to us something that otherwise we would be ignorant of. You can confirm this by looking at the final paragraph.

		

	

OEBPS/cover.html

		
			[image: cover image]
		

	

OEBPS/discussion05.html

		
			

			
Discussion

		
			

In my opinion it does not. Here are my two reasons. First, the expression of sexism may affect our assessment of Hume as a likeable fellow, but his likeability is entirely irrelevant to the quality of his arguments. Second, though Hume asserts that women are suited to the domestic sphere but otherwise less able than men, these assertions are not essential to his argument about capacities in nature matching the demands placed on them. They are merely part of a misguided effort to extend his argument. So the fact that these assertions are (I would argue) mistaken leaves his objection to the moral argument more or less intact.

		

	

OEBPS/discussion14.html

		
			

			
Discussion

		
			

Paragraph 9: the huge significance of the decision whether to end a human life should lead us to regard it, unlike other decisions, as one that only God may take. Paragraph 10: to take one's life is to insult God by destroying his creation. (You may have come up with a different emphasis.)

		

	

OEBPS/discussion11.html

		
			

			
Discussion

		
			

There are several alternatives, but the following get his message across:

			
						
					‘One considerable advantage that arises from philosophy consists in the sovereign antidote which it affords to superstition and false religion.’

				

						
					‘History as well as daily experience afford instances of men endowed with the strongest capacity for business and affairs, who have all their lives crouched under slavery to the grossest superstition.’

				

						
					‘Love or anger, ambition or avarice, have their root in the temper and affection, which the soundest reason is scarce ever able fully to correct.’

				

			

		

	

OEBPS/images/cover.png
OpenLearn (

The Open
University

David Hume

Arts and Humanities

OEBPS/media/ofsuicide.pdf

chap 2 17/7/03 11:09 am Page 24

Death of the Old Regime?

24 It is an infinite advantage in every controversy to defend the neg-
ative. If the question be out of the common experienced course of
nature, this circumstance is almost, if not altogether, decisive. By
what arguments or analogies can we prove any state of existence
which no one ever saw, and which no way resembles any that ever
was seen? Who will repose such trust in any pretended philosophy
as to admit upon its testimony the reality of so marvellous a scene?
Some new species of logic is requisite for that purpose, and some
new faculties of the mind that may enable us to comprehend that
logic.

25 Nothing could set in a fuller light the infinite obligations which
mankind have to divine revelation, since we find that no other
medium could ascertain this great and important truth.

Source: David Hume, Of the Immortality of the Soul, reproduced
with the kind permission of the National Library of Scotland.

David Hume, Of Suicide

At the heart of this essay by Hume is a criticism of the ‘sanctity of
life’ argument, widely appealed to in the moral condemnation of
those who commit suicide. According to this, to take one’s own life
is to take a decision that belongs to God and to God alone. Hume
was in fact an agnostic; but here he is trying to show that even if one
adopts a religious stance, suicide must be regarded as morally per-
missible.

The essay opens with some general thoughts about the relation
between religion, philosophy, and our ordinary emotions, view-
points, and drives. It ends by rejecting several other reasons for con-
demning acts of suicide.

The text is based on Hume’s hand-corrected proofs from the
aborted 1755 publication (see the introduction to Of the Immor-
tality of the Soul, the previous item in this anthology).

1 One considerable advantage that arises from philosophy consists in
the sovereign antidote which it affords to superstition and false reli-
gion. All other remedies against that pestilent distemper are vain, or
at least uncertain. Plain good sense and the practice of the world,
which alone serve most purposes of life, are here found ineffectual.

24

chap 2 17/7/03 11:09 am Page 25

Faith and death in the late Enlightenment

History as well as daily experience afford instances of men endowed
with the strongest capacity for business and affairs, who have all
their lives crouched under slavery to the grossest superstition. Even
gaiety and sweetness of temper, which infuse a balm into every other
wound, afford no remedy to so virulent a poison, as we may partic-
ularly observe of the fair sex, who, though commonly possessed of
their rich presents of nature, feel many of their joys blasted by this
importunate intruder.

2 But when sound philosophy has once gained possession of the
mind, superstition is effectually16 excluded, and one may fairly
affirm that her triumph over this enemy is more complete than over
most of the vices and imperfections incident to human nature. Love
or anger, ambition or avarice, have their root in the temper and
affection, which the soundest reason is scarce ever able fully to cor-
rect, but superstition being founded on false opinion, must immedi-
ately vanish when true philosophy has inspired juster sentiments of
superior powers. The contest is here more equal between the dis-
temper and the medicine, and nothing can hinder the latter from
proving effectual but its being false and sophisticated.

3 It will here be superfluous to magnify the merits of philosophy by
displaying the pernicious tendency of that vice of which it cures the
human mind. The superstitious man, says Tully, is miserable in every
scene, in every incident in life.17 Even sleep itself, which banishes all
other cares of unhappy mortals, affords to him matter of new terror,
while he examines his dreams, and finds in those visions of the night
prognostications of future calamities.

4 I may add that though death alone can put a full period to his
misery, he dares not fly to this refuge, but still prolongs a miserable
existence from a vain fear lest he offend his Maker by using the
power with which that beneficent being has endowed him. The pres-
ents of God and nature are ravished from us by this cruel enemy, and
notwithstanding that one step would remove us from the regions of
pain and sorrow, her menaces still chain us down to a hated being
which she herself chiefly contributes to render miserable. It is
observed by such as have been reduced by the calamities of life to the
necessity of employing this fatal remedy, that if the unseasonable
care of their friends deprive them of that species of death which they
proposed to themselves, they seldom venture upon any other, or can

16 effectually: effectively.
17 Tully (106–43 BC): Roman statesman and philosopher, also known as (Marcus Tullius)

Cicero. The passage cited is from On Divination 2 : 72.

25

chap 2 17/7/03 11:09 am Page 26

Death of the Old Regime?

summon up so much resolution a second time as to execute their
purpose. So great is our horror of death that when it presents itself
under any form besides that to which a man has endeavoured to rec-
oncile his imagination, it acquires new terrors and overcomes his
feeble courage. But when the menaces of superstition are joined to
this natural timidity, no wonder it quite deprives men of all power
over their lives, since even many pleasures and enjoyments, to which
we are carried by a strong propensity, are torn from us by this inhu-
man tyrant. Let us here endeavour to restore men to their native
liberty by examining all the common arguments against Suicide,
and showing that that action may be free from every imputation
of guilt or blame, according to the sentiments of all the ancient
philosophers.

5 If suicide be criminal, it must be a transgression of our duty either
to God, our neighbour, or ourselves.

6 To prove that suicide is no transgression of our duty to God, the
following considerations may perhaps suffice. In order to govern the
material world, the almighty Creator has established general and
immutable laws, by which all bodies, from the greatest planet to the
smallest particle of matter, are maintained in their proper sphere and
function. To govern the animal world, he has endowed all living
creatures with bodily and mental powers; with senses, passions,
appetites, memory, and judgement, by which they are impelled or
regulated in that course of life to which they are destined. These two
distinct principles of the material and animal world, continually
encroach upon each other, and mutually retard or forward each
other’s operation. The powers of men and of all other animals are
restrained and directed by the nature and qualities of the surround-
ing bodies, and the modifications and actions of these bodies are
incessantly altered by the operation of all animals. Man is stopped
by rivers in his passage over the surface of the earth; and rivers, when
properly directed, lend their force to the motion of machines, which
serve to the use of man. But though the provinces of the material and
animal powers are not kept entirely separate, there results from
thence no discord or disorder in the creation; on the contrary, from
the mixture, union, and contrast of all the various powers of inani-
mate bodies and living creatures, arises that sympathy, harmony, and
proportion, which affords the surest argument of supreme wisdom.

7 The providence of the Deity appears not immediately in any oper-
ation, but governs everything by those general and immutable laws,
which have been established from the beginning of time. All events,
in one sense, may be pronounced the action of the Almighty. They all

26

chap 2 17/7/03 11:09 am Page 27

8

Faith and death in the late Enlightenment

proceed from those powers with which he has endowed his crea-
tures. A house which falls by its own weight, is not brought to ruin
by his providence more than one destroyed by the hands of men; nor
are the human faculties less his workmanship than the laws of
motion and gravitation. When the passions play, when the judge-
ment dictates, when the limbs obey, this is all the operation of God,
and upon these animate principles, as well as upon the inanimate,
has he established the government of the universe. Every event is
alike important in the eyes of that infinite being, who takes in at one
glance the most distant regions of space and remotest periods of
time. There is no event, however important to us, which he has
exempted from the general laws that govern the universe, or which
he has peculiarly reserved for his own immediate action and opera-
tion. The revolution of states and empires depends upon the small-
est caprice or passion of single men; and the lives of men are
shortened or extended by the smallest accident of air or diet, sun-
shine or tempest. Nature still continues her progress and operation;
and if general laws be ever broke by particular volitions of the Deity,
it is after a manner which entirely escapes human observation. As,
on the one hand, the elements and other inanimate parts of the cre-
ation carry on their action without regard to the particular interest
and situation of men, so men are entrusted to their own judgement
and discretion in the various shocks of matter, and may employ every
faculty with which they are endowed, in order to provide for their
ease, happiness, or preservation.

What is the meaning then of that principle that a man who, tired
of life and hunted by pain and misery, bravely overcomes all the nat-
ural terrors of death and makes his escape from this cruel scene; that
such a man I say, has incurred the indignation of his Creator by
encroaching on the office of divine providence, and disturbing the
order of the universe? Shall we assert that the Almighty has reserved
to himself in any peculiar manner the disposal of the lives of men,
and has not submitted that event, in common with others, to the gen-
eral laws by which the universe is governed? This is plainly false. The
lives of men depend upon the same laws as the lives of all other ani-
mals, and these are subjected to the general laws of matter and
motion. The fall of a tower, or the infusion of a poison, will destroy
a man equally with the meanest creature. An inundation sweeps
away every thing without distinction that comes within the reach of
its fury. Since therefore the lives of men are forever dependent on the
general laws of matter and motion, is a man’s disposing of his life
criminal, because in every case it is criminal to encroach upon these

27

chap 2 17/7/03 11:09 am Page 28

Death of the Old Regime?

laws, or disturb their operation? But this seems absurd. All animals
are entrusted to their own prudence and skill for their conduct in the
world, and have full authority as far as their power extends, to alter
all the operations of nature. Without the exercise of this authority
they could not subsist a moment. Every action, every motion of a
man, innovates on the order of some parts of matter, and diverts
from their ordinary course the general laws of motion. Putting
together, therefore, these conclusions, we find that human life
depends upon the general laws of matter and motion, and that it is
no encroachment on the office of providence to disturb or alter these
general laws. Has not every one, of consequence, the free disposal of
his own life? And may he not lawfully employ that power with
which nature has endowed him?

9 In order to destroy the evidence of this conclusion, we must show
a reason why this particular case is excepted. Is it because human life
is of such great importance that it is a presumption for human pru-
dence to dispose of it? But the life of a man is of no greater impor-
tance to the universe than that of an oyster. And were it of ever so
great importance, the order of human nature has actually submitted
it to human prudence, and reduced us to a necessity, in every incident,
of determining concerning it. Were the disposal of human life so
much reserved as the peculiar province of the Almighty that it were
an encroachment on his right for men to dispose of their own lives, it
would be equally criminal to act for the preservation of life as for its
destruction. If I turn aside a stone which is falling upon my head, I
disturb the course of nature, and I invade the peculiar province of the
Almighty, by lengthening out my life beyond the period which
by the general laws of matter and motion he had assigned to it.
A hair, a fly, an insect is able to destroy this mighty being whose
life is of such importance. Is it an absurdity to suppose that human
prudence may lawfully dispose of what depends on such insigni-ficant
causes? It would be no crime in me to divert the Nile or Danube from
its course, were I able to effect such purposes. Where then is the crime
of turning a few ounces of blood from their natural channel?

10 Do you imagine that I repine at providence or curse my creation,
because I go out of life, and put a period to a being, which, were it
to continue, would render me miserable? Far be such sentiments
from me; I am only convinced of a matter of fact, which you your-
self acknowledge possible, that human life may be unhappy, and that
my existence, if further prolonged, would become ineligible. But I
thank providence, both for the good which I have already enjoyed,
and for the power with which I am endowed of escaping the ill that

28

chap 2 17/7/03 11:09 am Page 29

Faith and death in the late Enlightenment

threatens me.18 To you it belongs to repine at providence, who fool-
ishly imagine that you have no such power, and who must still pro-
long a hated being, though loaded with pain and sickness, with
shame and poverty.

11 Do not you teach that when any ill befalls me, though by the
malice of my enemies, I ought to be resigned to providence; and that
the actions of men are the operations of the Almighty as much as the
actions of inanimate beings? When I fall upon my own sword, there-
fore, I receive my death equally from the hands of the Deity as if it
had proceeded from a lion, a precipice, or a fever. The submission
which you require to providence, in every calamity that befalls me,
excludes not human skill and industry, if possible by their means I
can avoid or escape the calamity. And why may I not employ one
remedy as well as another? If my life be not my own, it were crimi-
nal for me to put it in danger, as well as to dispose of it. Nor could
one man deserve the appellation of hero, whom glory or friendship
transports into the greatest dangers, and another merit the reproach
of wretch or miscreant who puts a period to his life, from the same
or like motives. There is no being which possesses any power or fac-
ulty that it receives not from its Creator; nor is there anyone which,
by ever so irregular an action, can encroach upon the plan of his
providence, or disorder the universe. Its operations are his works
equally with that chain of events which it invades, and whichever
principle prevails, we may for that very reason conclude it to be most
favoured by him. Be it animate or inanimate, rational or irrational,
it is all a case: its power is still derived from the supreme Creator, and
is alike comprehended in the order of his providence. When the
horror of pain prevails over the love of life, when a voluntary action
anticipates the effects of blind causes, it is only in consequence of
those powers and principles which he has implanted in his creatures.
Divine providence is still inviolate, and placed far beyond the reach
of human injuries.

12 It is impious, says the old Roman superstition, to divert rivers
from their course, or invade the prerogatives of nature.19 It is impi-
ous says the French superstition, to inoculate for the smallpox, or
usurp the business of providence by voluntarily producing distemper
and maladies. It is impious, says the modern European superstition,

18 Agamus Deo gratius, quod nemo in vita teneri potest., Letters from a Stoic, 12.* (Trans-
lation: ‘Let us thank God that no one can be held a prisoner in life.’ Lucius Annaeus Seneca,
4 BC–65 AD, was a Roman statesman and philosopher who was required to commit suicide by
the Roman emperor, Nero, a few years after writing these words.)

19 Tacitus, Annals 1: 79.*

29

chap 2 17/7/03 11:09 am Page 30

Death of the Old Regime?

to put a period to our own life and thereby rebel against our Creator;
and why not impious, say I, to build houses, cultivate the ground, or
sail upon the ocean? In all these actions we employ our powers of
mind and body, to produce some innovation in the course of nature;
and in none of them do we any more. They are all of them, therefore,
equally innocent or equally criminal.

13 But you are placed by providence, like a sentinel, in a particular
station, and when you desert it without being recalled, you are
equally guilty of rebellion against your almighty sovereign, and have
incurred his displeasure. I ask, why do you conclude that providence
has placed me in this station? For my part I find that I owe my birth
to a long chain of causes, of which many and even the principal
depended upon voluntary actions of men. But providence guided all
these causes, and nothing happens in the universe without its consent
and co-operation. If so, then neither does my death, however volun-
tary, happen without its consent; and whenever pain or sorrow so far
overcome my patience as to make me tired of life, I may conclude that
I am recalled from my station in the clearest and most express terms.
It is providence, surely, that has placed me at this present in this cham-
ber; but may I not leave it when I think proper, without being liable
to the imputation of having deserted my post or station? When I shall
be dead, the principles of which I am composed will still perform their
part in the universe, and will be equally useful in the grand fabric as
when they composed this individual creature. The difference to the
whole will be no greater than between my being in a chamber and in
the open air. The one change is of more importance to me than the
other; but not more so to the universe.

14 It is a kind of blasphemy to imagine that any created being can dis-
turb the order of the world, or invade the business of Providence! It
supposes, that that being possesses powers and faculties, which it
received not from its creator, and which are not subordinate to his
government and authority. A man may disturb society no doubt, and
thereby incur the displeasure of the Almighty. But the government of
the world is placed far beyond his reach and violence. And how does
it appear that the Almighty is displeased with those actions that dis-
turb society? By the principles which he has implanted in human
nature, and which inspire us with a sentiment of remorse if we our-
selves have been guilty of such actions, and with that of blame and
disapprobation if we ever observe them in others. Let us now exam-
ine, according to the method proposed, whether Suicide be of this
kind of actions, and be a breach of our duty to our neighbour and to
society.

30

chap 2 17/7/03 11:09 am Page 31

Faith and death in the late Enlightenment

15 A man who retires from life does no harm to society: he only
ceases to do good, which, if it is an injury, is of the lowest kind. All
our obligations to do good to society seem to imply something recip-
rocal. I receive the benefits of society, and therefore ought to pro-
mote its interests; but when I withdraw myself altogether from
society, can I be bound any longer? But allowing that our obligations
to do good were perpetual, they have certainly some bounds. I am
not obliged to do a small good to society at the expense of a great
harm to myself. Why then should I prolong a miserable existence
because of some frivolous advantage which the public may perhaps
receive from me? If upon account of age and infirmities I may law-
fully resign any office and employ my time altogether in fencing
against these calamities, and alleviating, as much as possible, the
miseries of my future life, why may I not cut short these miseries at
once by an action which is no more prejudicial to society? But sup-
pose that it is no longer in my power to promote the interest of the
public; suppose that I am a burden to it; suppose that my life hinders
some person from being much more useful to the public. In such
cases, my resignation of life must not only be innocent, but laudable.
And most people who lie under any temptation to abandon existence
are in some such situation; those who have health, or power, or
authority, have commonly better reason to be in humour with the
world.

16 A man is engaged in a conspiracy for the public interest; is seized
upon suspicion; is threatened with the rack, and knows from his own
weakness that the secret will be extorted from him. Could such a one
consult the public interest better than by putting a quick period to a
miserable life? This was the case of the famous and brave Strozzi of
Florence.20

17 Again, suppose a malefactor is justly condemned to a shameful
death; can any reason be imagined, why he may not anticipate his
punishment, and save himself all the anguish of thinking on its
dreadful approaches? He invades the business of providence no more
than the magistrate did, who ordered his execution; and his volun-
tary death is equally advantageous to society, by ridding it of a per-
nicious member.

18 That suicide may often be consistent with interest and with our
duty to ourselves, no one can question, who allows that age, sick-
ness, or misfortune, may render life a burden, and make it worse

20 Filippo Strozzi (1488–1538) is alleged to have committed suicide rather than abandon the
republican cause against the Medici dynasty.

31

chap 2 17/7/03 11:09 am Page 32

Death of the Old Regime?

even than annihilation. I believe that no man ever threw away life
while it was worth keeping. For such is our natural horror of death
that small motives will never be able to reconcile us to it; and though
perhaps the situation of a man’s health or fortune did not seem to
require this remedy, we may at least be assured that any one who,
without apparent reason, has had recourse to it, was cursed with
such an incurable depravity or gloominess of temper as must poison
all enjoyment, and render him equally miserable as if he had been
loaded with the most grievous misfortunes.

19 If suicide be supposed a crime, it is only cowardice can impel us
to it. If it be no crime, both prudence and courage should engage us
to rid ourselves at once of existence when it becomes a burden. It is
the only way that we can then be useful to society, by setting an
example which, if imitated, would preserve to everyone his chance
for happiness in life, and would effectually free him from all danger
of misery.21

Source: David Hume, Of Suicide, reproduced with the kind permis-
sion of the National Library of Scotland.

21 It would be easy to prove that suicide is as lawful under the Christian dispensation as it
was to the heathens. There is not a single text of scripture which prohibits it. That great and
infallible rule of faith and practice, which must control all philosophy and human reasoning,
has left us in this particular to our natural liberty. Resignation to providence is indeed recom-
mended in scripture; but that implies only submission to ills that are unavoidable, not to such
as may be remedied by prudence or courage. Thou shalt not kill is evidently meant to exclude
only the killing of others, over whose life we have no authority. That this precept, like most of
the scripture precepts, must be modified by reason and common sense, is plain from the prac-
tice of magistrates, who punish criminals capitally, notwithstanding the letter of the law. But
were this commandment ever to express against suicide, it would now have no authority. For
all the law of Moses is abolished, except so far as it is established by the law of nature; and we
have already endeavoured to prove that suicide is not prohibited by that law. In all cases Chris-
tians and heathens are precisely upon the same footing. Cato and Brutus, Arria and Portia acted
heroically; those who imitate their example ought to receive the same praises from posterity.
The power of committing suicide is regard by Pliny as an advantage which men possess even
above the deity himself. Deus non sibi potest mortem consciscere, si velit, quod homini dedit
optimum in tantis vitae poenis. [‘God cannot, even if wishes, commit suicide, the supreme boon
that he has bestowed on man among all the penalties of life’] Natural History, 2.5.77.*

32

OEBPS/discussion13.html

		
			

			
Discussion

		
			

Hume holds that no distinction can be drawn between those decisions that belong to God and those that do not: God's providence is total. So ending life cannot be treated as unique in belonging exclusively to God.

		

	

OEBPS/discussion12.html

		
			

			
Discussion

		
			

Hume is attempting to set out what the most reasonable theological perspective is; he has yet to say anything about suicide from this perspective. The first component of this perspective is a commitment to the argument from design. This is left largely implicit by Hume, save where he announces that ‘sympathy, harmony, and proportion, … [afford] the surest argument [for] supreme wisdom’ (paragraph 6). The second component is recognition that harmony and order permeate every aspect of the universe, including the human sphere. Putting these two components together, even events taking place in the human sphere -our own actions – must be regarded as part of God's plan (i.e. as ‘belonging to divine providence’). Or, if you like, our actions are also God's actions. This is true of all actions, so there are no grounds for distinguishing between actions that are our own and those that belong to God.

		

	

OEBPS/images/a207_3_006ai.jpg

OEBPS/images/a207_3_006bi.jpg

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/copyright-full.html

		
			

			
Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the “Creative Commons
 Licence”. In short, this allows you to use the ebook throughout the world
 without payment for non-commercial purposes only. Please read the Creative Commons Licence in
 full before making use of the ebook.

		You must however read these rights subject to any restrictions on use applying to the ebook
 or any part of it.

		When using the ebook you must attribute us and any identified author in accordance with the
 terms of the Creative Commons License. Each ebook has an
 “Acknowledgements” section which will identify the author/owner(s) and any
 Special Restriction(s) applying. You must take account of and abide by any restrictions set
 out in this section when using the ebook.

		This ebook also contains proprietary content which is owned by or licensed to us and which is
 not subject to the Creative Commons Licence. This content, which will be identified as
 “PROPRIETARY” include, but are not limited to, our logos and trading
 names, certain photographic and video images and sound recordings. This proprietary content is
 protected by intellectual property rights and should remain in context at all times.
 Unauthorised use of this content may constitute intellectual property infringement.

		Copyright and rights falling outside the terms of the Creative Commons Licence are retained
 or controlled by The Open University.

		Cover photograph © sumnersgraphicsinc.

	

OEBPS/js/jquery.cookie.js
/**
 * Cookie plugin
 *
 * Copyright (c) 2006 Klaus Hartl (stilbuero.de)
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */

/**
 * Create a cookie with the given name and value and other optional parameters.
 *
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Set the value of a cookie.
 * @example $.cookie('the_cookie', 'the_value', { expires: 7, path: '/', domain: 'jquery.com', secure: true });
 * @desc Create a cookie with all available options.
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Create a session cookie.
 * @example $.cookie('the_cookie', null);
 * @desc Delete a cookie by passing null as value. Keep in mind that you have to use the same path and domain
 * used when the cookie was set.
 *
 * @param String name The name of the cookie.
 * @param String value The value of the cookie.
 * @param Object options An object literal containing key/value pairs to provide optional cookie attributes.
 * @option Number|Date expires Either an integer specifying the expiration date from now on in days or a Date object.
 * If a negative value is specified (e.g. a date in the past), the cookie will be deleted.
 * If set to null or omitted, the cookie will be a session cookie and will not be retained
 * when the the browser exits.
 * @option String path The value of the path atribute of the cookie (default: path of page that created the cookie).
 * @option String domain The value of the domain attribute of the cookie (default: domain of page that created the cookie).
 * @option Boolean secure If true, the secure attribute of the cookie will be set and the cookie transmission will
 * require a secure protocol (like HTTPS).
 * @type undefined
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */

/**
 * Get the value of a cookie with the given name.
 *
 * @example $.cookie('the_cookie');
 * @desc Get the value of a cookie.
 *
 * @param String name The name of the cookie.
 * @return The value of the cookie.
 * @type String
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */
jQuery.cookie = function(name, value, options) {
 if (typeof value != 'undefined') { // name and value given, set cookie
 options = options || {};
 if (value === null) {
 value = '';
 options.expires = -1;
 }
 var expires = '';
 if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) {
 var date;
 if (typeof options.expires == 'number') {
 date = new Date();
 date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000));
 } else {
 date = options.expires;
 }
 expires = '; expires=' + date.toUTCString(); // use expires attribute, max-age is not supported by IE
 }
 // CAUTION: Needed to parenthesize options.path and options.domain
 // in the following expressions, otherwise they evaluate to undefined
 // in the packed version for some reason...
 var path = options.path ? '; path=' + (options.path) : '';
 var domain = options.domain ? '; domain=' + (options.domain) : '';
 var secure = options.secure ? '; secure' : '';
 document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join('');
 } else { // only name given, get cookie
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }
};

OEBPS/favicon.ico

OEBPS/titlepage.html
David Hume

	The Open University

OEBPS/js/jquery.tablesorter.js
/*
 *
 * TableSorter 2.0 - Client-side table sorting with ease!
 * Version 2.0.3
 * @requires jQuery v1.2.3
 *
 * Copyright (c) 2007 Christian Bach
 * Examples and docs at: http://tablesorter.com
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */
/**
 *
 * @description Create a sortable table with multi-column sorting capabilitys
 *
 * @example $('table').tablesorter();
 * @desc Create a simple tablesorter interface.
 *
 * @example $('table').tablesorter({ sortList:[[0,0],[1,0]] });
 * @desc Create a tablesorter interface and sort on the first and secound column in ascending order.
 *
 * @example $('table').tablesorter({ headers: { 0: { sorter: false}, 1: {sorter: false} } });
 * @desc Create a tablesorter interface and disableing the first and secound column headers.
 *
 * @example $('table').tablesorter({ 0: {sorter:"integer"}, 1: {sorter:"currency"} });
 * @desc Create a tablesorter interface and set a column parser for the first and secound column.
 *
 *
 * @param Object settings An object literal containing key/value pairs to provide optional settings.
 *
 * @option String cssHeader (optional) 			A string of the class name to be appended to sortable tr elements in the thead of the table.
 * 												Default value: "header"
 *
 * @option String cssAsc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a ascending sort.
 * 												Default value: "headerSortUp"
 *
 * @option String cssDesc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a descending sort.
 * 												Default value: "headerSortDown"
 *
 * @option String sortInitialOrder (optional) 	A string of the inital sorting order can be asc or desc.
 * 												Default value: "asc"
 *
 * @option String sortMultisortKey (optional) 	A string of the multi-column sort key.
 * 												Default value: "shiftKey"
 *
 * @option String textExtraction (optional) 	A string of the text-extraction method to use.
 * 												For complex html structures inside td cell set this option to "complex",
 * 												on large tables the complex option can be slow.
 * 												Default value: "simple"
 *
 * @option Object headers (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortList (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortForce (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is prepended to user-selected rules.
 * 												Default value: null
 *
 * @option Array sortAppend (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is appended to user-selected rules.
 * 												Default value: null
 *
 * @option Boolean widthFixed (optional) 		Boolean flag indicating if tablesorter should apply fixed widths to the table columns.
 * 												This is usefull when using the pager companion plugin.
 * 												This options requires the dimension jquery plugin.
 * 												Default value: false
 *
 * @option Boolean cancelSelection (optional) 	Boolean flag indicating if tablesorter should cancel selection of the table headers text.
 * 												Default value: true
 *
 * @option Boolean debug (optional) 			Boolean flag indicating if tablesorter should display debuging information usefull for development.
 *
 * @type jQuery
 *
 * @name tablesorter
 *
 * @cat Plugins/Tablesorter
 *
 * @author Christian Bach/christian.bach@polyester.se
 */

(function($) {
	$.extend({
		tablesorter: new function() {
			
			var parsers = [], widgets = [];
			
			this.defaults = {
				cssHeader: "header",
				cssAsc: "headerSortUp",
				cssDesc: "headerSortDown",
				sortInitialOrder: "asc",
				sortMultiSortKey: "shiftKey",
				sortForce: null,
				sortAppend: null,
				textExtraction: "simple",
				parsers: {},
				widgets: [],		
				widgetZebra: {css: ["even","odd"]},
				headers: {},
				widthFixed: false,
				cancelSelection: true,
				sortList: [],
				headerList: [],
				dateFormat: "us",
				decimal: '.',
				debug: false
			};
			
			/* debuging utils */
			function benchmark(s,d) {
				log(s + "," + (new Date().getTime() - d.getTime()) + "ms");
			}
			
			this.benchmark = benchmark;
			
			function log(s) {
				if (typeof console != "undefined" && typeof console.debug != "undefined") {
					console.log(s);
				} else {
					alert(s);
				}
			}
						
			/* parsers utils */
			function buildParserCache(table,$headers) {
				
				if(table.config.debug) { var parsersDebug = ""; }
				
				var rows = table.tBodies[0].rows;
				
				if(table.tBodies[0].rows[0]) {

					var list = [], cells = rows[0].cells, l = cells.length;
					
					for (var i=0;i < l; i++) {
						var p = false;
						
						if($.metadata && ($($headers[i]).metadata() && $($headers[i]).metadata().sorter)) {
						
							p = getParserById($($headers[i]).metadata().sorter);	
						
						} else if((table.config.headers[i] && table.config.headers[i].sorter)) {
	
							p = getParserById(table.config.headers[i].sorter);
						}
						if(!p) {
							p = detectParserForColumn(table,cells[i]);
						}
	
						if(table.config.debug) { parsersDebug += "column:" + i + " parser:" +p.id + "\n"; }
	
						list.push(p);
					}
				}
				
				if(table.config.debug) { log(parsersDebug); }

				return list;
			};
			
			function detectParserForColumn(table,node) {
				var l = parsers.length;
				for(var i=1; i < l; i++) {
					if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)) {
						return parsers[i];
					}
				}
				// 0 is always the generic parser (text)
				return parsers[0];
			}
			
			function getParserById(name) {
				var l = parsers.length;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == name.toLowerCase()) {	
						return parsers[i];
					}
				}
				return false;
			}
			
			/* utils */
			function buildCache(table) {
				
				if(table.config.debug) { var cacheTime = new Date(); }
				
				
				var totalRows = (table.tBodies[0] && table.tBodies[0].rows.length) || 0,
					totalCells = (table.tBodies[0].rows[0] && table.tBodies[0].rows[0].cells.length) || 0,
					parsers = table.config.parsers,
					cache = {row: [], normalized: []};
				
					for (var i=0;i < totalRows; ++i) {
					
						/** Add the table data to main data array */
						var c = table.tBodies[0].rows[i], cols = [];
					
						cache.row.push($(c));
						
						for(var j=0; j < totalCells; ++j) {
							cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));	
						}
												
						cols.push(i); // add position for rowCache
						cache.normalized.push(cols);
						cols = null;
					};
				
				if(table.config.debug) { benchmark("Building cache for " + totalRows + " rows:", cacheTime); }
				
				return cache;
			};
			
			function getElementText(config,node) {
				
				if(!node) return "";
								
				var t = "";
				
				if(config.textExtraction == "simple") {
					if(node.childNodes[0] && node.childNodes[0].hasChildNodes()) {
						t = node.childNodes[0].innerHTML;
					} else {
						t = node.innerHTML;
					}
				} else {
					if(typeof(config.textExtraction) == "function") {
						t = config.textExtraction(node);
					} else {
						t = $(node).text();
					}	
				}
				return t;
			}
			
			function appendToTable(table,cache) {
				
				if(table.config.debug) {var appendTime = new Date()}
				
				var c = cache,
					r = c.row,
					n= c.normalized,
					totalRows = n.length,
					checkCell = (n[0].length-1),
					tableBody = $(table.tBodies[0]),
					rows = [];
				
				for (var i=0;i < totalRows; i++) {
					rows.push(r[n[i][checkCell]]);	
					if(!table.config.appender) {
						
						var o = r[n[i][checkCell]];
						var l = o.length;
						for(var j=0; j < l; j++) {
							
							tableBody[0].appendChild(o[j]);
						
						}
						
						//tableBody.append(r[n[i][checkCell]]);
					}
				}	
				
				if(table.config.appender) {
				
					table.config.appender(table,rows);	
				}
				
				rows = null;
				
				if(table.config.debug) { benchmark("Rebuilt table:", appendTime); }
								
				//apply table widgets
				applyWidget(table);
				
				// trigger sortend
				setTimeout(function() {
					$(table).trigger("sortEnd");	
				},0);
				
			};
			
			function buildHeaders(table) {
				
				if(table.config.debug) { var time = new Date(); }
				
				var meta = ($.metadata) ? true : false, tableHeadersRows = [];
			
				for(var i = 0; i < table.tHead.rows.length; i++) { tableHeadersRows[i]=0; };
				
				$tableHeaders = $("thead th",table);
		
				$tableHeaders.each(function(index) {
							
					this.count = 0;
					this.column = index;
					this.order = formatSortingOrder(table.config.sortInitialOrder);
					
					if(checkHeaderMetadata(this) || checkHeaderOptions(table,index)) this.sortDisabled = true;
					
					if(!this.sortDisabled) {
						$(this).addClass(table.config.cssHeader);
					}
					
					// add cell to headerList
					table.config.headerList[index]= this;
				});
				
				if(table.config.debug) { benchmark("Built headers:", time); log($tableHeaders); }
				
				return $tableHeaders;
				
			};
						
		 	function checkCellColSpan(table, rows, row) {
 var arr = [], r = table.tHead.rows, c = r[row].cells;
				
				for(var i=0; i < c.length; i++) {
					var cell = c[i];
					
					if (cell.colSpan > 1) {
						arr = arr.concat(checkCellColSpan(table, headerArr,row++));
					} else {
						if(table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row+1])) {
							arr.push(cell);
						}
						//headerArr[row] = (i+row);
					}
				}
				return arr;
			};
			
			function checkHeaderMetadata(cell) {
				if(($.metadata) && ($(cell).metadata().sorter === false)) { return true; };
				return false;
			}
			
			function checkHeaderOptions(table,i) {	
				if((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { return true; };
				return false;
			}
			
			function applyWidget(table) {
				var c = table.config.widgets;
				var l = c.length;
				for(var i=0; i < l; i++) {
					
					getWidgetById(c[i]).format(table);
				}
				
			}
			
			function getWidgetById(name) {
				var l = widgets.length;
				for(var i=0; i < l; i++) {
					if(widgets[i].id.toLowerCase() == name.toLowerCase()) {
						return widgets[i];
					}
				}
			};
			
			function formatSortingOrder(v) {
				
				if(typeof(v) != "Number") {
					i = (v.toLowerCase() == "desc") ? 1 : 0;
				} else {
					i = (v == (0 || 1)) ? v : 0;
				}
				return i;
			}
			
			function isValueInArray(v, a) {
				var l = a.length;
				for(var i=0; i < l; i++) {
					if(a[i][0] == v) {
						return true;	
					}
				}
				return false;
			}
				
			function setHeadersCss(table,$headers, list, css) {
				// remove all header information
				$headers.removeClass(css[0]).removeClass(css[1]);
				
				var h = [];
				$headers.each(function(offset) {
						if(!this.sortDisabled) {
							h[this.column] = $(this);					
						}
				});
				
				var l = list.length;
				for(var i=0; i < l; i++) {
					h[list[i][0]].addClass(css[list[i][1]]);
				}
			}
			
			function fixColumnWidth(table,$headers) {
				var c = table.config;
				if(c.widthFixed) {
					var colgroup = $('<colgroup>');
					$("tr:first td",table.tBodies[0]).each(function() {
						colgroup.append($('<col>').css('width',$(this).width()));
					});
					$(table).prepend(colgroup);
				};
			}
			
			function updateHeaderSortCount(table,sortList) {
				var c = table.config, l = sortList.length;
				for(var i=0; i < l; i++) {
					var s = sortList[i], o = c.headerList[s[0]];
					o.count = s[1];
					o.count++;
				}
			}
			
			/* sorting methods */
			function multisort(table,sortList,cache) {
				
				if(table.config.debug) { var sortTime = new Date(); }
				
				var dynamicExp = "var sortWrapper = function(a,b) {", l = sortList.length;
					
				for(var i=0; i < l; i++) {
					
					var c = sortList[i][0];
					var order = sortList[i][1];
					var s = (getCachedSortType(table.config.parsers,c) == "text") ? ((order == 0) ? "sortText" : "sortTextDesc") : ((order == 0) ? "sortNumeric" : "sortNumericDesc");
					
					var e = "e" + i;
					
					dynamicExp += "var " + e + " = " + s + "(a[" + c + "],b[" + c + "]); ";
					dynamicExp += "if(" + e + ") { return " + e + "; } ";
					dynamicExp += "else { ";
				}
				
				// if value is the same keep orignal order	
				var orgOrderCol = cache.normalized[0].length - 1;
				dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];";
						
				for(var i=0; i < l; i++) {
					dynamicExp += "}; ";
				}
				
				dynamicExp += "return 0; ";	
				dynamicExp += "}; ";	
				
				eval(dynamicExp);
				
				cache.normalized.sort(sortWrapper);
				
				if(table.config.debug) { benchmark("Sorting on " + sortList.toString() + " and dir " + order+ " time:", sortTime); }
				
				return cache;
			};
			
			function sortText(a,b) {
				return ((a < b) ? -1 : ((a > b) ? 1 : 0));
			};
			
			function sortTextDesc(a,b) {
				return ((b < a) ? -1 : ((b > a) ? 1 : 0));
			};	
			
	 		function sortNumeric(a,b) {
				return a-b;
			};
			
			function sortNumericDesc(a,b) {
				return b-a;
			};
			
			function getCachedSortType(parsers,i) {
				return parsers[i].type;
			};
			
			/* public methods */
			this.construct = function(settings) {

				return this.each(function() {
					
					if(!this.tHead || !this.tBodies) return;
					
					var $this, $document,$headers, cache, config, shiftDown = 0, sortOrder;
					
					this.config = {};
					
					config = $.extend(this.config, $.tablesorter.defaults, settings);
					
					// store common expression for speed					
					$this = $(this);
					
					// build headers
					$headers = buildHeaders(this);
					
					// try to auto detect column type, and store in tables config
					this.config.parsers = buildParserCache(this,$headers);
					
					
					// build the cache for the tbody cells
					cache = buildCache(this);
					
					// get the css class names, could be done else where.
					var sortCSS = [config.cssDesc,config.cssAsc];
					
					// fixate columns if the users supplies the fixedWidth option
					fixColumnWidth(this);
					
					// apply event handling to headers
					// this is to big, perhaps break it out?
					$headers.click(function(e) {
						
						$this.trigger("sortStart");
						
						var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0;
						
						if(!this.sortDisabled && totalRows > 0) {
							
							
							// store exp, for speed
							var $cell = $(this);
	
							// get current column index
							var i = this.column;
							
							// get current column sort order
							this.order = this.count++ % 2;
							
							// user only whants to sort on one column
							if(!e[config.sortMultiSortKey]) {
								
								// flush the sort list
								config.sortList = [];
								
								if(config.sortForce != null) {
									var a = config.sortForce;
									for(var j=0; j < a.length; j++) {
										if(a[j][0] != i) {
											config.sortList.push(a[j]);
										}
									}
								}
								
								// add column to sort list
								config.sortList.push([i,this.order]);
							
							// multi column sorting
							} else {
								// the user has clicked on an all ready sortet column.
								if(isValueInArray(i,config.sortList)) {	
									
									// revers the sorting direction for all tables.
									for(var j=0; j < config.sortList.length; j++) {
										var s = config.sortList[j], o = config.headerList[s[0]];
										if(s[0] == i) {
											o.count = s[1];
											o.count++;
											s[1] = o.count % 2;
										}
									}	
								} else {
									// add column to sort list array
									config.sortList.push([i,this.order]);
								}
							};
							setTimeout(function() {
								//set css for headers
								setHeadersCss($this[0],$headers,config.sortList,sortCSS);
								appendToTable($this[0],multisort($this[0],config.sortList,cache));
							},1);
							// stop normal event by returning false
							return false;
						}
					// cancel selection	
					}).mousedown(function() {
						if(config.cancelSelection) {
							this.onselectstart = function() {return false};
							return false;
						}
					});
					
					// apply easy methods that trigger binded events
					$this.bind("update",function() {
						
						// rebuild parsers.
						this.config.parsers = buildParserCache(this,$headers);
						
						// rebuild the cache map
						cache = buildCache(this);
						
					}).bind("sorton",function(e,list) {
						
						$(this).trigger("sortStart");
						
						config.sortList = list;
						
						// update and store the sortlist
						var sortList = config.sortList;
						
						// update header count index
						updateHeaderSortCount(this,sortList);
						
						//set css for headers
						setHeadersCss(this,$headers,sortList,sortCSS);
						
						
						// sort the table and append it to the dom
						appendToTable(this,multisort(this,sortList,cache));

					}).bind("appendCache",function() {
						
						appendToTable(this,cache);
					
					}).bind("applyWidgetId",function(e,id) {
						
						getWidgetById(id).format(this);
						
					}).bind("applyWidgets",function() {
						// apply widgets
						applyWidget(this);
					});
					
					if($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) {
						config.sortList = $(this).metadata().sortlist;
					}
					// if user has supplied a sort list to constructor.
					if(config.sortList.length > 0) {
						$this.trigger("sorton",[config.sortList]);	
					}
					
					// apply widgets
					applyWidget(this);
				});
			};
			
			this.addParser = function(parser) {
				var l = parsers.length, a = true;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == parser.id.toLowerCase()) {
						a = false;
					}
				}
				if(a) { parsers.push(parser); };
			};
			
			this.addWidget = function(widget) {
				widgets.push(widget);
			};
			
			this.formatFloat = function(s) {
				var i = parseFloat(s);
				return (isNaN(i)) ? 0 : i;
			};
			this.formatInt = function(s) {
				var i = parseInt(s);
				return (isNaN(i)) ? 0 : i;
			};
			
			this.isDigit = function(s,config) {
				var DECIMAL = '\\' + config.decimal;
				var exp = '/(^[+]?0(' + DECIMAL +'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)' + DECIMAL +'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*' + DECIMAL +'0+$)/';
				return RegExp(exp).test($.trim(s));
			};
			
			this.clearTableBody = function(table) {
				if($.browser.msie) {
					function empty() {
						while (this.firstChild) this.removeChild(this.firstChild);
					}
					empty.apply(table.tBodies[0]);
				} else {
					table.tBodies[0].innerHTML = "";
				}
			};
		}
	});
	
	// extend plugin scope
	$.fn.extend({
 tablesorter: $.tablesorter.construct
	});
	
	var ts = $.tablesorter;
	
	// add default parsers
	ts.addParser({
		id: "text",
		is: function(s) {
			return true;
		},
		format: function(s) {
			return $.trim(s.toLowerCase());
		},
		type: "text"
	});
	
	ts.addParser({
		id: "digit",
		is: function(s,table) {
			var c = table.config;
			return $.tablesorter.isDigit(s,c);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "currency",
		is: function(s) {
			return /^[Â£$â�¬?.]/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "ipAddress",
		is: function(s) {
			return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);
		},
		format: function(s) {
			var a = s.split("."), r = "", l = a.length;
			for(var i = 0; i < l; i++) {
				var item = a[i];
			 	if(item.length == 2) {
					r += "0" + item;
			 	} else {
					r += item;
			 	}
			}
			return $.tablesorter.formatFloat(r);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "url",
		is: function(s) {
			return /^(https?|ftp|file):\/\/$/.test(s);
		},
		format: function(s) {
			return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));
		},
		type: "text"
	});
	
	ts.addParser({
		id: "isoDate",
		is: function(s) {
			return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat((s != "") ? new Date(s.replace(new RegExp(/-/g),"/")).getTime() : "0");
		},
		type: "numeric"
	});
		
	ts.addParser({
		id: "percent",
		is: function(s) {
			return /\%$/.test($.trim(s));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));
		},
		type: "numeric"
	});

	ts.addParser({
		id: "usLongDate",
		is: function(s) {
			return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
		id: "shortDate",
		is: function(s) {
			return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);
		},
		format: function(s,table) {
			var c = table.config;
			s = s.replace(/\-/g,"/");
			if(c.dateFormat == "us") {
				// reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2");
			} else if(c.dateFormat == "uk") {
				//reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1");
			} else if(c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") {
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3");	
			}
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
	 id: "time",
	 is: function(s) {
	 return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);
	 },
	 format: function(s) {
	 return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime());
	 },
	 type: "numeric"
	});
	
	
	ts.addParser({
	 id: "metadata",
	 is: function(s) {
	 return false;
	 },
	 format: function(s,table,cell) {
			var c = table.config, p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName;
	 return $(cell).metadata()[p];
	 },
	 type: "numeric"
	});
	
	// add default widgets
	ts.addWidget({
		id: "zebra",
		format: function(table) {
			if(table.config.debug) { var time = new Date(); }
			$("tr:visible",table.tBodies[0])
	 .filter(':even')
	 .removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0])
	 .end().filter(':odd')
	 .removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);
			if(table.config.debug) { $.tablesorter.benchmark("Applying Zebra widget", time); }
		}
	});	
})(jQuery);

OEBPS/js/jquery-latest.js
/*!
 * jQuery JavaScript Library v1.4.2
 * http://jquery.com/
 *
 * Copyright 2010, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2010, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Sat Feb 13 22:33:48 2010 -0500
 */
(function(window, undefined) {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
		// The jQuery object is actually just the init constructor 'enhanced'
		return new jQuery.fn.init(selector, context);
	},

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$,

	// Use the correct document accordingly with window argument (sandbox)
	document = window.document,

	// A central reference to the root jQuery(document)
	rootjQuery,

	// A simple way to check for HTML strings or ID strings
	// (both of which we optimize for)
	quickExpr = /^[^<]*(<[\w\W]+>)[^>]*$|^#([\w-]+)$/,

	// Is it a simple selector
	isSimple = /^.[^:#\[\.,]*$/,

	// Check if a string has a non-whitespace character in it
	rnotwhite = /\S/,

	// Used for trimming whitespace
	rtrim = /^(\s|\u00A0)+|(\s|\u00A0)+$/g,

	// Match a standalone tag
	rsingleTag = /^<(\w+)\s*\/?>(?:<\/\1>)?$/,

	// Keep a UserAgent string for use with jQuery.browser
	userAgent = navigator.userAgent,

	// For matching the engine and version of the browser
	browserMatch,
	
	// Has the ready events already been bound?
	readyBound = false,
	
	// The functions to execute on DOM ready
	readyList = [],

	// The ready event handler
	DOMContentLoaded,

	// Save a reference to some core methods
	toString = Object.prototype.toString,
	hasOwnProperty = Object.prototype.hasOwnProperty,
	push = Array.prototype.push,
	slice = Array.prototype.slice,
	indexOf = Array.prototype.indexOf;

jQuery.fn = jQuery.prototype = {
	init: function(selector, context) {
		var match, elem, ret, doc;

		// Handle $(""), $(null), or $(undefined)
		if (!selector) {
			return this;
		}

		// Handle $(DOMElement)
		if (selector.nodeType) {
			this.context = this[0] = selector;
			this.length = 1;
			return this;
		}
		
		// The body element only exists once, optimize finding it
		if (selector === "body" && !context) {
			this.context = document;
			this[0] = document.body;
			this.selector = "body";
			this.length = 1;
			return this;
		}

		// Handle HTML strings
		if (typeof selector === "string") {
			// Are we dealing with HTML string or an ID?
			match = quickExpr.exec(selector);

			// Verify a match, and that no context was specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					doc = (context ? context.ownerDocument || context : document);

					// If a single string is passed in and it's a single tag
					// just do a createElement and skip the rest
					ret = rsingleTag.exec(selector);

					if (ret) {
						if (jQuery.isPlainObject(context)) {
							selector = [document.createElement(ret[1])];
							jQuery.fn.attr.call(selector, context, true);

						} else {
							selector = [doc.createElement(ret[1])];
						}

					} else {
						ret = buildFragment([match[1]], [doc]);
						selector = (ret.cacheable ? ret.fragment.cloneNode(true) : ret.fragment).childNodes;
					}
					
					return jQuery.merge(this, selector);
					
				// HANDLE: $("#id")
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {
						// Handle the case where IE and Opera return items
						// by name instead of ID
						if (elem.id !== match[2]) {
							return rootjQuery.find(selector);
						}

						// Otherwise, we inject the element directly into the jQuery object
						this.length = 1;
						this[0] = elem;
					}

					this.context = document;
					this.selector = selector;
					return this;
				}

			// HANDLE: $("TAG")
			} else if (!context && /^\w+$/.test(selector)) {
				this.selector = selector;
				this.context = document;
				selector = document.getElementsByTagName(selector);
				return jQuery.merge(this, selector);

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || rootjQuery).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return jQuery(context).find(selector);
			}

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return rootjQuery.ready(selector);
		}

		if (selector.selector !== undefined) {
			this.selector = selector.selector;
			this.context = selector.context;
		}

		return jQuery.makeArray(selector, this);
	},

	// Start with an empty selector
	selector: "",

	// The current version of jQuery being used
	jquery: "1.4.2",

	// The default length of a jQuery object is 0
	length: 0,

	// The number of elements contained in the matched element set
	size: function() {
		return this.length;
	},

	toArray: function() {
		return slice.call(this, 0);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {
		return num == null ?

			// Return a 'clean' array
			this.toArray() :

			// Return just the object
			(num < 0 ? this.slice(num)[0] : this[num]);
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems, name, selector) {
		// Build a new jQuery matched element set
		var ret = jQuery();

		if (jQuery.isArray(elems)) {
			push.apply(ret, elems);
		
		} else {
			jQuery.merge(ret, elems);
		}

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		ret.context = this.context;

		if (name === "find") {
			ret.selector = this.selector + (this.selector ? " " : "") + selector;
		} else if (name) {
			ret.selector = this.selector + "." + name + "(" + selector + ")";
		}

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	// (You can seed the arguments with an array of args, but this is
	// only used internally.)
	each: function(callback, args) {
		return jQuery.each(this, callback, args);
	},
	
	ready: function(fn) {
		// Attach the listeners
		jQuery.bindReady();

		// If the DOM is already ready
		if (jQuery.isReady) {
			// Execute the function immediately
			fn.call(document, jQuery);

		// Otherwise, remember the function for later
		} else if (readyList) {
			// Add the function to the wait list
			readyList.push(fn);
		}

		return this;
	},
	
	eq: function(i) {
		return i === -1 ?
			this.slice(i) :
			this.slice(i, +i + 1);
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments),
			"slice", slice.call(arguments).join(","));
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},
	
	end: function() {
		return this.prevObject || jQuery(null);
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: [].sort,
	splice: [].splice
};

// Give the init function the jQuery prototype for later instantiation
jQuery.fn.init.prototype = jQuery.fn;

jQuery.extend = jQuery.fn.extend = function() {
	// copy reference to target object
	var target = arguments[0] || {}, i = 1, length = arguments.length, deep = false, options, name, src, copy;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;
		target = arguments[1] || {};
		// skip the boolean and the target
		i = 2;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// extend jQuery itself if only one argument is passed
	if (length === i) {
		target = this;
		--i;
	}

	for (; i < length; i++) {
		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {
			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging object literal values or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) || jQuery.isArray(copy))) {
					var clone = src && (jQuery.isPlainObject(src) || jQuery.isArray(src)) ? src
						: jQuery.isArray(copy) ? [] : {};

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({
	noConflict: function(deep) {
		window.$ = _$;

		if (deep) {
			window.jQuery = _jQuery;
		}

		return jQuery;
	},
	
	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,
	
	// Handle when the DOM is ready
	ready: function() {
		// Make sure that the DOM is not already loaded
		if (!jQuery.isReady) {
			// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
			if (!document.body) {
				return setTimeout(jQuery.ready, 13);
			}

			// Remember that the DOM is ready
			jQuery.isReady = true;

			// If there are functions bound, to execute
			if (readyList) {
				// Execute all of them
				var fn, i = 0;
				while ((fn = readyList[i++])) {
					fn.call(document, jQuery);
				}

				// Reset the list of functions
				readyList = null;
			}

			// Trigger any bound ready events
			if (jQuery.fn.triggerHandler) {
				jQuery(document).triggerHandler("ready");
			}
		}
	},
	
	bindReady: function() {
		if (readyBound) {
			return;
		}

		readyBound = true;

		// Catch cases where $(document).ready() is called after the
		// browser event has already occurred.
		if (document.readyState === "complete") {
			return jQuery.ready();
		}

		// Mozilla, Opera and webkit nightlies currently support this event
		if (document.addEventListener) {
			// Use the handy event callback
			document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
			
			// A fallback to window.onload, that will always work
			window.addEventListener("load", jQuery.ready, false);

		// If IE event model is used
		} else if (document.attachEvent) {
			// ensure firing before onload,
			// maybe late but safe also for iframes
			document.attachEvent("onreadystatechange", DOMContentLoaded);
			
			// A fallback to window.onload, that will always work
			window.attachEvent("onload", jQuery.ready);

			// If IE and not a frame
			// continually check to see if the document is ready
			var toplevel = false;

			try {
				toplevel = window.frameElement == null;
			} catch(e) {}

			if (document.documentElement.doScroll && toplevel) {
				doScrollCheck();
			}
		}
	},

	// See test/unit/core.js for details concerning isFunction.
	// Since version 1.3, DOM methods and functions like alert
	// aren't supported. They return false on IE (#2968).
	isFunction: function(obj) {
		return toString.call(obj) === "[object Function]";
	},

	isArray: function(obj) {
		return toString.call(obj) === "[object Array]";
	},

	isPlainObject: function(obj) {
		// Must be an Object.
		// Because of IE, we also have to check the presence of the constructor property.
		// Make sure that DOM nodes and window objects don't pass through, as well
		if (!obj || toString.call(obj) !== "[object Object]" || obj.nodeType || obj.setInterval) {
			return false;
		}
		
		// Not own constructor property must be Object
		if (obj.constructor
			&& !hasOwnProperty.call(obj, "constructor")
			&& !hasOwnProperty.call(obj.constructor.prototype, "isPrototypeOf")) {
			return false;
		}
		
		// Own properties are enumerated firstly, so to speed up,
		// if last one is own, then all properties are own.
	
		var key;
		for (key in obj) {}
		
		return key === undefined || hasOwnProperty.call(obj, key);
	},

	isEmptyObject: function(obj) {
		for (var name in obj) {
			return false;
		}
		return true;
	},
	
	error: function(msg) {
		throw msg;
	},
	
	parseJSON: function(data) {
		if (typeof data !== "string" || !data) {
			return null;
		}

		// Make sure leading/trailing whitespace is removed (IE can't handle it)
		data = jQuery.trim(data);
		
		// Make sure the incoming data is actual JSON
		// Logic borrowed from http://json.org/json2.js
		if (/^[\],:{}\s]*$/.test(data.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, "@")
			.replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, "]")
			.replace(/(?:^|:|,)(?:\s*\[)+/g, ""))) {

			// Try to use the native JSON parser first
			return window.JSON && window.JSON.parse ?
				window.JSON.parse(data) :
				(new Function("return " + data))();

		} else {
			jQuery.error("Invalid JSON: " + data);
		}
	},

	noop: function() {},

	// Evalulates a script in a global context
	globalEval: function(data) {
		if (data && rnotwhite.test(data)) {
			// Inspired by code by Andrea Giammarchi
			// http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
			var head = document.getElementsByTagName("head")[0] || document.documentElement,
				script = document.createElement("script");

			script.type = "text/javascript";

			if (jQuery.support.scriptEval) {
				script.appendChild(document.createTextNode(data));
			} else {
				script.text = data;
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709).
			head.insertBefore(script, head.firstChild);
			head.removeChild(script);
		}
	},

	nodeName: function(elem, name) {
		return elem.nodeName && elem.nodeName.toUpperCase() === name.toUpperCase();
	},

	// args is for internal usage only
	each: function(object, callback, args) {
		var name, i = 0,
			length = object.length,
			isObj = length === undefined || jQuery.isFunction(object);

		if (args) {
			if (isObj) {
				for (name in object) {
					if (callback.apply(object[name], args) === false) {
						break;
					}
				}
			} else {
				for (; i < length;) {
					if (callback.apply(object[i++], args) === false) {
						break;
					}
				}
			}

		// A special, fast, case for the most common use of each
		} else {
			if (isObj) {
				for (name in object) {
					if (callback.call(object[name], name, object[name]) === false) {
						break;
					}
				}
			} else {
				for (var value = object[0];
					i < length && callback.call(value, i, value) !== false; value = object[++i]) {}
			}
		}

		return object;
	},

	trim: function(text) {
		return (text || "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(array, results) {
		var ret = results || [];

		if (array != null) {
			// The window, strings (and functions) also have 'length'
			// The extra typeof function check is to prevent crashes
			// in Safari 2 (See: #3039)
			if (array.length == null || typeof array === "string" || jQuery.isFunction(array) || (typeof array !== "function" && array.setInterval)) {
				push.call(ret, array);
			} else {
				jQuery.merge(ret, array);
			}
		}

		return ret;
	},

	inArray: function(elem, array) {
		if (array.indexOf) {
			return array.indexOf(elem);
		}

		for (var i = 0, length = array.length; i < length; i++) {
			if (array[i] === elem) {
				return i;
			}
		}

		return -1;
	},

	merge: function(first, second) {
		var i = first.length, j = 0;

		if (typeof second.length === "number") {
			for (var l = second.length; j < l; j++) {
				first[i++] = second[j];
			}
		
		} else {
			while (second[j] !== undefined) {
				first[i++] = second[j++];
			}
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, inv) {
		var ret = [];

		// Go through the array, only saving the items
		// that pass the validator function
		for (var i = 0, length = elems.length; i < length; i++) {
			if (!inv !== !callback(elems[i], i)) {
				ret.push(elems[i]);
			}
		}

		return ret;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var ret = [], value;

		// Go through the array, translating each of the items to their
		// new value (or values).
		for (var i = 0, length = elems.length; i < length; i++) {
			value = callback(elems[i], i, arg);

			if (value != null) {
				ret[ret.length] = value;
			}
		}

		return ret.concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	proxy: function(fn, proxy, thisObject) {
		if (arguments.length === 2) {
			if (typeof proxy === "string") {
				thisObject = fn;
				fn = thisObject[proxy];
				proxy = undefined;

			} else if (proxy && !jQuery.isFunction(proxy)) {
				thisObject = proxy;
				proxy = undefined;
			}
		}

		if (!proxy && fn) {
			proxy = function() {
				return fn.apply(thisObject || this, arguments);
			};
		}

		// Set the guid of unique handler to the same of original handler, so it can be removed
		if (fn) {
			proxy.guid = fn.guid = fn.guid || proxy.guid || jQuery.guid++;
		}

		// So proxy can be declared as an argument
		return proxy;
	},

	// Use of jQuery.browser is frowned upon.
	// More details: http://docs.jquery.com/Utilities/jQuery.browser
	uaMatch: function(ua) {
		ua = ua.toLowerCase();

		var match = /(webkit)[\/]([\w.]+)/.exec(ua) ||
			/(opera)(?:.*version)?[\/]([\w.]+)/.exec(ua) ||
			/(msie) ([\w.]+)/.exec(ua) ||
			!/compatible/.test(ua) && /(mozilla)(?:.*? rv:([\w.]+))?/.exec(ua) ||
		 	[];

		return { browser: match[1] || "", version: match[2] || "0" };
	},

	browser: {}
});

browserMatch = jQuery.uaMatch(userAgent);
if (browserMatch.browser) {
	jQuery.browser[browserMatch.browser] = true;
	jQuery.browser.version = browserMatch.version;
}

// Deprecated, use jQuery.browser.webkit instead
if (jQuery.browser.webkit) {
	jQuery.browser.safari = true;
}

if (indexOf) {
	jQuery.inArray = function(elem, array) {
		return indexOf.call(array, elem);
	};
}

// All jQuery objects should point back to these
rootjQuery = jQuery(document);

// Cleanup functions for the document ready method
if (document.addEventListener) {
	DOMContentLoaded = function() {
		document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
		jQuery.ready();
	};

} else if (document.attachEvent) {
	DOMContentLoaded = function() {
		// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
		if (document.readyState === "complete") {
			document.detachEvent("onreadystatechange", DOMContentLoaded);
			jQuery.ready();
		}
	};
}

// The DOM ready check for Internet Explorer
function doScrollCheck() {
	if (jQuery.isReady) {
		return;
	}

	try {
		// If IE is used, use the trick by Diego Perini
		// http://javascript.nwbox.com/IEContentLoaded/
		document.documentElement.doScroll("left");
	} catch(error) {
		setTimeout(doScrollCheck, 1);
		return;
	}

	// and execute any waiting functions
	jQuery.ready();
}

function evalScript(i, elem) {
	if (elem.src) {
		jQuery.ajax({
			url: elem.src,
			async: false,
			dataType: "script"
		});
	} else {
		jQuery.globalEval(elem.text || elem.textContent || elem.innerHTML || "");
	}

	if (elem.parentNode) {
		elem.parentNode.removeChild(elem);
	}
}

// Mutifunctional method to get and set values to a collection
// The value/s can be optionally by executed if its a function
function access(elems, key, value, exec, fn, pass) {
	var length = elems.length;
	
	// Setting many attributes
	if (typeof key === "object") {
		for (var k in key) {
			access(elems, k, key[k], exec, fn, value);
		}
		return elems;
	}
	
	// Setting one attribute
	if (value !== undefined) {
		// Optionally, function values get executed if exec is true
		exec = !pass && exec && jQuery.isFunction(value);
		
		for (var i = 0; i < length; i++) {
			fn(elems[i], key, exec ? value.call(elems[i], i, fn(elems[i], key)) : value, pass);
		}
		
		return elems;
	}
	
	// Getting an attribute
	return length ? fn(elems[0], key) : undefined;
}

function now() {
	return (new Date).getTime();
}
(function() {

	jQuery.support = {};

	var root = document.documentElement,
		script = document.createElement("script"),
		div = document.createElement("div"),
		id = "script" + now();

	div.style.display = "none";
	div.innerHTML = " <link/><table></table>a<input type='checkbox'/>";

	var all = div.getElementsByTagName("*"),
		a = div.getElementsByTagName("a")[0];

	// Can't get basic test support
	if (!all || !all.length || !a) {
		return;
	}

	jQuery.support = {
		// IE strips leading whitespace when .innerHTML is used
		leadingWhitespace: div.firstChild.nodeType === 3,

		// Make sure that tbody elements aren't automatically inserted
		// IE will insert them into empty tables
		tbody: !div.getElementsByTagName("tbody").length,

		// Make sure that link elements get serialized correctly by innerHTML
		// This requires a wrapper element in IE
		htmlSerialize: !!div.getElementsByTagName("link").length,

		// Get the style information from getAttribute
		// (IE uses .cssText insted)
		style: /red/.test(a.getAttribute("style")),

		// Make sure that URLs aren't manipulated
		// (IE normalizes it by default)
		hrefNormalized: a.getAttribute("href") === "/a",

		// Make sure that element opacity exists
		// (IE uses filter instead)
		// Use a regex to work around a WebKit issue. See #5145
		opacity: /^0.55$/.test(a.style.opacity),

		// Verify style float existence
		// (IE uses styleFloat instead of cssFloat)
		cssFloat: !!a.style.cssFloat,

		// Make sure that if no value is specified for a checkbox
		// that it defaults to "on".
		// (WebKit defaults to "" instead)
		checkOn: div.getElementsByTagName("input")[0].value === "on",

		// Make sure that a selected-by-default option has a working selected property.
		// (WebKit defaults to false instead of true, IE too, if it's in an optgroup)
		optSelected: document.createElement("select").appendChild(document.createElement("option")).selected,

		parentNode: div.removeChild(div.appendChild(document.createElement("div"))).parentNode === null,

		// Will be defined later
		deleteExpando: true,
		checkClone: false,
		scriptEval: false,
		noCloneEvent: true,
		boxModel: null
	};

	script.type = "text/javascript";
	try {
		script.appendChild(document.createTextNode("window." + id + "=1;"));
	} catch(e) {}

	root.insertBefore(script, root.firstChild);

	// Make sure that the execution of code works by injecting a script
	// tag with appendChild/createTextNode
	// (IE doesn't support this, fails, and uses .text instead)
	if (window[id]) {
		jQuery.support.scriptEval = true;
		delete window[id];
	}

	// Test to see if it's possible to delete an expando from an element
	// Fails in Internet Explorer
	try {
		delete script.test;
	
	} catch(e) {
		jQuery.support.deleteExpando = false;
	}

	root.removeChild(script);

	if (div.attachEvent && div.fireEvent) {
		div.attachEvent("onclick", function click() {
			// Cloning a node shouldn't copy over any
			// bound event handlers (IE does this)
			jQuery.support.noCloneEvent = false;
			div.detachEvent("onclick", click);
		});
		div.cloneNode(true).fireEvent("onclick");
	}

	div = document.createElement("div");
	div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

	var fragment = document.createDocumentFragment();
	fragment.appendChild(div.firstChild);

	// WebKit doesn't clone checked state correctly in fragments
	jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true).lastChild.checked;

	// Figure out if the W3C box model works as expected
	// document.body must exist before we can do this
	jQuery(function() {
		var div = document.createElement("div");
		div.style.width = div.style.paddingLeft = "1px";

		document.body.appendChild(div);
		jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
		document.body.removeChild(div).style.display = 'none';

		div = null;
	});

	// Technique from Juriy Zaytsev
	// http://thinkweb2.com/projects/prototype/detecting-event-support-without-browser-sniffing/
	var eventSupported = function(eventName) {
		var el = document.createElement("div");
		eventName = "on" + eventName;

		var isSupported = (eventName in el);
		if (!isSupported) {
			el.setAttribute(eventName, "return;");
			isSupported = typeof el[eventName] === "function";
		}
		el = null;

		return isSupported;
	};
	
	jQuery.support.submitBubbles = eventSupported("submit");
	jQuery.support.changeBubbles = eventSupported("change");

	// release memory in IE
	root = script = div = all = a = null;
})();

jQuery.props = {
	"for": "htmlFor",
	"class": "className",
	readonly: "readOnly",
	maxlength: "maxLength",
	cellspacing: "cellSpacing",
	rowspan: "rowSpan",
	colspan: "colSpan",
	tabindex: "tabIndex",
	usemap: "useMap",
	frameborder: "frameBorder"
};
var expando = "jQuery" + now(), uuid = 0, windowData = {};

jQuery.extend({
	cache: {},
	
	expando:expando,

	// The following elements throw uncatchable exceptions if you
	// attempt to add expando properties to them.
	noData: {
		"embed": true,
		"object": true,
		"applet": true
	},

	data: function(elem, name, data) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache;

		if (!id && typeof name === "string" && data === undefined) {
			return null;
		}

		// Compute a unique ID for the element
		if (!id) {
			id = ++uuid;
		}

		// Avoid generating a new cache unless none exists and we
		// want to manipulate it.
		if (typeof name === "object") {
			elem[expando] = id;
			thisCache = cache[id] = jQuery.extend(true, {}, name);

		} else if (!cache[id]) {
			elem[expando] = id;
			cache[id] = {};
		}

		thisCache = cache[id];

		// Prevent overriding the named cache with undefined values
		if (data !== undefined) {
			thisCache[name] = data;
		}

		return typeof name === "string" ? thisCache[name] : thisCache;
	},

	removeData: function(elem, name) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache = cache[id];

		// If we want to remove a specific section of the element's data
		if (name) {
			if (thisCache) {
				// Remove the section of cache data
				delete thisCache[name];

				// If we've removed all the data, remove the element's cache
				if (jQuery.isEmptyObject(thisCache)) {
					jQuery.removeData(elem);
				}
			}

		// Otherwise, we want to remove all of the element's data
		} else {
			if (jQuery.support.deleteExpando) {
				delete elem[jQuery.expando];

			} else if (elem.removeAttribute) {
				elem.removeAttribute(jQuery.expando);
			}

			// Completely remove the data cache
			delete cache[id];
		}
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		if (typeof key === "undefined" && this.length) {
			return jQuery.data(this[0]);

		} else if (typeof key === "object") {
			return this.each(function() {
				jQuery.data(this, key);
			});
		}

		var parts = key.split(".");
		parts[1] = parts[1] ? "." + parts[1] : "";

		if (value === undefined) {
			var data = this.triggerHandler("getData" + parts[1] + "!", [parts[0]]);

			if (data === undefined && this.length) {
				data = jQuery.data(this[0], key);
			}
			return data === undefined && parts[1] ?
				this.data(parts[0]) :
				data;
		} else {
			return this.trigger("setData" + parts[1] + "!", [parts[0], value]).each(function() {
				jQuery.data(this, key, value);
			});
		}
	},

	removeData: function(key) {
		return this.each(function() {
			jQuery.removeData(this, key);
		});
	}
});
jQuery.extend({
	queue: function(elem, type, data) {
		if (!elem) {
			return;
		}

		type = (type || "fx") + "queue";
		var q = jQuery.data(elem, type);

		// Speed up dequeue by getting out quickly if this is just a lookup
		if (!data) {
			return q || [];
		}

		if (!q || jQuery.isArray(data)) {
			q = jQuery.data(elem, type, jQuery.makeArray(data));

		} else {
			q.push(data);
		}

		return q;
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type), fn = queue.shift();

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
		}

		if (fn) {
			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			fn.call(elem, function() {
				jQuery.dequeue(elem, type);
			});
		}
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		if (typeof type !== "string") {
			data = type;
			type = "fx";
		}

		if (data === undefined) {
			return jQuery.queue(this[0], type);
		}
		return this.each(function(i, elem) {
			var queue = jQuery.queue(this, type, data);

			if (type === "fx" && queue[0] !== "inprogress") {
				jQuery.dequeue(this, type);
			}
		});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},

	// Based off of the plugin by Clint Helfers, with permission.
	// http://blindsignals.com/index.php/2009/07/jquery-delay/
	delay: function(time, type) {
		time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
		type = type || "fx";

		return this.queue(type, function() {
			var elem = this;
			setTimeout(function() {
				jQuery.dequeue(elem, type);
			}, time);
		});
	},

	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	}
});
var rclass = /[\n\t]/g,
	rspace = /\s+/,
	rreturn = /\r/g,
	rspecialurl = /href|src|style/,
	rtype = /(button|input)/i,
	rfocusable = /(button|input|object|select|textarea)/i,
	rclickable = /^(a|area)$/i,
	rradiocheck = /radio|checkbox/;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, name, value, true, jQuery.attr);
	},

	removeAttr: function(name, fn) {
		return this.each(function(){
			jQuery.attr(this, name, "");
			if (this.nodeType === 1) {
				this.removeAttribute(name);
			}
		});
	},

	addClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.addClass(value.call(this, i, self.attr("class")));
			});
		}

		if (value && typeof value === "string") {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1) {
					if (!elem.className) {
						elem.className = value;

					} else {
						var className = " " + elem.className + " ", setClass = elem.className;
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							if (className.indexOf(" " + classNames[c] + " ") < 0) {
								setClass += " " + classNames[c];
							}
						}
						elem.className = jQuery.trim(setClass);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.removeClass(value.call(this, i, self.attr("class")));
			});
		}

		if ((value && typeof value === "string") || value === undefined) {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1 && elem.className) {
					if (value) {
						var className = (" " + elem.className + " ").replace(rclass, " ");
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							className = className.replace(" " + classNames[c] + " ", " ");
						}
						elem.className = jQuery.trim(className);

					} else {
						elem.className = "";
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value, isBool = typeof stateVal === "boolean";

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.toggleClass(value.call(this, i, self.attr("class"), stateVal), stateVal);
			});
		}

		return this.each(function() {
			if (type === "string") {
				// toggle individual class names
				var className, i = 0, self = jQuery(this),
					state = stateVal,
					classNames = value.split(rspace);

				while ((className = classNames[i++])) {
					// check each className given, space seperated list
					state = isBool ? state : !self.hasClass(className);
					self[state ? "addClass" : "removeClass"](className);
				}

			} else if (type === "undefined" || type === "boolean") {
				if (this.className) {
					// store className if set
					jQuery.data(this, "__className__", this.className);
				}

				// toggle whole className
				this.className = this.className || value === false ? "" : jQuery.data(this, "__className__") || "";
			}
		});
	},

	hasClass: function(selector) {
		var className = " " + selector + " ";
		for (var i = 0, l = this.length; i < l; i++) {
			if ((" " + this[i].className + " ").replace(rclass, " ").indexOf(className) > -1) {
				return true;
			}
		}

		return false;
	},

	val: function(value) {
		if (value === undefined) {
			var elem = this[0];

			if (elem) {
				if (jQuery.nodeName(elem, "option")) {
					return (elem.attributes.value || {}).specified ? elem.value : elem.text;
				}

				// We need to handle select boxes special
				if (jQuery.nodeName(elem, "select")) {
					var index = elem.selectedIndex,
						values = [],
						options = elem.options,
						one = elem.type === "select-one";

					// Nothing was selected
					if (index < 0) {
						return null;
					}

					// Loop through all the selected options
					for (var i = one ? index : 0, max = one ? index + 1 : options.length; i < max; i++) {
						var option = options[i];

						if (option.selected) {
							// Get the specifc value for the option
							value = jQuery(option).val();

							// We don't need an array for one selects
							if (one) {
								return value;
							}

							// Multi-Selects return an array
							values.push(value);
						}
					}

					return values;
				}

				// Handle the case where in Webkit "" is returned instead of "on" if a value isn't specified
				if (rradiocheck.test(elem.type) && !jQuery.support.checkOn) {
					return elem.getAttribute("value") === null ? "on" : elem.value;
				}
				

				// Everything else, we just grab the value
				return (elem.value || "").replace(rreturn, "");

			}

			return undefined;
		}

		var isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var self = jQuery(this), val = value;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, self.val());
			}

			// Typecast each time if the value is a Function and the appended
			// value is therefore different each time.
			if (typeof val === "number") {
				val += "";
			}

			if (jQuery.isArray(val) && rradiocheck.test(this.type)) {
				this.checked = jQuery.inArray(self.val(), val) >= 0;

			} else if (jQuery.nodeName(this, "select")) {
				var values = jQuery.makeArray(val);

				jQuery("option", this).each(function() {
					this.selected = jQuery.inArray(jQuery(this).val(), values) >= 0;
				});

				if (!values.length) {
					this.selectedIndex = -1;
				}

			} else {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	attrFn: {
		val: true,
		css: true,
		html: true,
		text: true,
		data: true,
		width: true,
		height: true,
		offset: true
	},
		
	attr: function(elem, name, value, pass) {
		// don't set attributes on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		if (pass && name in jQuery.attrFn) {
			return jQuery(elem)[name](value);
		}

		var notxml = elem.nodeType !== 1 || !jQuery.isXMLDoc(elem),
			// Whether we are setting (or getting)
			set = value !== undefined;

		// Try to normalize/fix the name
		name = notxml && jQuery.props[name] || name;

		// Only do all the following if this is a node (faster for style)
		if (elem.nodeType === 1) {
			// These attributes require special treatment
			var special = rspecialurl.test(name);

			// Safari mis-reports the default selected property of an option
			// Accessing the parent's selectedIndex property fixes it
			if (name === "selected" && !jQuery.support.optSelected) {
				var parent = elem.parentNode;
				if (parent) {
					parent.selectedIndex;
	
					// Make sure that it also works with optgroups, see #5701
					if (parent.parentNode) {
						parent.parentNode.selectedIndex;
					}
				}
			}

			// If applicable, access the attribute via the DOM 0 way
			if (name in elem && notxml && !special) {
				if (set) {
					// We can't allow the type property to be changed (since it causes problems in IE)
					if (name === "type" && rtype.test(elem.nodeName) && elem.parentNode) {
						jQuery.error("type property can't be changed");
					}

					elem[name] = value;
				}

				// browsers index elements by id/name on forms, give priority to attributes.
				if (jQuery.nodeName(elem, "form") && elem.getAttributeNode(name)) {
					return elem.getAttributeNode(name).nodeValue;
				}

				// elem.tabIndex doesn't always return the correct value when it hasn't been explicitly set
				// http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				if (name === "tabIndex") {
					var attributeNode = elem.getAttributeNode("tabIndex");

					return attributeNode && attributeNode.specified ?
						attributeNode.value :
						rfocusable.test(elem.nodeName) || rclickable.test(elem.nodeName) && elem.href ?
							0 :
							undefined;
				}

				return elem[name];
			}

			if (!jQuery.support.style && notxml && name === "style") {
				if (set) {
					elem.style.cssText = "" + value;
				}

				return elem.style.cssText;
			}

			if (set) {
				// convert the value to a string (all browsers do this but IE) see #1070
				elem.setAttribute(name, "" + value);
			}

			var attr = !jQuery.support.hrefNormalized && notxml && special ?
					// Some attributes require a special call on IE
					elem.getAttribute(name, 2) :
					elem.getAttribute(name);

			// Non-existent attributes return null, we normalize to undefined
			return attr === null ? undefined : attr;
		}

		// elem is actually elem.style ... set the style
		// Using attr for specific style information is now deprecated. Use style instead.
		return jQuery.style(elem, name, value);
	}
});
var rnamespaces = /\.(.*)$/,
	fcleanup = function(nm) {
		return nm.replace(/[^\w\s\.\|`]/g, function(ch) {
			return "\\" + ch;
		});
	};

/*
 * A number of helper functions used for managing events.
 * Many of the ideas behind this code originated from
 * Dean Edwards' addEvent library.
 */
jQuery.event = {

	// Bind an event to an element
	// Original by Dean Edwards
	add: function(elem, types, handler, data) {
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// For whatever reason, IE has trouble passing the window object
		// around, causing it to be cloned in the process
		if (elem.setInterval && (elem !== window && !elem.frameElement)) {
			elem = window;
		}

		var handleObjIn, handleObj;

		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
		}

		// Make sure that the function being executed has a unique ID
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure
		var elemData = jQuery.data(elem);

		// If no elemData is found then we must be trying to bind to one of the
		// banned noData elements
		if (!elemData) {
			return;
		}

		var events = elemData.events = elemData.events || {},
			eventHandle = elemData.handle, eventHandle;

		if (!eventHandle) {
			elemData.handle = eventHandle = function() {
				// Handle the second event of a trigger and when
				// an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && !jQuery.event.triggered ?
					jQuery.event.handle.apply(eventHandle.elem, arguments) :
					undefined;
			};
		}

		// Add elem as a property of the handle function
		// This is to prevent a memory leak with non-native events in IE.
		eventHandle.elem = elem;

		// Handle multiple events separated by a space
		// jQuery(...).bind("mouseover mouseout", fn);
		types = types.split(" ");

		var type, i = 0, namespaces;

		while ((type = types[i++])) {
			handleObj = handleObjIn ?
				jQuery.extend({}, handleObjIn) :
				{ handler: handler, data: data };

			// Namespaced event handlers
			if (type.indexOf(".") > -1) {
				namespaces = type.split(".");
				type = namespaces.shift();
				handleObj.namespace = namespaces.slice(0).sort().join(".");

			} else {
				namespaces = [];
				handleObj.namespace = "";
			}

			handleObj.type = type;
			handleObj.guid = handler.guid;

			// Get the current list of functions bound to this event
			var handlers = events[type],
				special = jQuery.event.special[type] || {};

			// Init the event handler queue
			if (!handlers) {
				handlers = events[type] = [];

				// Check for a special event handler
				// Only use addEventListener/attachEvent if the special
				// events handler returns false
				if (!special.setup || special.setup.call(elem, data, namespaces, eventHandle) === false) {
					// Bind the global event handler to the element
					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle, false);

					} else if (elem.attachEvent) {
						elem.attachEvent("on" + type, eventHandle);
					}
				}
			}
			
			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add the function to the element's handler list
			handlers.push(handleObj);

			// Keep track of which events have been used, for global triggering
			jQuery.event.global[type] = true;
		}

		// Nullify elem to prevent memory leaks in IE
		elem = null;
	},

	global: {},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, pos) {
		// don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		var ret, type, fn, i = 0, all, namespaces, namespace, special, eventType, handleObj, origType,
			elemData = jQuery.data(elem),
			events = elemData && elemData.events;

		if (!elemData || !events) {
			return;
		}

		// types is actually an event object here
		if (types && types.type) {
			handler = types.handler;
			types = types.type;
		}

		// Unbind all events for the element
		if (!types || typeof types === "string" && types.charAt(0) === ".") {
			types = types || "";

			for (type in events) {
				jQuery.event.remove(elem, type + types);
			}

			return;
		}

		// Handle multiple events separated by a space
		// jQuery(...).unbind("mouseover mouseout", fn);
		types = types.split(" ");

		while ((type = types[i++])) {
			origType = type;
			handleObj = null;
			all = type.indexOf(".") < 0;
			namespaces = [];

			if (!all) {
				// Namespaced event handlers
				namespaces = type.split(".");
				type = namespaces.shift();

				namespace = new RegExp("(^|\\.)" +
					jQuery.map(namespaces.slice(0).sort(), fcleanup).join("\\.(?:.*\\.)?") + "(\\.|$)")
			}

			eventType = events[type];

			if (!eventType) {
				continue;
			}

			if (!handler) {
				for (var j = 0; j < eventType.length; j++) {
					handleObj = eventType[j];

					if (all || namespace.test(handleObj.namespace)) {
						jQuery.event.remove(elem, origType, handleObj.handler, j);
						eventType.splice(j--, 1);
					}
				}

				continue;
			}

			special = jQuery.event.special[type] || {};

			for (var j = pos || 0; j < eventType.length; j++) {
				handleObj = eventType[j];

				if (handler.guid === handleObj.guid) {
					// remove the given handler for the given type
					if (all || namespace.test(handleObj.namespace)) {
						if (pos == null) {
							eventType.splice(j--, 1);
						}

						if (special.remove) {
							special.remove.call(elem, handleObj);
						}
					}

					if (pos != null) {
						break;
					}
				}
			}

			// remove generic event handler if no more handlers exist
			if (eventType.length === 0 || pos != null && eventType.length === 1) {
				if (!special.teardown || special.teardown.call(elem, namespaces) === false) {
					removeEvent(elem, type, elemData.handle);
				}

				ret = null;
				delete events[type];
			}
		}

		// Remove the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			var handle = elemData.handle;
			if (handle) {
				handle.elem = null;
			}

			delete elemData.events;
			delete elemData.handle;

			if (jQuery.isEmptyObject(elemData)) {
				jQuery.removeData(elem);
			}
		}
	},

	// bubbling is internal
	trigger: function(event, data, elem /*, bubbling */) {
		// Event object or event type
		var type = event.type || event,
			bubbling = arguments[3];

		if (!bubbling) {
			event = typeof event === "object" ?
				// jQuery.Event object
				event[expando] ? event :
				// Object literal
				jQuery.extend(jQuery.Event(type), event) :
				// Just the event type (string)
				jQuery.Event(type);

			if (type.indexOf("!") >= 0) {
				event.type = type = type.slice(0, -1);
				event.exclusive = true;
			}

			// Handle a global trigger
			if (!elem) {
				// Don't bubble custom events when global (to avoid too much overhead)
				event.stopPropagation();

				// Only trigger if we've ever bound an event for it
				if (jQuery.event.global[type]) {
					jQuery.each(jQuery.cache, function() {
						if (this.events && this.events[type]) {
							jQuery.event.trigger(event, data, this.handle.elem);
						}
					});
				}
			}

			// Handle triggering a single element

			// don't do events on text and comment nodes
			if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
				return undefined;
			}

			// Clean up in case it is reused
			event.result = undefined;
			event.target = elem;

			// Clone the incoming data, if any
			data = jQuery.makeArray(data);
			data.unshift(event);
		}

		event.currentTarget = elem;

		// Trigger the event, it is assumed that "handle" is a function
		var handle = jQuery.data(elem, "handle");
		if (handle) {
			handle.apply(elem, data);
		}

		var parent = elem.parentNode || elem.ownerDocument;

		// Trigger an inline bound script
		try {
			if (!(elem && elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()])) {
				if (elem["on" + type] && elem["on" + type].apply(elem, data) === false) {
					event.result = false;
				}
			}

		// prevent IE from throwing an error for some elements with some event types, see #3533
		} catch (e) {}

		if (!event.isPropagationStopped() && parent) {
			jQuery.event.trigger(event, data, parent, true);

		} else if (!event.isDefaultPrevented()) {
			var target = event.target, old,
				isClick = jQuery.nodeName(target, "a") && type === "click",
				special = jQuery.event.special[type] || {};

			if ((!special._default || special._default.call(elem, event) === false) &&
				!isClick && !(target && target.nodeName && jQuery.noData[target.nodeName.toLowerCase()])) {

				try {
					if (target[type]) {
						// Make sure that we don't accidentally re-trigger the onFOO events
						old = target["on" + type];

						if (old) {
							target["on" + type] = null;
						}

						jQuery.event.triggered = true;
						target[type]();
					}

				// prevent IE from throwing an error for some elements with some event types, see #3533
				} catch (e) {}

				if (old) {
					target["on" + type] = old;
				}

				jQuery.event.triggered = false;
			}
		}
	},

	handle: function(event) {
		var all, handlers, namespaces, namespace, events;

		event = arguments[0] = jQuery.event.fix(event || window.event);
		event.currentTarget = this;

		// Namespaced event handlers
		all = event.type.indexOf(".") < 0 && !event.exclusive;

		if (!all) {
			namespaces = event.type.split(".");
			event.type = namespaces.shift();
			namespace = new RegExp("(^|\\.)" + namespaces.slice(0).sort().join("\\.(?:.*\\.)?") + "(\\.|$)");
		}

		var events = jQuery.data(this, "events"), handlers = events[event.type];

		if (events && handlers) {
			// Clone the handlers to prevent manipulation
			handlers = handlers.slice(0);

			for (var j = 0, l = handlers.length; j < l; j++) {
				var handleObj = handlers[j];

				// Filter the functions by class
				if (all || namespace.test(handleObj.namespace)) {
					// Pass in a reference to the handler function itself
					// So that we can later remove it
					event.handler = handleObj.handler;
					event.data = handleObj.data;
					event.handleObj = handleObj;
	
					var ret = handleObj.handler.apply(this, arguments);

					if (ret !== undefined) {
						event.result = ret;
						if (ret === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}

					if (event.isImmediatePropagationStopped()) {
						break;
					}
				}
			}
		}

		return event.result;
	},

	props: "altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY originalTarget pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),

	fix: function(event) {
		if (event[expando]) {
			return event;
		}

		// store a copy of the original event object
		// and "clone" to set read-only properties
		var originalEvent = event;
		event = jQuery.Event(originalEvent);

		for (var i = this.props.length, prop; i;) {
			prop = this.props[--i];
			event[prop] = originalEvent[prop];
		}

		// Fix target property, if necessary
		if (!event.target) {
			event.target = event.srcElement || document; // Fixes #1925 where srcElement might not be defined either
		}

		// check if target is a textnode (safari)
		if (event.target.nodeType === 3) {
			event.target = event.target.parentNode;
		}

		// Add relatedTarget, if necessary
		if (!event.relatedTarget && event.fromElement) {
			event.relatedTarget = event.fromElement === event.target ? event.toElement : event.fromElement;
		}

		// Calculate pageX/Y if missing and clientX/Y available
		if (event.pageX == null && event.clientX != null) {
			var doc = document.documentElement, body = document.body;
			event.pageX = event.clientX + (doc && doc.scrollLeft || body && body.scrollLeft || 0) - (doc && doc.clientLeft || body && body.clientLeft || 0);
			event.pageY = event.clientY + (doc && doc.scrollTop || body && body.scrollTop || 0) - (doc && doc.clientTop || body && body.clientTop || 0);
		}

		// Add which for key events
		if (!event.which && ((event.charCode || event.charCode === 0) ? event.charCode : event.keyCode)) {
			event.which = event.charCode || event.keyCode;
		}

		// Add metaKey to non-Mac browsers (use ctrl for PC's and Meta for Macs)
		if (!event.metaKey && event.ctrlKey) {
			event.metaKey = event.ctrlKey;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		// Note: button is not normalized, so don't use it
		if (!event.which && event.button !== undefined) {
			event.which = (event.button & 1 ? 1 : (event.button & 2 ? 3 : (event.button & 4 ? 2 : 0)));
		}

		return event;
	},

	// Deprecated, use jQuery.guid instead
	guid: 1E8,

	// Deprecated, use jQuery.proxy instead
	proxy: jQuery.proxy,

	special: {
		ready: {
			// Make sure the ready event is setup
			setup: jQuery.bindReady,
			teardown: jQuery.noop
		},

		live: {
			add: function(handleObj) {
				jQuery.event.add(this, handleObj.origType, jQuery.extend({}, handleObj, {handler: liveHandler}));
			},

			remove: function(handleObj) {
				var remove = true,
					type = handleObj.origType.replace(rnamespaces, "");
				
				jQuery.each(jQuery.data(this, "events").live || [], function() {
					if (type === this.origType.replace(rnamespaces, "")) {
						remove = false;
						return false;
					}
				});

				if (remove) {
					jQuery.event.remove(this, handleObj.origType, liveHandler);
				}
			}

		},

		beforeunload: {
			setup: function(data, namespaces, eventHandle) {
				// We only want to do this special case on windows
				if (this.setInterval) {
					this.onbeforeunload = eventHandle;
				}

				return false;
			},
			teardown: function(namespaces, eventHandle) {
				if (this.onbeforeunload === eventHandle) {
					this.onbeforeunload = null;
				}
			}
		}
	}
};

var removeEvent = document.removeEventListener ?
	function(elem, type, handle) {
		elem.removeEventListener(type, handle, false);
	} :
	function(elem, type, handle) {
		elem.detachEvent("on" + type, handle);
	};

jQuery.Event = function(src) {
	// Allow instantiation without the 'new' keyword
	if (!this.preventDefault) {
		return new jQuery.Event(src);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;
	// Event type
	} else {
		this.type = src;
	}

	// timeStamp is buggy for some events on Firefox(#3843)
	// So we won't rely on the native value
	this.timeStamp = now();

	// Mark it as fixed
	this[expando] = true;
};

function returnFalse() {
	return false;
}
function returnTrue() {
	return true;
}

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	preventDefault: function() {
		this.isDefaultPrevented = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		
		// if preventDefault exists run it on the original event
		if (e.preventDefault) {
			e.preventDefault();
		}
		// otherwise set the returnValue property of the original event to false (IE)
		e.returnValue = false;
	},
	stopPropagation: function() {
		this.isPropagationStopped = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		// if stopPropagation exists run it on the original event
		if (e.stopPropagation) {
			e.stopPropagation();
		}
		// otherwise set the cancelBubble property of the original event to true (IE)
		e.cancelBubble = true;
	},
	stopImmediatePropagation: function() {
		this.isImmediatePropagationStopped = returnTrue;
		this.stopPropagation();
	},
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse
};

// Checks if an event happened on an element within another element
// Used in jQuery.event.special.mouseenter and mouseleave handlers
var withinElement = function(event) {
	// Check if mouse(over|out) are still within the same parent element
	var parent = event.relatedTarget;

	// Firefox sometimes assigns relatedTarget a XUL element
	// which we cannot access the parentNode property of
	try {
		// Traverse up the tree
		while (parent && parent !== this) {
			parent = parent.parentNode;
		}

		if (parent !== this) {
			// set the correct event type
			event.type = event.data;

			// handle event if we actually just moused on to a non sub-element
			jQuery.event.handle.apply(this, arguments);
		}

	// assuming we've left the element since we most likely mousedover a xul element
	} catch(e) { }
},

// In case of event delegation, we only need to rename the event.type,
// liveHandler will take care of the rest.
delegate = function(event) {
	event.type = event.data;
	jQuery.event.handle.apply(this, arguments);
};

// Create mouseenter and mouseleave events
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		setup: function(data) {
			jQuery.event.add(this, fix, data && data.selector ? delegate : withinElement, orig);
		},
		teardown: function(data) {
			jQuery.event.remove(this, fix, data && data.selector ? delegate : withinElement);
		}
	};
});

// submit delegation
if (!jQuery.support.submitBubbles) {

	jQuery.event.special.submit = {
		setup: function(data, namespaces) {
			if (this.nodeName.toLowerCase() !== "form") {
				jQuery.event.add(this, "click.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "submit" || type === "image") && jQuery(elem).closest("form").length) {
						return trigger("submit", this, arguments);
					}
				});
	
				jQuery.event.add(this, "keypress.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "text" || type === "password") && jQuery(elem).closest("form").length && e.keyCode === 13) {
						return trigger("submit", this, arguments);
					}
				});

			} else {
				return false;
			}
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialSubmit");
		}
	};

}

// change delegation, happens here so we have bind.
if (!jQuery.support.changeBubbles) {

	var formElems = /textarea|input|select/i,

	changeFilters,

	getVal = function(elem) {
		var type = elem.type, val = elem.value;

		if (type === "radio" || type === "checkbox") {
			val = elem.checked;

		} else if (type === "select-multiple") {
			val = elem.selectedIndex > -1 ?
				jQuery.map(elem.options, function(elem) {
					return elem.selected;
				}).join("-") :
				"";

		} else if (elem.nodeName.toLowerCase() === "select") {
			val = elem.selectedIndex;
		}

		return val;
	},

	testChange = function testChange(e) {
		var elem = e.target, data, val;

		if (!formElems.test(elem.nodeName) || elem.readOnly) {
			return;
		}

		data = jQuery.data(elem, "_change_data");
		val = getVal(elem);

		// the current data will be also retrieved by beforeactivate
		if (e.type !== "focusout" || elem.type !== "radio") {
			jQuery.data(elem, "_change_data", val);
		}
		
		if (data === undefined || val === data) {
			return;
		}

		if (data != null || val) {
			e.type = "change";
			return jQuery.event.trigger(e, arguments[1], elem);
		}
	};

	jQuery.event.special.change = {
		filters: {
			focusout: testChange,

			click: function(e) {
				var elem = e.target, type = elem.type;

				if (type === "radio" || type === "checkbox" || elem.nodeName.toLowerCase() === "select") {
					return testChange.call(this, e);
				}
			},

			// Change has to be called before submit
			// Keydown will be called before keypress, which is used in submit-event delegation
			keydown: function(e) {
				var elem = e.target, type = elem.type;

				if ((e.keyCode === 13 && elem.nodeName.toLowerCase() !== "textarea") ||
					(e.keyCode === 32 && (type === "checkbox" || type === "radio")) ||
					type === "select-multiple") {
					return testChange.call(this, e);
				}
			},

			// Beforeactivate happens also before the previous element is blurred
			// with this event you can't trigger a change event, but you can store
			// information/focus[in] is not needed anymore
			beforeactivate: function(e) {
				var elem = e.target;
				jQuery.data(elem, "_change_data", getVal(elem));
			}
		},

		setup: function(data, namespaces) {
			if (this.type === "file") {
				return false;
			}

			for (var type in changeFilters) {
				jQuery.event.add(this, type + ".specialChange", changeFilters[type]);
			}

			return formElems.test(this.nodeName);
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialChange");

			return formElems.test(this.nodeName);
		}
	};

	changeFilters = jQuery.event.special.change.filters;
}

function trigger(type, elem, args) {
	args[0].type = type;
	return jQuery.event.handle.apply(elem, args);
}

// Create "bubbling" focus and blur events
if (document.addEventListener) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {
		jQuery.event.special[fix] = {
			setup: function() {
				this.addEventListener(orig, handler, true);
			},
			teardown: function() {
				this.removeEventListener(orig, handler, true);
			}
		};

		function handler(e) {
			e = jQuery.event.fix(e);
			e.type = fix;
			return jQuery.event.handle.call(this, e);
		}
	});
}

jQuery.each(["bind", "one"], function(i, name) {
	jQuery.fn[name] = function(type, data, fn) {
		// Handle object literals
		if (typeof type === "object") {
			for (var key in type) {
				this[name](key, data, type[key], fn);
			}
			return this;
		}
		
		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		var handler = name === "one" ? jQuery.proxy(fn, function(event) {
			jQuery(this).unbind(event, handler);
			return fn.apply(this, arguments);
		}) : fn;

		if (type === "unload" && name !== "one") {
			this.one(type, data, fn);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.add(this[i], type, handler, data);
			}
		}

		return this;
	};
});

jQuery.fn.extend({
	unbind: function(type, fn) {
		// Handle object literals
		if (typeof type === "object" && !type.preventDefault) {
			for (var key in type) {
				this.unbind(key, type[key]);
			}

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.remove(this[i], type, fn);
			}
		}

		return this;
	},
	
	delegate: function(selector, types, data, fn) {
		return this.live(types, data, fn, selector);
	},
	
	undelegate: function(selector, types, fn) {
		if (arguments.length === 0) {
				return this.unbind("live");
		
		} else {
			return this.die(types, null, fn, selector);
		}
	},
	
	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},

	triggerHandler: function(type, data) {
		if (this[0]) {
			var event = jQuery.Event(type);
			event.preventDefault();
			event.stopPropagation();
			jQuery.event.trigger(event, data, this[0]);
			return event.result;
		}
	},

	toggle: function(fn) {
		// Save reference to arguments for access in closure
		var args = arguments, i = 1;

		// link all the functions, so any of them can unbind this click handler
		while (i < args.length) {
			jQuery.proxy(fn, args[i++]);
		}

		return this.click(jQuery.proxy(fn, function(event) {
			// Figure out which function to execute
			var lastToggle = (jQuery.data(this, "lastToggle" + fn.guid) || 0) % i;
			jQuery.data(this, "lastToggle" + fn.guid, lastToggle + 1);

			// Make sure that clicks stop
			event.preventDefault();

			// and execute the function
			return args[lastToggle].apply(this, arguments) || false;
		}));
	},

	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

var liveMap = {
	focus: "focusin",
	blur: "focusout",
	mouseenter: "mouseover",
	mouseleave: "mouseout"
};

jQuery.each(["live", "die"], function(i, name) {
	jQuery.fn[name] = function(types, data, fn, origSelector /* Internal Use Only */) {
		var type, i = 0, match, namespaces, preType,
			selector = origSelector || this.selector,
			context = origSelector ? this : jQuery(this.context);

		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		types = (types || "").split(" ");

		while ((type = types[i++]) != null) {
			match = rnamespaces.exec(type);
			namespaces = "";

			if (match) {
				namespaces = match[0];
				type = type.replace(rnamespaces, "");
			}

			if (type === "hover") {
				types.push("mouseenter" + namespaces, "mouseleave" + namespaces);
				continue;
			}

			preType = type;

			if (type === "focus" || type === "blur") {
				types.push(liveMap[type] + namespaces);
				type = type + namespaces;

			} else {
				type = (liveMap[type] || type) + namespaces;
			}

			if (name === "live") {
				// bind live handler
				context.each(function(){
					jQuery.event.add(this, liveConvert(type, selector),
						{ data: data, selector: selector, handler: fn, origType: type, origHandler: fn, preType: preType });
				});

			} else {
				// unbind live handler
				context.unbind(liveConvert(type, selector), fn);
			}
		}
		
		return this;
	}
});

function liveHandler(event) {
	var stop, elems = [], selectors = [], args = arguments,
		related, match, handleObj, elem, j, i, l, data,
		events = jQuery.data(this, "events");

	// Make sure we avoid non-left-click bubbling in Firefox (#3861)
	if (event.liveFired === this || !events || !events.live || event.button && event.type === "click") {
		return;
	}

	event.liveFired = this;

	var live = events.live.slice(0);

	for (j = 0; j < live.length; j++) {
		handleObj = live[j];

		if (handleObj.origType.replace(rnamespaces, "") === event.type) {
			selectors.push(handleObj.selector);

		} else {
			live.splice(j--, 1);
		}
	}

	match = jQuery(event.target).closest(selectors, event.currentTarget);

	for (i = 0, l = match.length; i < l; i++) {
		for (j = 0; j < live.length; j++) {
			handleObj = live[j];

			if (match[i].selector === handleObj.selector) {
				elem = match[i].elem;
				related = null;

				// Those two events require additional checking
				if (handleObj.preType === "mouseenter" || handleObj.preType === "mouseleave") {
					related = jQuery(event.relatedTarget).closest(handleObj.selector)[0];
				}

				if (!related || related !== elem) {
					elems.push({ elem: elem, handleObj: handleObj });
				}
			}
		}
	}

	for (i = 0, l = elems.length; i < l; i++) {
		match = elems[i];
		event.currentTarget = match.elem;
		event.data = match.handleObj.data;
		event.handleObj = match.handleObj;

		if (match.handleObj.origHandler.apply(match.elem, args) === false) {
			stop = false;
			break;
		}
	}

	return stop;
}

function liveConvert(type, selector) {
	return "live." + (type && type !== "*" ? type + "." : "") + selector.replace(/\./g, "`").replace(/ /g, "&");
}

jQuery.each(("blur focus focusin focusout load resize scroll unload click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup error").split(" "), function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(fn) {
		return fn ? this.bind(name, fn) : this.trigger(name);
	};

	if (jQuery.attrFn) {
		jQuery.attrFn[name] = true;
	}
});

// Prevent memory leaks in IE
// Window isn't included so as not to unbind existing unload events
// More info:
// - http://isaacschlueter.com/2006/10/msie-memory-leaks/
if (window.attachEvent && !window.addEventListener) {
	window.attachEvent("onunload", function() {
		for (var id in jQuery.cache) {
			if (jQuery.cache[id].handle) {
				// Try/Catch is to handle iframes being unloaded, see #4280
				try {
					jQuery.event.remove(jQuery.cache[id].handle.elem);
				} catch(e) {}
			}
		}
	});
}
/*!
 * Sizzle CSS Selector Engine - v1.0
 * Copyright 2009, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 * More information: http://sizzlejs.com/
 */
(function(){

var chunker = /((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^[\]]*\]|['"][^'"]*['"]|[^[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,
	done = 0,
	toString = Object.prototype.toString,
	hasDuplicate = false,
	baseHasDuplicate = true;

// Here we check if the JavaScript engine is using some sort of
// optimization where it does not always call our comparision
// function. If that is the case, discard the hasDuplicate value.
// Thus far that includes Google Chrome.
[0, 0].sort(function(){
	baseHasDuplicate = false;
	return 0;
});

var Sizzle = function(selector, context, results, seed) {
	results = results || [];
	var origContext = context = context || document;

	if (context.nodeType !== 1 && context.nodeType !== 9) {
		return [];
	}
	
	if (!selector || typeof selector !== "string") {
		return results;
	}

	var parts = [], m, set, checkSet, extra, prune = true, contextXML = isXML(context),
		soFar = selector;
	
	// Reset the position of the chunker regexp (start from head)
	while ((chunker.exec(""), m = chunker.exec(soFar)) !== null) {
		soFar = m[3];
		
		parts.push(m[1]);
		
		if (m[2]) {
			extra = m[3];
			break;
		}
	}

	if (parts.length > 1 && origPOS.exec(selector)) {
		if (parts.length === 2 && Expr.relative[parts[0]]) {
			set = posProcess(parts[0] + parts[1], context);
		} else {
			set = Expr.relative[parts[0]] ?
				[context] :
				Sizzle(parts.shift(), context);

			while (parts.length) {
				selector = parts.shift();

				if (Expr.relative[selector]) {
					selector += parts.shift();
				}
				
				set = posProcess(selector, set);
			}
		}
	} else {
		// Take a shortcut and set the context if the root selector is an ID
		// (but not if it'll be faster if the inner selector is an ID)
		if (!seed && parts.length > 1 && context.nodeType === 9 && !contextXML &&
				Expr.match.ID.test(parts[0]) && !Expr.match.ID.test(parts[parts.length - 1])) {
			var ret = Sizzle.find(parts.shift(), context, contextXML);
			context = ret.expr ? Sizzle.filter(ret.expr, ret.set)[0] : ret.set[0];
		}

		if (context) {
			var ret = seed ?
				{ expr: parts.pop(), set: makeArray(seed) } :
				Sizzle.find(parts.pop(), parts.length === 1 && (parts[0] === "~" || parts[0] === "+") && context.parentNode ? context.parentNode : context, contextXML);
			set = ret.expr ? Sizzle.filter(ret.expr, ret.set) : ret.set;

			if (parts.length > 0) {
				checkSet = makeArray(set);
			} else {
				prune = false;
			}

			while (parts.length) {
				var cur = parts.pop(), pop = cur;

				if (!Expr.relative[cur]) {
					cur = "";
				} else {
					pop = parts.pop();
				}

				if (pop == null) {
					pop = context;
				}

				Expr.relative[cur](checkSet, pop, contextXML);
			}
		} else {
			checkSet = parts = [];
		}
	}

	if (!checkSet) {
		checkSet = set;
	}

	if (!checkSet) {
		Sizzle.error(cur || selector);
	}

	if (toString.call(checkSet) === "[object Array]") {
		if (!prune) {
			results.push.apply(results, checkSet);
		} else if (context && context.nodeType === 1) {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && (checkSet[i] === true || checkSet[i].nodeType === 1 && contains(context, checkSet[i]))) {
					results.push(set[i]);
				}
			}
		} else {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && checkSet[i].nodeType === 1) {
					results.push(set[i]);
				}
			}
		}
	} else {
		makeArray(checkSet, results);
	}

	if (extra) {
		Sizzle(extra, origContext, results, seed);
		Sizzle.uniqueSort(results);
	}

	return results;
};

Sizzle.uniqueSort = function(results){
	if (sortOrder) {
		hasDuplicate = baseHasDuplicate;
		results.sort(sortOrder);

		if (hasDuplicate) {
			for (var i = 1; i < results.length; i++) {
				if (results[i] === results[i-1]) {
					results.splice(i--, 1);
				}
			}
		}
	}

	return results;
};

Sizzle.matches = function(expr, set){
	return Sizzle(expr, null, null, set);
};

Sizzle.find = function(expr, context, isXML){
	var set, match;

	if (!expr) {
		return [];
	}

	for (var i = 0, l = Expr.order.length; i < l; i++) {
		var type = Expr.order[i], match;
		
		if ((match = Expr.leftMatch[type].exec(expr))) {
			var left = match[1];
			match.splice(1,1);

			if (left.substr(left.length - 1) !== "\\") {
				match[1] = (match[1] || "").replace(/\\/g, "");
				set = Expr.find[type](match, context, isXML);
				if (set != null) {
					expr = expr.replace(Expr.match[type], "");
					break;
				}
			}
		}
	}

	if (!set) {
		set = context.getElementsByTagName("*");
	}

	return {set: set, expr: expr};
};

Sizzle.filter = function(expr, set, inplace, not){
	var old = expr, result = [], curLoop = set, match, anyFound,
		isXMLFilter = set && set[0] && isXML(set[0]);

	while (expr && set.length) {
		for (var type in Expr.filter) {
			if ((match = Expr.leftMatch[type].exec(expr)) != null && match[2]) {
				var filter = Expr.filter[type], found, item, left = match[1];
				anyFound = false;

				match.splice(1,1);

				if (left.substr(left.length - 1) === "\\") {
					continue;
				}

				if (curLoop === result) {
					result = [];
				}

				if (Expr.preFilter[type]) {
					match = Expr.preFilter[type](match, curLoop, inplace, result, not, isXMLFilter);

					if (!match) {
						anyFound = found = true;
					} else if (match === true) {
						continue;
					}
				}

				if (match) {
					for (var i = 0; (item = curLoop[i]) != null; i++) {
						if (item) {
							found = filter(item, match, i, curLoop);
							var pass = not ^ !!found;

							if (inplace && found != null) {
								if (pass) {
									anyFound = true;
								} else {
									curLoop[i] = false;
								}
							} else if (pass) {
								result.push(item);
								anyFound = true;
							}
						}
					}
				}

				if (found !== undefined) {
					if (!inplace) {
						curLoop = result;
					}

					expr = expr.replace(Expr.match[type], "");

					if (!anyFound) {
						return [];
					}

					break;
				}
			}
		}

		// Improper expression
		if (expr === old) {
			if (anyFound == null) {
				Sizzle.error(expr);
			} else {
				break;
			}
		}

		old = expr;
	}

	return curLoop;
};

Sizzle.error = function(msg) {
	throw "Syntax error, unrecognized expression: " + msg;
};

var Expr = Sizzle.selectors = {
	order: ["ID", "NAME", "TAG"],
	match: {
		ID: /#((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		CLASS: /\.((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		NAME: /\[name=['"]*((?:[\w\u00c0-\uFFFF-]|\\.)+)['"]*\]/,
		ATTR: /\[\s*((?:[\w\u00c0-\uFFFF-]|\\.)+)\s*(?:(\S?=)\s*(['"]*)(.*?)\3|)\s*\]/,
		TAG: /^((?:[\w\u00c0-\uFFFF*-]|\\.)+)/,
		CHILD: /:(only|nth|last|first)-child(?:\((even|odd|[\dn+-]*)\))?/,
		POS: /:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^-]|$)/,
		PSEUDO: /:((?:[\w\u00c0-\uFFFF-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/
	},
	leftMatch: {},
	attrMap: {
		"class": "className",
		"for": "htmlFor"
	},
	attrHandle: {
		href: function(elem){
			return elem.getAttribute("href");
		}
	},
	relative: {
		"+": function(checkSet, part){
			var isPartStr = typeof part === "string",
				isTag = isPartStr && !/\W/.test(part),
				isPartStrNotTag = isPartStr && !isTag;

			if (isTag) {
				part = part.toLowerCase();
			}

			for (var i = 0, l = checkSet.length, elem; i < l; i++) {
				if ((elem = checkSet[i])) {
					while ((elem = elem.previousSibling) && elem.nodeType !== 1) {}

					checkSet[i] = isPartStrNotTag || elem && elem.nodeName.toLowerCase() === part ?
						elem || false :
						elem === part;
				}
			}

			if (isPartStrNotTag) {
				Sizzle.filter(part, checkSet, true);
			}
		},
		">": function(checkSet, part){
			var isPartStr = typeof part === "string";

			if (isPartStr && !/\W/.test(part)) {
				part = part.toLowerCase();

				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						var parent = elem.parentNode;
						checkSet[i] = parent.nodeName.toLowerCase() === part ? parent : false;
					}
				}
			} else {
				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						checkSet[i] = isPartStr ?
							elem.parentNode :
							elem.parentNode === part;
					}
				}

				if (isPartStr) {
					Sizzle.filter(part, checkSet, true);
				}
			}
		},
		"": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("parentNode", part, doneName, checkSet, nodeCheck, isXML);
		},
		"~": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("previousSibling", part, doneName, checkSet, nodeCheck, isXML);
		}
	},
	find: {
		ID: function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? [m] : [];
			}
		},
		NAME: function(match, context){
			if (typeof context.getElementsByName !== "undefined") {
				var ret = [], results = context.getElementsByName(match[1]);

				for (var i = 0, l = results.length; i < l; i++) {
					if (results[i].getAttribute("name") === match[1]) {
						ret.push(results[i]);
					}
				}

				return ret.length === 0 ? null : ret;
			}
		},
		TAG: function(match, context){
			return context.getElementsByTagName(match[1]);
		}
	},
	preFilter: {
		CLASS: function(match, curLoop, inplace, result, not, isXML){
			match = " " + match[1].replace(/\\/g, "") + " ";

			if (isXML) {
				return match;
			}

			for (var i = 0, elem; (elem = curLoop[i]) != null; i++) {
				if (elem) {
					if (not ^ (elem.className && (" " + elem.className + " ").replace(/[\t\n]/g, " ").indexOf(match) >= 0)) {
						if (!inplace) {
							result.push(elem);
						}
					} else if (inplace) {
						curLoop[i] = false;
					}
				}
			}

			return false;
		},
		ID: function(match){
			return match[1].replace(/\\/g, "");
		},
		TAG: function(match, curLoop){
			return match[1].toLowerCase();
		},
		CHILD: function(match){
			if (match[1] === "nth") {
				// parse equations like 'even', 'odd', '5', '2n', '3n+2', '4n-1', '-n+6'
				var test = /(-?)(\d*)n((?:\+|-)?\d*)/.exec(
					match[2] === "even" && "2n" || match[2] === "odd" && "2n+1" ||
					!/\D/.test(match[2]) && "0n+" + match[2] || match[2]);

				// calculate the numbers (first)n+(last) including if they are negative
				match[2] = (test[1] + (test[2] || 1)) - 0;
				match[3] = test[3] - 0;
			}

			// TODO: Move to normal caching system
			match[0] = done++;

			return match;
		},
		ATTR: function(match, curLoop, inplace, result, not, isXML){
			var name = match[1].replace(/\\/g, "");
			
			if (!isXML && Expr.attrMap[name]) {
				match[1] = Expr.attrMap[name];
			}

			if (match[2] === "~=") {
				match[4] = " " + match[4] + " ";
			}

			return match;
		},
		PSEUDO: function(match, curLoop, inplace, result, not){
			if (match[1] === "not") {
				// If we're dealing with a complex expression, or a simple one
				if ((chunker.exec(match[3]) || "").length > 1 || /^\w/.test(match[3])) {
					match[3] = Sizzle(match[3], null, null, curLoop);
				} else {
					var ret = Sizzle.filter(match[3], curLoop, inplace, true ^ not);
					if (!inplace) {
						result.push.apply(result, ret);
					}
					return false;
				}
			} else if (Expr.match.POS.test(match[0]) || Expr.match.CHILD.test(match[0])) {
				return true;
			}
			
			return match;
		},
		POS: function(match){
			match.unshift(true);
			return match;
		}
	},
	filters: {
		enabled: function(elem){
			return elem.disabled === false && elem.type !== "hidden";
		},
		disabled: function(elem){
			return elem.disabled === true;
		},
		checked: function(elem){
			return elem.checked === true;
		},
		selected: function(elem){
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			elem.parentNode.selectedIndex;
			return elem.selected === true;
		},
		parent: function(elem){
			return !!elem.firstChild;
		},
		empty: function(elem){
			return !elem.firstChild;
		},
		has: function(elem, i, match){
			return !!Sizzle(match[3], elem).length;
		},
		header: function(elem){
			return /h\d/i.test(elem.nodeName);
		},
		text: function(elem){
			return "text" === elem.type;
		},
		radio: function(elem){
			return "radio" === elem.type;
		},
		checkbox: function(elem){
			return "checkbox" === elem.type;
		},
		file: function(elem){
			return "file" === elem.type;
		},
		password: function(elem){
			return "password" === elem.type;
		},
		submit: function(elem){
			return "submit" === elem.type;
		},
		image: function(elem){
			return "image" === elem.type;
		},
		reset: function(elem){
			return "reset" === elem.type;
		},
		button: function(elem){
			return "button" === elem.type || elem.nodeName.toLowerCase() === "button";
		},
		input: function(elem){
			return /input|select|textarea|button/i.test(elem.nodeName);
		}
	},
	setFilters: {
		first: function(elem, i){
			return i === 0;
		},
		last: function(elem, i, match, array){
			return i === array.length - 1;
		},
		even: function(elem, i){
			return i % 2 === 0;
		},
		odd: function(elem, i){
			return i % 2 === 1;
		},
		lt: function(elem, i, match){
			return i < match[3] - 0;
		},
		gt: function(elem, i, match){
			return i > match[3] - 0;
		},
		nth: function(elem, i, match){
			return match[3] - 0 === i;
		},
		eq: function(elem, i, match){
			return match[3] - 0 === i;
		}
	},
	filter: {
		PSEUDO: function(elem, match, i, array){
			var name = match[1], filter = Expr.filters[name];

			if (filter) {
				return filter(elem, i, match, array);
			} else if (name === "contains") {
				return (elem.textContent || elem.innerText || getText([elem]) || "").indexOf(match[3]) >= 0;
			} else if (name === "not") {
				var not = match[3];

				for (var i = 0, l = not.length; i < l; i++) {
					if (not[i] === elem) {
						return false;
					}
				}

				return true;
			} else {
				Sizzle.error("Syntax error, unrecognized expression: " + name);
			}
		},
		CHILD: function(elem, match){
			var type = match[1], node = elem;
			switch (type) {
				case 'only':
				case 'first':
					while ((node = node.previousSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					if (type === "first") {
						return true;
					}
					node = elem;
				case 'last':
					while ((node = node.nextSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					return true;
				case 'nth':
					var first = match[2], last = match[3];

					if (first === 1 && last === 0) {
						return true;
					}
					
					var doneName = match[0],
						parent = elem.parentNode;
	
					if (parent && (parent.sizcache !== doneName || !elem.nodeIndex)) {
						var count = 0;
						for (node = parent.firstChild; node; node = node.nextSibling) {
							if (node.nodeType === 1) {
								node.nodeIndex = ++count;
							}
						}
						parent.sizcache = doneName;
					}
					
					var diff = elem.nodeIndex - last;
					if (first === 0) {
						return diff === 0;
					} else {
						return (diff % first === 0 && diff / first >= 0);
					}
			}
		},
		ID: function(elem, match){
			return elem.nodeType === 1 && elem.getAttribute("id") === match;
		},
		TAG: function(elem, match){
			return (match === "*" && elem.nodeType === 1) || elem.nodeName.toLowerCase() === match;
		},
		CLASS: function(elem, match){
			return (" " + (elem.className || elem.getAttribute("class")) + " ")
				.indexOf(match) > -1;
		},
		ATTR: function(elem, match){
			var name = match[1],
				result = Expr.attrHandle[name] ?
					Expr.attrHandle[name](elem) :
					elem[name] != null ?
						elem[name] :
						elem.getAttribute(name),
				value = result + "",
				type = match[2],
				check = match[4];

			return result == null ?
				type === "!=" :
				type === "=" ?
				value === check :
				type === "*=" ?
				value.indexOf(check) >= 0 :
				type === "~=" ?
				(" " + value + " ").indexOf(check) >= 0 :
				!check ?
				value && result !== false :
				type === "!=" ?
				value !== check :
				type === "^=" ?
				value.indexOf(check) === 0 :
				type === "$=" ?
				value.substr(value.length - check.length) === check :
				type === "|=" ?
				value === check || value.substr(0, check.length + 1) === check + "-" :
				false;
		},
		POS: function(elem, match, i, array){
			var name = match[2], filter = Expr.setFilters[name];

			if (filter) {
				return filter(elem, i, match, array);
			}
		}
	}
};

var origPOS = Expr.match.POS;

for (var type in Expr.match) {
	Expr.match[type] = new RegExp(Expr.match[type].source + /(?![^\[]*\])(?![^\(]*\))/.source);
	Expr.leftMatch[type] = new RegExp(/(^(?:.|\r|\n)*?)/.source + Expr.match[type].source.replace(/\\(\d+)/g, function(all, num){
		return "\\" + (num - 0 + 1);
	}));
}

var makeArray = function(array, results) {
	array = Array.prototype.slice.call(array, 0);

	if (results) {
		results.push.apply(results, array);
		return results;
	}
	
	return array;
};

// Perform a simple check to determine if the browser is capable of
// converting a NodeList to an array using builtin methods.
// Also verifies that the returned array holds DOM nodes
// (which is not the case in the Blackberry browser)
try {
	Array.prototype.slice.call(document.documentElement.childNodes, 0)[0].nodeType;

// Provide a fallback method if it does not work
} catch(e){
	makeArray = function(array, results) {
		var ret = results || [];

		if (toString.call(array) === "[object Array]") {
			Array.prototype.push.apply(ret, array);
		} else {
			if (typeof array.length === "number") {
				for (var i = 0, l = array.length; i < l; i++) {
					ret.push(array[i]);
				}
			} else {
				for (var i = 0; array[i]; i++) {
					ret.push(array[i]);
				}
			}
		}

		return ret;
	};
}

var sortOrder;

if (document.documentElement.compareDocumentPosition) {
	sortOrder = function(a, b) {
		if (!a.compareDocumentPosition || !b.compareDocumentPosition) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.compareDocumentPosition ? -1 : 1;
		}

		var ret = a.compareDocumentPosition(b) & 4 ? -1 : a === b ? 0 : 1;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if ("sourceIndex" in document.documentElement) {
	sortOrder = function(a, b) {
		if (!a.sourceIndex || !b.sourceIndex) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.sourceIndex ? -1 : 1;
		}

		var ret = a.sourceIndex - b.sourceIndex;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if (document.createRange) {
	sortOrder = function(a, b) {
		if (!a.ownerDocument || !b.ownerDocument) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.ownerDocument ? -1 : 1;
		}

		var aRange = a.ownerDocument.createRange(), bRange = b.ownerDocument.createRange();
		aRange.setStart(a, 0);
		aRange.setEnd(a, 0);
		bRange.setStart(b, 0);
		bRange.setEnd(b, 0);
		var ret = aRange.compareBoundaryPoints(Range.START_TO_END, bRange);
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
}

// Utility function for retreiving the text value of an array of DOM nodes
function getText(elems) {
	var ret = "", elem;

	for (var i = 0; elems[i]; i++) {
		elem = elems[i];

		// Get the text from text nodes and CDATA nodes
		if (elem.nodeType === 3 || elem.nodeType === 4) {
			ret += elem.nodeValue;

		// Traverse everything else, except comment nodes
		} else if (elem.nodeType !== 8) {
			ret += getText(elem.childNodes);
		}
	}

	return ret;
}

// Check to see if the browser returns elements by name when
// querying by getElementById (and provide a workaround)
(function(){
	// We're going to inject a fake input element with a specified name
	var form = document.createElement("div"),
		id = "script" + (new Date).getTime();
	form.innerHTML = "";

	// Inject it into the root element, check its status, and remove it quickly
	var root = document.documentElement;
	root.insertBefore(form, root.firstChild);

	// The workaround has to do additional checks after a getElementById
	// Which slows things down for other browsers (hence the branching)
	if (document.getElementById(id)) {
		Expr.find.ID = function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? m.id === match[1] || typeof m.getAttributeNode !== "undefined" && m.getAttributeNode("id").nodeValue === match[1] ? [m] : undefined : [];
			}
		};

		Expr.filter.ID = function(elem, match){
			var node = typeof elem.getAttributeNode !== "undefined" && elem.getAttributeNode("id");
			return elem.nodeType === 1 && node && node.nodeValue === match;
		};
	}

	root.removeChild(form);
	root = form = null; // release memory in IE
})();

(function(){
	// Check to see if the browser returns only elements
	// when doing getElementsByTagName("*")

	// Create a fake element
	var div = document.createElement("div");
	div.appendChild(document.createComment(""));

	// Make sure no comments are found
	if (div.getElementsByTagName("*").length > 0) {
		Expr.find.TAG = function(match, context){
			var results = context.getElementsByTagName(match[1]);

			// Filter out possible comments
			if (match[1] === "*") {
				var tmp = [];

				for (var i = 0; results[i]; i++) {
					if (results[i].nodeType === 1) {
						tmp.push(results[i]);
					}
				}

				results = tmp;
			}

			return results;
		};
	}

	// Check to see if an attribute returns normalized href attributes
	div.innerHTML = "";
	if (div.firstChild && typeof div.firstChild.getAttribute !== "undefined" &&
			div.firstChild.getAttribute("href") !== "#") {
		Expr.attrHandle.href = function(elem){
			return elem.getAttribute("href", 2);
		};
	}

	div = null; // release memory in IE
})();

if (document.querySelectorAll) {
	(function(){
		var oldSizzle = Sizzle, div = document.createElement("div");
		div.innerHTML = "<p class='TEST'></p>";

		// Safari can't handle uppercase or unicode characters when
		// in quirks mode.
		if (div.querySelectorAll && div.querySelectorAll(".TEST").length === 0) {
			return;
		}
	
		Sizzle = function(query, context, extra, seed){
			context = context || document;

			// Only use querySelectorAll on non-XML documents
			// (ID selectors don't work in non-HTML documents)
			if (!seed && context.nodeType === 9 && !isXML(context)) {
				try {
					return makeArray(context.querySelectorAll(query), extra);
				} catch(e){}
			}
		
			return oldSizzle(query, context, extra, seed);
		};

		for (var prop in oldSizzle) {
			Sizzle[prop] = oldSizzle[prop];
		}

		div = null; // release memory in IE
	})();
}

(function(){
	var div = document.createElement("div");

	div.innerHTML = "<div class='test e'></div><div class='test'></div>";

	// Opera can't find a second classname (in 9.6)
	// Also, make sure that getElementsByClassName actually exists
	if (!div.getElementsByClassName || div.getElementsByClassName("e").length === 0) {
		return;
	}

	// Safari caches class attributes, doesn't catch changes (in 3.2)
	div.lastChild.className = "e";

	if (div.getElementsByClassName("e").length === 1) {
		return;
	}
	
	Expr.order.splice(1, 0, "CLASS");
	Expr.find.CLASS = function(match, context, isXML) {
		if (typeof context.getElementsByClassName !== "undefined" && !isXML) {
			return context.getElementsByClassName(match[1]);
		}
	};

	div = null; // release memory in IE
})();

function dirNodeCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1 && !isXML){
					elem.sizcache = doneName;
					elem.sizset = i;
				}

				if (elem.nodeName.toLowerCase() === cur) {
					match = elem;
					break;
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

function dirCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1) {
					if (!isXML) {
						elem.sizcache = doneName;
						elem.sizset = i;
					}
					if (typeof cur !== "string") {
						if (elem === cur) {
							match = true;
							break;
						}

					} else if (Sizzle.filter(cur, [elem]).length > 0) {
						match = elem;
						break;
					}
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

var contains = document.compareDocumentPosition ? function(a, b){
	return !!(a.compareDocumentPosition(b) & 16);
} : function(a, b){
	return a !== b && (a.contains ? a.contains(b) : true);
};

var isXML = function(elem){
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = (elem ? elem.ownerDocument || elem : 0).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

var posProcess = function(selector, context){
	var tmpSet = [], later = "", match,
		root = context.nodeType ? [context] : context;

	// Position selectors must be done after the filter
	// And so must :not(positional) so we move all PSEUDOs to the end
	while ((match = Expr.match.PSEUDO.exec(selector))) {
		later += match[0];
		selector = selector.replace(Expr.match.PSEUDO, "");
	}

	selector = Expr.relative[selector] ? selector + "*" : selector;

	for (var i = 0, l = root.length; i < l; i++) {
		Sizzle(selector, root[i], tmpSet);
	}

	return Sizzle.filter(later, tmpSet);
};

// EXPOSE
jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;
jQuery.expr[":"] = jQuery.expr.filters;
jQuery.unique = Sizzle.uniqueSort;
jQuery.text = getText;
jQuery.isXMLDoc = isXML;
jQuery.contains = contains;

return;

window.Sizzle = Sizzle;

})();
var runtil = /Until$/,
	rparentsprev = /^(?:parents|prevUntil|prevAll)/,
	// Note: This RegExp should be improved, or likely pulled from Sizzle
	rmultiselector = /,/,
	slice = Array.prototype.slice;

// Implement the identical functionality for filter and not
var winnow = function(elements, qualifier, keep) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) === keep;
		});

	} else if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem, i) {
			return (elem === qualifier) === keep;
		});

	} else if (typeof qualifier === "string") {
		var filtered = jQuery.grep(elements, function(elem) {
			return elem.nodeType === 1;
		});

		if (isSimple.test(qualifier)) {
			return jQuery.filter(qualifier, filtered, !keep);
		} else {
			qualifier = jQuery.filter(qualifier, filtered);
		}
	}

	return jQuery.grep(elements, function(elem, i) {
		return (jQuery.inArray(elem, qualifier) >= 0) === keep;
	});
};

jQuery.fn.extend({
	find: function(selector) {
		var ret = this.pushStack("", "find", selector), length = 0;

		for (var i = 0, l = this.length; i < l; i++) {
			length = ret.length;
			jQuery.find(selector, this[i], ret);

			if (i > 0) {
				// Make sure that the results are unique
				for (var n = length; n < ret.length; n++) {
					for (var r = 0; r < length; r++) {
						if (ret[r] === ret[n]) {
							ret.splice(n--, 1);
							break;
						}
					}
				}
			}
		}

		return ret;
	},

	has: function(target) {
		var targets = jQuery(target);
		return this.filter(function() {
			for (var i = 0, l = targets.length; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	not: function(selector) {
		return this.pushStack(winnow(this, selector, false), "not", selector);
	},

	filter: function(selector) {
		return this.pushStack(winnow(this, selector, true), "filter", selector);
	},
	
	is: function(selector) {
		return !!selector && jQuery.filter(selector, this).length > 0;
	},

	closest: function(selectors, context) {
		if (jQuery.isArray(selectors)) {
			var ret = [], cur = this[0], match, matches = {}, selector;

			if (cur && selectors.length) {
				for (var i = 0, l = selectors.length; i < l; i++) {
					selector = selectors[i];

					if (!matches[selector]) {
						matches[selector] = jQuery.expr.match.POS.test(selector) ?
							jQuery(selector, context || this.context) :
							selector;
					}
				}

				while (cur && cur.ownerDocument && cur !== context) {
					for (selector in matches) {
						match = matches[selector];

						if (match.jquery ? match.index(cur) > -1 : jQuery(cur).is(match)) {
							ret.push({ selector: selector, elem: cur });
							delete matches[selector];
						}
					}
					cur = cur.parentNode;
				}
			}

			return ret;
		}

		var pos = jQuery.expr.match.POS.test(selectors) ?
			jQuery(selectors, context || this.context) : null;

		return this.map(function(i, cur) {
			while (cur && cur.ownerDocument && cur !== context) {
				if (pos ? pos.index(cur) > -1 : jQuery(cur).is(selectors)) {
					return cur;
				}
				cur = cur.parentNode;
			}
			return null;
		});
	},
	
	// Determine the position of an element within
	// the matched set of elements
	index: function(elem) {
		if (!elem || typeof elem === "string") {
			return jQuery.inArray(this[0],
				// If it receives a string, the selector is used
				// If it receives nothing, the siblings are used
				elem ? jQuery(elem) : this.parent().children());
		}
		// Locate the position of the desired element
		return jQuery.inArray(
			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem, this);
	},

	add: function(selector, context) {
		var set = typeof selector === "string" ?
				jQuery(selector, context || this.context) :
				jQuery.makeArray(selector),
			all = jQuery.merge(this.get(), set);

		return this.pushStack(isDisconnected(set[0]) || isDisconnected(all[0]) ?
			all :
			jQuery.unique(all));
	},

	andSelf: function() {
		return this.add(this.prevObject);
	}
});

// A painfully simple check to see if an element is disconnected
// from a document (should be improved, where feasible).
function isDisconnected(node) {
	return !node || !node.parentNode || node.parentNode.nodeType === 11;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return jQuery.dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return jQuery.dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return jQuery.nth(elem, 2, "nextSibling");
	},
	prev: function(elem) {
		return jQuery.nth(elem, 2, "previousSibling");
	},
	nextAll: function(elem) {
		return jQuery.dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return jQuery.dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return jQuery.dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return jQuery.dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return jQuery.sibling(elem.parentNode.firstChild, elem);
	},
	children: function(elem) {
		return jQuery.sibling(elem.firstChild);
	},
	contents: function(elem) {
		return jQuery.nodeName(elem, "iframe") ?
			elem.contentDocument || elem.contentWindow.document :
			jQuery.makeArray(elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var ret = jQuery.map(this, fn, until);
		
		if (!runtil.test(name)) {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			ret = jQuery.filter(selector, ret);
		}

		ret = this.length > 1 ? jQuery.unique(ret) : ret;

		if ((this.length > 1 || rmultiselector.test(selector)) && rparentsprev.test(name)) {
			ret = ret.reverse();
		}

		return this.pushStack(ret, name, slice.call(arguments).join(","));
	};
});

jQuery.extend({
	filter: function(expr, elems, not) {
		if (not) {
			expr = ":not(" + expr + ")";
		}

		return jQuery.find.matches(expr, elems);
	},
	
	dir: function(elem, dir, until) {
		var matched = [], cur = elem[dir];
		while (cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery(cur).is(until))) {
			if (cur.nodeType === 1) {
				matched.push(cur);
			}
			cur = cur[dir];
		}
		return matched;
	},

	nth: function(cur, result, dir, elem) {
		result = result || 1;
		var num = 0;

		for (; cur; cur = cur[dir]) {
			if (cur.nodeType === 1 && ++num === result) {
				break;
			}
		}

		return cur;
	},

	sibling: function(n, elem) {
		var r = [];

		for (; n; n = n.nextSibling) {
			if (n.nodeType === 1 && n !== elem) {
				r.push(n);
			}
		}

		return r;
	}
});
var rinlinejQuery = / jQuery\d+="(?:\d+|null)"/g,
	rleadingWhitespace = /^\s+/,
	rxhtmlTag = /(<([\w:]+)[^>]*?)\/>/g,
	rselfClosing = /^(?:area|br|col|embed|hr|img|input|link|meta|param)$/i,
	rtagName = /<([\w:]+)/,
	rtbody = /<tbody/i,
	rhtml = /<|&#?\w+;/,
	rnocache = /<script|<object|<embed|<option|<style/i,
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i, // checked="checked" or checked (html5)
	fcloseTag = function(all, front, tag) {
		return rselfClosing.test(tag) ?
			all :
			front + "></" + tag + ">";
	},
	wrapMap = {
		option: [1, "<select multiple='multiple'>", "</select>"],
		legend: [1, "<fieldset>", "</fieldset>"],
		thead: [1, "<table>", "</table>"],
		tr: [2, "<table><tbody>", "</tbody></table>"],
		td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],
		col: [2, "<table><tbody></tbody><colgroup>", "</colgroup></table>"],
		area: [1, "<map>", "</map>"],
		_default: [0, "", ""]
	};

wrapMap.optgroup = wrapMap.option;
wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

// IE can't serialize <link> and <script> tags normally
if (!jQuery.support.htmlSerialize) {
	wrapMap._default = [1, "div<div>", "</div>"];
}

jQuery.fn.extend({
	text: function(text) {
		if (jQuery.isFunction(text)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.text(text.call(this, i, self.text()));
			});
		}

		if (typeof text !== "object" && text !== undefined) {
			return this.empty().append((this[0] && this[0].ownerDocument || document).createTextNode(text));
		}

		return jQuery.text(this);
	},

	wrapAll: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapAll(html.call(this, i));
			});
		}

		if (this[0]) {
			// The elements to wrap the target around
			var wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstChild && elem.firstChild.nodeType === 1) {
					elem = elem.firstChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this), contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		return this.each(function() {
			jQuery(this).wrapAll(html);
		});
	},

	unwrap: function() {
		return this.parent().each(function() {
			if (!jQuery.nodeName(this, "body")) {
				jQuery(this).replaceWith(this.childNodes);
			}
		}).end();
	},

	append: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.insertBefore(elem, this.firstChild);
			}
		});
	},

	before: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this);
			});
		} else if (arguments.length) {
			var set = jQuery(arguments[0]);
			set.push.apply(set, this.toArray());
			return this.pushStack(set, "before", arguments);
		}
	},

	after: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			});
		} else if (arguments.length) {
			var set = this.pushStack(this, "after", arguments);
			set.push.apply(set, jQuery(arguments[0]).toArray());
			return set;
		}
	},
	
	// keepData is for internal use only--do not document
	remove: function(selector, keepData) {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			if (!selector || jQuery.filter(selector, [elem]).length) {
				if (!keepData && elem.nodeType === 1) {
					jQuery.cleanData(elem.getElementsByTagName("*"));
					jQuery.cleanData([elem]);
				}

				if (elem.parentNode) {
					 elem.parentNode.removeChild(elem);
				}
			}
		}
		
		return this;
	},

	empty: function() {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			// Remove element nodes and prevent memory leaks
			if (elem.nodeType === 1) {
				jQuery.cleanData(elem.getElementsByTagName("*"));
			}

			// Remove any remaining nodes
			while (elem.firstChild) {
				elem.removeChild(elem.firstChild);
			}
		}
		
		return this;
	},

	clone: function(events) {
		// Do the clone
		var ret = this.map(function() {
			if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
				// IE copies events bound via attachEvent when
				// using cloneNode. Calling detachEvent on the
				// clone will also remove the events from the orignal
				// In order to get around this, we use innerHTML.
				// Unfortunately, this means some modifications to
				// attributes in IE that are actually only stored
				// as properties will not be copied (such as the
				// the name attribute on an input).
				var html = this.outerHTML, ownerDocument = this.ownerDocument;
				if (!html) {
					var div = ownerDocument.createElement("div");
					div.appendChild(this.cloneNode(true));
					html = div.innerHTML;
				}

				return jQuery.clean([html.replace(rinlinejQuery, "")
					// Handle the case in IE 8 where action=/test/> self-closes a tag
					.replace(/=([^="'>\s]+\/)>/g, '="$1">')
					.replace(rleadingWhitespace, "")], ownerDocument)[0];
			} else {
				return this.cloneNode(true);
			}
		});

		// Copy the events from the original to the clone
		if (events === true) {
			cloneCopyEvent(this, ret);
			cloneCopyEvent(this.find("*"), ret.find("*"));
		}

		// Return the cloned set
		return ret;
	},

	html: function(value) {
		if (value === undefined) {
			return this[0] && this[0].nodeType === 1 ?
				this[0].innerHTML.replace(rinlinejQuery, "") :
				null;

		// See if we can take a shortcut and just use innerHTML
		} else if (typeof value === "string" && !rnocache.test(value) &&
			(jQuery.support.leadingWhitespace || !rleadingWhitespace.test(value)) &&
			!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

			value = value.replace(rxhtmlTag, fcloseTag);

			try {
				for (var i = 0, l = this.length; i < l; i++) {
					// Remove element nodes and prevent memory leaks
					if (this[i].nodeType === 1) {
						jQuery.cleanData(this[i].getElementsByTagName("*"));
						this[i].innerHTML = value;
					}
				}

			// If using innerHTML throws an exception, use the fallback method
			} catch(e) {
				this.empty().append(value);
			}

		} else if (jQuery.isFunction(value)) {
			this.each(function(i){
				var self = jQuery(this), old = self.html();
				self.empty().append(function(){
					return value.call(this, i, old);
				});
			});

		} else {
			this.empty().append(value);
		}

		return this;
	},

	replaceWith: function(value) {
		if (this[0] && this[0].parentNode) {
			// Make sure that the elements are removed from the DOM before they are inserted
			// this can help fix replacing a parent with child elements
			if (jQuery.isFunction(value)) {
				return this.each(function(i) {
					var self = jQuery(this), old = self.html();
					self.replaceWith(value.call(this, i, old));
				});
			}

			if (typeof value !== "string") {
				value = jQuery(value).detach();
			}

			return this.each(function() {
				var next = this.nextSibling, parent = this.parentNode;

				jQuery(this).remove();

				if (next) {
					jQuery(next).before(value);
				} else {
					jQuery(parent).append(value);
				}
			});
		} else {
			return this.pushStack(jQuery(jQuery.isFunction(value) ? value() : value), "replaceWith", value);
		}
	},

	detach: function(selector) {
		return this.remove(selector, true);
	},

	domManip: function(args, table, callback) {
		var results, first, value = args[0], scripts = [], fragment, parent;

		// We can't cloneNode fragments that contain checked, in WebKit
		if (!jQuery.support.checkClone && arguments.length === 3 && typeof value === "string" && rchecked.test(value)) {
			return this.each(function() {
				jQuery(this).domManip(args, table, callback, true);
			});
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				args[0] = value.call(this, i, table ? self.html() : undefined);
				self.domManip(args, table, callback);
			});
		}

		if (this[0]) {
			parent = value && value.parentNode;

			// If we're in a fragment, just use that instead of building a new one
			if (jQuery.support.parentNode && parent && parent.nodeType === 11 && parent.childNodes.length === this.length) {
				results = { fragment: parent };

			} else {
				results = buildFragment(args, this, scripts);
			}
			
			fragment = results.fragment;
			
			if (fragment.childNodes.length === 1) {
				first = fragment = fragment.firstChild;
			} else {
				first = fragment.firstChild;
			}

			if (first) {
				table = table && jQuery.nodeName(first, "tr");

				for (var i = 0, l = this.length; i < l; i++) {
					callback.call(
						table ?
							root(this[i], first) :
							this[i],
						i > 0 || results.cacheable || this.length > 1 ?
							fragment.cloneNode(true) :
							fragment
);
				}
			}

			if (scripts.length) {
				jQuery.each(scripts, evalScript);
			}
		}

		return this;

		function root(elem, cur) {
			return jQuery.nodeName(elem, "table") ?
				(elem.getElementsByTagName("tbody")[0] ||
				elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
				elem;
		}
	}
});

function cloneCopyEvent(orig, ret) {
	var i = 0;

	ret.each(function() {
		if (this.nodeName !== (orig[i] && orig[i].nodeName)) {
			return;
		}

		var oldData = jQuery.data(orig[i++]), curData = jQuery.data(this, oldData), events = oldData && oldData.events;

		if (events) {
			delete curData.handle;
			curData.events = {};

			for (var type in events) {
				for (var handler in events[type]) {
					jQuery.event.add(this, type, events[type][handler], events[type][handler].data);
				}
			}
		}
	});
}

function buildFragment(args, nodes, scripts) {
	var fragment, cacheable, cacheresults,
		doc = (nodes && nodes[0] ? nodes[0].ownerDocument || nodes[0] : document);

	// Only cache "small" (1/2 KB) strings that are associated with the main document
	// Cloning options loses the selected state, so don't cache them
	// IE 6 doesn't like it when you put <object> or <embed> elements in a fragment
	// Also, WebKit does not clone 'checked' attributes on cloneNode, so don't cache
	if (args.length === 1 && typeof args[0] === "string" && args[0].length < 512 && doc === document &&
		!rnocache.test(args[0]) && (jQuery.support.checkClone || !rchecked.test(args[0]))) {

		cacheable = true;
		cacheresults = jQuery.fragments[args[0]];
		if (cacheresults) {
			if (cacheresults !== 1) {
				fragment = cacheresults;
			}
		}
	}

	if (!fragment) {
		fragment = doc.createDocumentFragment();
		jQuery.clean(args, doc, fragment, scripts);
	}

	if (cacheable) {
		jQuery.fragments[args[0]] = cacheresults ? fragment : 1;
	}

	return { fragment: fragment, cacheable: cacheable };
}

jQuery.fragments = {};

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var ret = [], insert = jQuery(selector),
			parent = this.length === 1 && this[0].parentNode;
		
		if (parent && parent.nodeType === 11 && parent.childNodes.length === 1 && insert.length === 1) {
			insert[original](this[0]);
			return this;
			
		} else {
			for (var i = 0, l = insert.length; i < l; i++) {
				var elems = (i > 0 ? this.clone(true) : this).get();
				jQuery.fn[original].apply(jQuery(insert[i]), elems);
				ret = ret.concat(elems);
			}
		
			return this.pushStack(ret, name, insert.selector);
		}
	};
});

jQuery.extend({
	clean: function(elems, context, fragment, scripts) {
		context = context || document;

		// !context.createElement fails in IE with an error but returns typeof 'object'
		if (typeof context.createElement === "undefined") {
			context = context.ownerDocument || context[0] && context[0].ownerDocument || document;
		}

		var ret = [];

		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			if (typeof elem === "number") {
				elem += "";
			}

			if (!elem) {
				continue;
			}

			// Convert html string into DOM nodes
			if (typeof elem === "string" && !rhtml.test(elem)) {
				elem = context.createTextNode(elem);

			} else if (typeof elem === "string") {
				// Fix "XHTML"-style tags in all browsers
				elem = elem.replace(rxhtmlTag, fcloseTag);

				// Trim whitespace, otherwise indexOf won't work as expected
				var tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase(),
					wrap = wrapMap[tag] || wrapMap._default,
					depth = wrap[0],
					div = context.createElement("div");

				// Go to html and back, then peel off extra wrappers
				div.innerHTML = wrap[1] + elem + wrap[2];

				// Move to the right depth
				while (depth--) {
					div = div.lastChild;
				}

				// Remove IE's autoinserted <tbody> from table fragments
				if (!jQuery.support.tbody) {

					// String was a <table>, *may* have spurious <tbody>
					var hasBody = rtbody.test(elem),
						tbody = tag === "table" && !hasBody ?
							div.firstChild && div.firstChild.childNodes :

							// String was a bare <thead> or <tfoot>
							wrap[1] === "<table>" && !hasBody ?
								div.childNodes :
								[];

					for (var j = tbody.length - 1; j >= 0 ; --j) {
						if (jQuery.nodeName(tbody[j], "tbody") && !tbody[j].childNodes.length) {
							tbody[j].parentNode.removeChild(tbody[j]);
						}
					}

				}

				// IE completely kills leading whitespace when innerHTML is used
				if (!jQuery.support.leadingWhitespace && rleadingWhitespace.test(elem)) {
					div.insertBefore(context.createTextNode(rleadingWhitespace.exec(elem)[0]), div.firstChild);
				}

				elem = div.childNodes;
			}

			if (elem.nodeType) {
				ret.push(elem);
			} else {
				ret = jQuery.merge(ret, elem);
			}
		}

		if (fragment) {
			for (var i = 0; ret[i]; i++) {
				if (scripts && jQuery.nodeName(ret[i], "script") && (!ret[i].type || ret[i].type.toLowerCase() === "text/javascript")) {
					scripts.push(ret[i].parentNode ? ret[i].parentNode.removeChild(ret[i]) : ret[i]);
				
				} else {
					if (ret[i].nodeType === 1) {
						ret.splice.apply(ret, [i + 1, 0].concat(jQuery.makeArray(ret[i].getElementsByTagName("script"))));
					}
					fragment.appendChild(ret[i]);
				}
			}
		}

		return ret;
	},
	
	cleanData: function(elems) {
		var data, id, cache = jQuery.cache,
			special = jQuery.event.special,
			deleteExpando = jQuery.support.deleteExpando;
		
		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			id = elem[jQuery.expando];
			
			if (id) {
				data = cache[id];
				
				if (data.events) {
					for (var type in data.events) {
						if (special[type]) {
							jQuery.event.remove(elem, type);

						} else {
							removeEvent(elem, type, data.handle);
						}
					}
				}
				
				if (deleteExpando) {
					delete elem[jQuery.expando];

				} else if (elem.removeAttribute) {
					elem.removeAttribute(jQuery.expando);
				}
				
				delete cache[id];
			}
		}
	}
});
// exclude the following css properties to add px
var rexclude = /z-?index|font-?weight|opacity|zoom|line-?height/i,
	ralpha = /alpha\([^)]*\)/,
	ropacity = /opacity=([^)]*)/,
	rfloat = /float/i,
	rdashAlpha = /-([a-z])/ig,
	rupper = /([A-Z])/g,
	rnumpx = /^-?\d+(?:px)?$/i,
	rnum = /^-?\d/,

	cssShow = { position: "absolute", visibility: "hidden", display:"block" },
	cssWidth = ["Left", "Right"],
	cssHeight = ["Top", "Bottom"],

	// cache check for defaultView.getComputedStyle
	getComputedStyle = document.defaultView && document.defaultView.getComputedStyle,
	// normalize float css property
	styleFloat = jQuery.support.cssFloat ? "cssFloat" : "styleFloat",
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn.css = function(name, value) {
	return access(this, name, value, true, function(elem, name, value) {
		if (value === undefined) {
			return jQuery.curCSS(elem, name);
		}
		
		if (typeof value === "number" && !rexclude.test(name)) {
			value += "px";
		}

		jQuery.style(elem, name, value);
	});
};

jQuery.extend({
	style: function(elem, name, value) {
		// don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		// ignore negative width and height values #1599
		if ((name === "width" || name === "height") && parseFloat(value) < 0) {
			value = undefined;
		}

		var style = elem.style || elem, set = value !== undefined;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity") {
			if (set) {
				// IE has trouble with opacity if it does not have layout
				// Force it by setting the zoom level
				style.zoom = 1;

				// Set the alpha filter to set the opacity
				var opacity = parseInt(value, 10) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")";
				var filter = style.filter || jQuery.curCSS(elem, "filter") || "";
				style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity;
			}

			return style.filter && style.filter.indexOf("opacity=") >= 0 ?
				(parseFloat(ropacity.exec(style.filter)[1]) / 100) + "":
				"";
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		name = name.replace(rdashAlpha, fcamelCase);

		if (set) {
			style[name] = value;
		}

		return style[name];
	},

	css: function(elem, name, force, extra) {
		if (name === "width" || name === "height") {
			var val, props = cssShow, which = name === "width" ? cssWidth : cssHeight;

			function getWH() {
				val = name === "width" ? elem.offsetWidth : elem.offsetHeight;

				if (extra === "border") {
					return;
				}

				jQuery.each(which, function() {
					if (!extra) {
						val -= parseFloat(jQuery.curCSS(elem, "padding" + this, true)) || 0;
					}

					if (extra === "margin") {
						val += parseFloat(jQuery.curCSS(elem, "margin" + this, true)) || 0;
					} else {
						val -= parseFloat(jQuery.curCSS(elem, "border" + this + "Width", true)) || 0;
					}
				});
			}

			if (elem.offsetWidth !== 0) {
				getWH();
			} else {
				jQuery.swap(elem, props, getWH);
			}

			return Math.max(0, Math.round(val));
		}

		return jQuery.curCSS(elem, name, force);
	},

	curCSS: function(elem, name, force) {
		var ret, style = elem.style, filter;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity" && elem.currentStyle) {
			ret = ropacity.test(elem.currentStyle.filter || "") ?
				(parseFloat(RegExp.$1) / 100) + "" :
				"";

			return ret === "" ?
				"1" :
				ret;
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		if (!force && style && style[name]) {
			ret = style[name];

		} else if (getComputedStyle) {

			// Only "float" is needed here
			if (rfloat.test(name)) {
				name = "float";
			}

			name = name.replace(rupper, "-$1").toLowerCase();

			var defaultView = elem.ownerDocument.defaultView;

			if (!defaultView) {
				return null;
			}

			var computedStyle = defaultView.getComputedStyle(elem, null);

			if (computedStyle) {
				ret = computedStyle.getPropertyValue(name);
			}

			// We should always get a number back from opacity
			if (name === "opacity" && ret === "") {
				ret = "1";
			}

		} else if (elem.currentStyle) {
			var camelCase = name.replace(rdashAlpha, fcamelCase);

			ret = elem.currentStyle[name] || elem.currentStyle[camelCase];

			// From the awesome hack by Dean Edwards
			// http://erik.eae.net/archives/2007/07/27/18.54.15/#comment-102291

			// If we're not dealing with a regular pixel number
			// but a number that has a weird ending, we need to convert it to pixels
			if (!rnumpx.test(ret) && rnum.test(ret)) {
				// Remember the original values
				var left = style.left, rsLeft = elem.runtimeStyle.left;

				// Put in the new values to get a computed value out
				elem.runtimeStyle.left = elem.currentStyle.left;
				style.left = camelCase === "fontSize" ? "1em" : (ret || 0);
				ret = style.pixelLeft + "px";

				// Revert the changed values
				style.left = left;
				elem.runtimeStyle.left = rsLeft;
			}
		}

		return ret;
	},

	// A method for quickly swapping in/out CSS properties to get correct calculations
	swap: function(elem, options, callback) {
		var old = {};

		// Remember the old values, and insert the new ones
		for (var name in options) {
			old[name] = elem.style[name];
			elem.style[name] = options[name];
		}

		callback.call(elem);

		// Revert the old values
		for (var name in options) {
			elem.style[name] = old[name];
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.hidden = function(elem) {
		var width = elem.offsetWidth, height = elem.offsetHeight,
			skip = elem.nodeName.toLowerCase() === "tr";

		return width === 0 && height === 0 && !skip ?
			true :
			width > 0 && height > 0 && !skip ?
				false :
				jQuery.curCSS(elem, "display") === "none";
	};

	jQuery.expr.filters.visible = function(elem) {
		return !jQuery.expr.filters.hidden(elem);
	};
}
var jsc = now(),
	rscript = /<script(.|\s)*?\/script>/gi,
	rselectTextarea = /select|textarea/i,
	rinput = /color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week/i,
	jsre = /=\?(&|$)/,
	rquery = /\?/,
	rts = /(\?|&)_=.*?(&|$)/,
	rurl = /^(\w+:)?\/\/([^\/?#]+)/,
	r20 = /%20/g,

	// Keep a copy of the old load method
	_load = jQuery.fn.load;

jQuery.fn.extend({
	load: function(url, params, callback) {
		if (typeof url !== "string") {
			return _load.call(this, url);

		// Don't do a request if no elements are being requested
		} else if (!this.length) {
			return this;
		}

		var off = url.indexOf(" ");
		if (off >= 0) {
			var selector = url.slice(off, url.length);
			url = url.slice(0, off);
		}

		// Default to a GET request
		var type = "GET";

		// If the second parameter was provided
		if (params) {
			// If it's a function
			if (jQuery.isFunction(params)) {
				// We assume that it's the callback
				callback = params;
				params = null;

			// Otherwise, build a param string
			} else if (typeof params === "object") {
				params = jQuery.param(params, jQuery.ajaxSettings.traditional);
				type = "POST";
			}
		}

		var self = this;

		// Request the remote document
		jQuery.ajax({
			url: url,
			type: type,
			dataType: "html",
			data: params,
			complete: function(res, status) {
				// If successful, inject the HTML into all the matched elements
				if (status === "success" || status === "notmodified") {
					// See if a selector was specified
					self.html(selector ?
						// Create a dummy div to hold the results
						jQuery("<div />")
							// inject the contents of the document in, removing the scripts
							// to avoid any 'Permission Denied' errors in IE
							.append(res.responseText.replace(rscript, ""))

							// Locate the specified elements
							.find(selector) :

						// If not, just inject the full result
						res.responseText);
				}

				if (callback) {
					self.each(callback, [res.responseText, status, res]);
				}
			}
		});

		return this;
	},

	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {
			return this.elements ? jQuery.makeArray(this.elements) : this;
		})
		.filter(function() {
			return this.name && !this.disabled &&
				(this.checked || rselectTextarea.test(this.nodeName) ||
					rinput.test(this.type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			return val == null ?
				null :
				jQuery.isArray(val) ?
					jQuery.map(val, function(val, i) {
						return { name: elem.name, value: val };
					}) :
					{ name: elem.name, value: val };
		}).get();
	}
});

// Attach a bunch of functions for handling common AJAX events
jQuery.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "), function(i, o) {
	jQuery.fn[o] = function(f) {
		return this.bind(o, f);
	};
});

jQuery.extend({

	get: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = null;
		}

		return jQuery.ajax({
			type: "GET",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	getScript: function(url, callback) {
		return jQuery.get(url, null, callback, "script");
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	post: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = {};
		}

		return jQuery.ajax({
			type: "POST",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	ajaxSetup: function(settings) {
		jQuery.extend(jQuery.ajaxSettings, settings);
	},

	ajaxSettings: {
		url: location.href,
		global: true,
		type: "GET",
		contentType: "application/x-www-form-urlencoded",
		processData: true,
		async: true,
		/*
		timeout: 0,
		data: null,
		username: null,
		password: null,
		traditional: false,
		*/
		// Create the request object; Microsoft failed to properly
		// implement the XMLHttpRequest in IE7 (can't request local files),
		// so we use the ActiveXObject when it is available
		// This function can be overriden by calling jQuery.ajaxSetup
		xhr: window.XMLHttpRequest && (window.location.protocol !== "file:" || !window.ActiveXObject) ?
			function() {
				return new window.XMLHttpRequest();
			} :
			function() {
				try {
					return new window.ActiveXObject("Microsoft.XMLHTTP");
				} catch(e) {}
			},
		accepts: {
			xml: "application/xml, text/xml",
			html: "text/html",
			script: "text/javascript, application/javascript",
			json: "application/json, text/javascript",
			text: "text/plain",
			_default: "*/*"
		}
	},

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajax: function(origSettings) {
		var s = jQuery.extend(true, {}, jQuery.ajaxSettings, origSettings);
		
		var jsonp, status, data,
			callbackContext = origSettings && origSettings.context || s,
			type = s.type.toUpperCase();

		// convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Handle JSONP Parameter Callbacks
		if (s.dataType === "jsonp") {
			if (type === "GET") {
				if (!jsre.test(s.url)) {
					s.url += (rquery.test(s.url) ? "&" : "?") + (s.jsonp || "callback") + "=?";
				}
			} else if (!s.data || !jsre.test(s.data)) {
				s.data = (s.data ? s.data + "&" : "") + (s.jsonp || "callback") + "=?";
			}
			s.dataType = "json";
		}

		// Build temporary JSONP function
		if (s.dataType === "json" && (s.data && jsre.test(s.data) || jsre.test(s.url))) {
			jsonp = s.jsonpCallback || ("jsonp" + jsc++);

			// Replace the =? sequence both in the query string and the data
			if (s.data) {
				s.data = (s.data + "").replace(jsre, "=" + jsonp + "$1");
			}

			s.url = s.url.replace(jsre, "=" + jsonp + "$1");

			// We need to make sure
			// that a JSONP style response is executed properly
			s.dataType = "script";

			// Handle JSONP-style loading
			window[jsonp] = window[jsonp] || function(tmp) {
				data = tmp;
				success();
				complete();
				// Garbage collect
				window[jsonp] = undefined;

				try {
					delete window[jsonp];
				} catch(e) {}

				if (head) {
					head.removeChild(script);
				}
			};
		}

		if (s.dataType === "script" && s.cache === null) {
			s.cache = false;
		}

		if (s.cache === false && type === "GET") {
			var ts = now();

			// try replacing _= if it is there
			var ret = s.url.replace(rts, "$1_=" + ts + "$2");

			// if nothing was replaced, add timestamp to the end
			s.url = ret + ((ret === s.url) ? (rquery.test(s.url) ? "&" : "?") + "_=" + ts : "");
		}

		// If data is available, append data to url for get requests
		if (s.data && type === "GET") {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.data;
		}

		// Watch for a new set of requests
		if (s.global && ! jQuery.active++) {
			jQuery.event.trigger("ajaxStart");
		}

		// Matches an absolute URL, and saves the domain
		var parts = rurl.exec(s.url),
			remote = parts && (parts[1] && parts[1] !== location.protocol || parts[2] !== location.host);

		// If we're requesting a remote document
		// and trying to load JSON or Script with a GET
		if (s.dataType === "script" && type === "GET" && remote) {
			var head = document.getElementsByTagName("head")[0] || document.documentElement;
			var script = document.createElement("script");
			script.src = s.url;
			if (s.scriptCharset) {
				script.charset = s.scriptCharset;
			}

			// Handle Script loading
			if (!jsonp) {
				var done = false;

				// Attach handlers for all browsers
				script.onload = script.onreadystatechange = function() {
					if (!done && (!this.readyState ||
							this.readyState === "loaded" || this.readyState === "complete")) {
						done = true;
						success();
						complete();

						// Handle memory leak in IE
						script.onload = script.onreadystatechange = null;
						if (head && script.parentNode) {
							head.removeChild(script);
						}
					}
				};
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709 and #4378).
			head.insertBefore(script, head.firstChild);

			// We handle everything using the script element injection
			return undefined;
		}

		var requestDone = false;

		// Create the request object
		var xhr = s.xhr();

		if (!xhr) {
			return;
		}

		// Open the socket
		// Passing null username, generates a login popup on Opera (#2865)
		if (s.username) {
			xhr.open(type, s.url, s.async, s.username, s.password);
		} else {
			xhr.open(type, s.url, s.async);
		}

		// Need an extra try/catch for cross domain requests in Firefox 3
		try {
			// Set the correct header, if data is being sent
			if (s.data || origSettings && origSettings.contentType) {
				xhr.setRequestHeader("Content-Type", s.contentType);
			}

			// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
			if (s.ifModified) {
				if (jQuery.lastModified[s.url]) {
					xhr.setRequestHeader("If-Modified-Since", jQuery.lastModified[s.url]);
				}

				if (jQuery.etag[s.url]) {
					xhr.setRequestHeader("If-None-Match", jQuery.etag[s.url]);
				}
			}

			// Set header so the called script knows that it's an XMLHttpRequest
			// Only send the header if it's not a remote XHR
			if (!remote) {
				xhr.setRequestHeader("X-Requested-With", "XMLHttpRequest");
			}

			// Set the Accepts header for the server, depending on the dataType
			xhr.setRequestHeader("Accept", s.dataType && s.accepts[s.dataType] ?
				s.accepts[s.dataType] + ", */*" :
				s.accepts._default);
		} catch(e) {}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend && s.beforeSend.call(callbackContext, xhr, s) === false) {
			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}

			// close opended socket
			xhr.abort();
			return false;
		}

		if (s.global) {
			trigger("ajaxSend", [xhr, s]);
		}

		// Wait for a response to come back
		var onreadystatechange = xhr.onreadystatechange = function(isTimeout) {
			// The request was aborted
			if (!xhr || xhr.readyState === 0 || isTimeout === "abort") {
				// Opera doesn't call onreadystatechange before this point
				// so we simulate the call
				if (!requestDone) {
					complete();
				}

				requestDone = true;
				if (xhr) {
					xhr.onreadystatechange = jQuery.noop;
				}

			// The transfer is complete and the data is available, or the request timed out
			} else if (!requestDone && xhr && (xhr.readyState === 4 || isTimeout === "timeout")) {
				requestDone = true;
				xhr.onreadystatechange = jQuery.noop;

				status = isTimeout === "timeout" ?
					"timeout" :
					!jQuery.httpSuccess(xhr) ?
						"error" :
						s.ifModified && jQuery.httpNotModified(xhr, s.url) ?
							"notmodified" :
							"success";

				var errMsg;

				if (status === "success") {
					// Watch for, and catch, XML document parse errors
					try {
						// process the data (runs the xml through httpData regardless of callback)
						data = jQuery.httpData(xhr, s.dataType, s);
					} catch(err) {
						status = "parsererror";
						errMsg = err;
					}
				}

				// Make sure that the request was successful or notmodified
				if (status === "success" || status === "notmodified") {
					// JSONP handles its own success callback
					if (!jsonp) {
						success();
					}
				} else {
					jQuery.handleError(s, xhr, status, errMsg);
				}

				// Fire the complete handlers
				complete();

				if (isTimeout === "timeout") {
					xhr.abort();
				}

				// Stop memory leaks
				if (s.async) {
					xhr = null;
				}
			}
		};

		// Override the abort handler, if we can (IE doesn't allow it, but that's OK)
		// Opera doesn't fire onreadystatechange at all on abort
		try {
			var oldAbort = xhr.abort;
			xhr.abort = function() {
				if (xhr) {
					oldAbort.call(xhr);
				}

				onreadystatechange("abort");
			};
		} catch(e) { }

		// Timeout checker
		if (s.async && s.timeout > 0) {
			setTimeout(function() {
				// Check to see if the request is still happening
				if (xhr && !requestDone) {
					onreadystatechange("timeout");
				}
			}, s.timeout);
		}

		// Send the data
		try {
			xhr.send(type === "POST" || type === "PUT" || type === "DELETE" ? s.data : null);
		} catch(e) {
			jQuery.handleError(s, xhr, null, e);
			// Fire the complete handlers
			complete();
		}

		// firefox 1.5 doesn't fire statechange for sync requests
		if (!s.async) {
			onreadystatechange();
		}

		function success() {
			// If a local callback was specified, fire it and pass it the data
			if (s.success) {
				s.success.call(callbackContext, data, status, xhr);
			}

			// Fire the global callback
			if (s.global) {
				trigger("ajaxSuccess", [xhr, s]);
			}
		}

		function complete() {
			// Process result
			if (s.complete) {
				s.complete.call(callbackContext, xhr, status);
			}

			// The request was completed
			if (s.global) {
				trigger("ajaxComplete", [xhr, s]);
			}

			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}
		}
		
		function trigger(type, args) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger(type, args);
		}

		// return XMLHttpRequest to allow aborting the request etc.
		return xhr;
	},

	handleError: function(s, xhr, status, e) {
		// If a local callback was specified, fire it
		if (s.error) {
			s.error.call(s.context || s, xhr, status, e);
		}

		// Fire the global callback
		if (s.global) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger("ajaxError", [xhr, s, e]);
		}
	},

	// Counter for holding the number of active queries
	active: 0,

	// Determines if an XMLHttpRequest was successful or not
	httpSuccess: function(xhr) {
		try {
			// IE error sometimes returns 1223 when it should be 204 so treat it as success, see #1450
			return !xhr.status && location.protocol === "file:" ||
				// Opera returns 0 when status is 304
				(xhr.status >= 200 && xhr.status < 300) ||
				xhr.status === 304 || xhr.status === 1223 || xhr.status === 0;
		} catch(e) {}

		return false;
	},

	// Determines if an XMLHttpRequest returns NotModified
	httpNotModified: function(xhr, url) {
		var lastModified = xhr.getResponseHeader("Last-Modified"),
			etag = xhr.getResponseHeader("Etag");

		if (lastModified) {
			jQuery.lastModified[url] = lastModified;
		}

		if (etag) {
			jQuery.etag[url] = etag;
		}

		// Opera returns 0 when status is 304
		return xhr.status === 304 || xhr.status === 0;
	},

	httpData: function(xhr, type, s) {
		var ct = xhr.getResponseHeader("content-type") || "",
			xml = type === "xml" || !type && ct.indexOf("xml") >= 0,
			data = xml ? xhr.responseXML : xhr.responseText;

		if (xml && data.documentElement.nodeName === "parsererror") {
			jQuery.error("parsererror");
		}

		// Allow a pre-filtering function to sanitize the response
		// s is checked to keep backwards compatibility
		if (s && s.dataFilter) {
			data = s.dataFilter(data, type);
		}

		// The filter can actually parse the response
		if (typeof data === "string") {
			// Get the JavaScript object, if JSON is used.
			if (type === "json" || !type && ct.indexOf("json") >= 0) {
				data = jQuery.parseJSON(data);

			// If the type is "script", eval it in global context
			} else if (type === "script" || !type && ct.indexOf("javascript") >= 0) {
				jQuery.globalEval(data);
			}
		}

		return data;
	},

	// Serialize an array of form elements or a set of
	// key/values into a query string
	param: function(a, traditional) {
		var s = [];
		
		// Set traditional to true for jQuery <= 1.3.2 behavior.
		if (traditional === undefined) {
			traditional = jQuery.ajaxSettings.traditional;
		}
		
		// If an array was passed in, assume that it is an array of form elements.
		if (jQuery.isArray(a) || a.jquery) {
			// Serialize the form elements
			jQuery.each(a, function() {
				add(this.name, this.value);
			});
			
		} else {
			// If traditional, encode the "old" way (the way 1.3.2 or older
			// did it), otherwise encode params recursively.
			for (var prefix in a) {
				buildParams(prefix, a[prefix]);
			}
		}

		// Return the resulting serialization
		return s.join("&").replace(r20, "+");

		function buildParams(prefix, obj) {
			if (jQuery.isArray(obj)) {
				// Serialize array item.
				jQuery.each(obj, function(i, v) {
					if (traditional || /\[\]$/.test(prefix)) {
						// Treat each array item as a scalar.
						add(prefix, v);
					} else {
						// If array item is non-scalar (array or object), encode its
						// numeric index to resolve deserialization ambiguity issues.
						// Note that rack (as of 1.0.0) can't currently deserialize
						// nested arrays properly, and attempting to do so may cause
						// a server error. Possible fixes are to modify rack's
						// deserialization algorithm or to provide an option or flag
						// to force array serialization to be shallow.
						buildParams(prefix + "[" + (typeof v === "object" || jQuery.isArray(v) ? i : "") + "]", v);
					}
				});
					
			} else if (!traditional && obj != null && typeof obj === "object") {
				// Serialize object item.
				jQuery.each(obj, function(k, v) {
					buildParams(prefix + "[" + k + "]", v);
				});
					
			} else {
				// Serialize scalar item.
				add(prefix, obj);
			}
		}

		function add(key, value) {
			// If value is a function, invoke it and return its value
			value = jQuery.isFunction(value) ? value() : value;
			s[s.length] = encodeURIComponent(key) + "=" + encodeURIComponent(value);
		}
	}
});
var elemdisplay = {},
	rfxtypes = /toggle|show|hide/,
	rfxnum = /^([+-]=)?([\d+-.]+)(.*)$/,
	timerId,
	fxAttrs = [
		// height animations
		["height", "marginTop", "marginBottom", "paddingTop", "paddingBottom"],
		// width animations
		["width", "marginLeft", "marginRight", "paddingLeft", "paddingRight"],
		// opacity animations
		["opacity"]
];

jQuery.fn.extend({
	show: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("show", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");

				this[i].style.display = old || "";

				if (jQuery.css(this[i], "display") === "none") {
					var nodeName = this[i].nodeName, display;

					if (elemdisplay[nodeName]) {
						display = elemdisplay[nodeName];

					} else {
						var elem = jQuery("<" + nodeName + " />").appendTo("body");

						display = elem.css("display");

						if (display === "none") {
							display = "block";
						}

						elem.remove();

						elemdisplay[nodeName] = display;
					}

					jQuery.data(this[i], "olddisplay", display);
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = jQuery.data(this[j], "olddisplay") || "";
			}

			return this;
		}
	},

	hide: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("hide", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");
				if (!old && old !== "none") {
					jQuery.data(this[i], "olddisplay", jQuery.css(this[i], "display"));
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = "none";
			}

			return this;
		}
	},

	// Save the old toggle function
	_toggle: jQuery.fn.toggle,

	toggle: function(fn, fn2) {
		var bool = typeof fn === "boolean";

		if (jQuery.isFunction(fn) && jQuery.isFunction(fn2)) {
			this._toggle.apply(this, arguments);

		} else if (fn == null || bool) {
			this.each(function() {
				var state = bool ? fn : jQuery(this).is(":hidden");
				jQuery(this)[state ? "show" : "hide"]();
			});

		} else {
			this.animate(genFx("toggle", 3), fn, fn2);
		}

		return this;
	},

	fadeTo: function(speed, to, callback) {
		return this.filter(":hidden").css("opacity", 0).show().end()
					.animate({opacity: to}, speed, callback);
	},

	animate: function(prop, speed, easing, callback) {
		var optall = jQuery.speed(speed, easing, callback);

		if (jQuery.isEmptyObject(prop)) {
			return this.each(optall.complete);
		}

		return this[optall.queue === false ? "each" : "queue"](function() {
			var opt = jQuery.extend({}, optall), p,
				hidden = this.nodeType === 1 && jQuery(this).is(":hidden"),
				self = this;

			for (p in prop) {
				var name = p.replace(rdashAlpha, fcamelCase);

				if (p !== name) {
					prop[name] = prop[p];
					delete prop[p];
					p = name;
				}

				if (prop[p] === "hide" && hidden || prop[p] === "show" && !hidden) {
					return opt.complete.call(this);
				}

				if ((p === "height" || p === "width") && this.style) {
					// Store display property
					opt.display = jQuery.css(this, "display");

					// Make sure that nothing sneaks out
					opt.overflow = this.style.overflow;
				}

				if (jQuery.isArray(prop[p])) {
					// Create (if needed) and add to specialEasing
					(opt.specialEasing = opt.specialEasing || {})[p] = prop[p][1];
					prop[p] = prop[p][0];
				}
			}

			if (opt.overflow != null) {
				this.style.overflow = "hidden";
			}

			opt.curAnim = jQuery.extend({}, prop);

			jQuery.each(prop, function(name, val) {
				var e = new jQuery.fx(self, opt, name);

				if (rfxtypes.test(val)) {
					e[val === "toggle" ? hidden ? "show" : "hide" : val](prop);

				} else {
					var parts = rfxnum.exec(val),
						start = e.cur(true) || 0;

					if (parts) {
						var end = parseFloat(parts[2]),
							unit = parts[3] || "px";

						// We need to compute starting value
						if (unit !== "px") {
							self.style[name] = (end || 1) + unit;
							start = ((end || 1) / e.cur(true)) * start;
							self.style[name] = start + unit;
						}

						// If a +=/-= token was provided, we're doing a relative animation
						if (parts[1]) {
							end = ((parts[1] === "-=" ? -1 : 1) * end) + start;
						}

						e.custom(start, end, unit);

					} else {
						e.custom(start, val, "");
					}
				}
			});

			// For JS strict compliance
			return true;
		});
	},

	stop: function(clearQueue, gotoEnd) {
		var timers = jQuery.timers;

		if (clearQueue) {
			this.queue([]);
		}

		this.each(function() {
			// go in reverse order so anything added to the queue during the loop is ignored
			for (var i = timers.length - 1; i >= 0; i--) {
				if (timers[i].elem === this) {
					if (gotoEnd) {
						// force the next step to be the last
						timers[i](true);
					}

					timers.splice(i, 1);
				}
			}
		});

		// start the next in the queue if the last step wasn't forced
		if (!gotoEnd) {
			this.dequeue();
		}

		return this;
	}

});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show", 1),
	slideUp: genFx("hide", 1),
	slideToggle: genFx("toggle", 1),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, callback) {
		return this.animate(props, speed, callback);
	};
});

jQuery.extend({
	speed: function(speed, easing, fn) {
		var opt = speed && typeof speed === "object" ? speed : {
			complete: fn || !fn && easing ||
				jQuery.isFunction(speed) && speed,
			duration: speed,
			easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
		};

		opt.duration = jQuery.fx.off ? 0 : typeof opt.duration === "number" ? opt.duration :
			jQuery.fx.speeds[opt.duration] || jQuery.fx.speeds._default;

		// Queueing
		opt.old = opt.complete;
		opt.complete = function() {
			if (opt.queue !== false) {
				jQuery(this).dequeue();
			}
			if (jQuery.isFunction(opt.old)) {
				opt.old.call(this);
			}
		};

		return opt;
	},

	easing: {
		linear: function(p, n, firstNum, diff) {
			return firstNum + diff * p;
		},
		swing: function(p, n, firstNum, diff) {
			return ((-Math.cos(p*Math.PI)/2) + 0.5) * diff + firstNum;
		}
	},

	timers: [],

	fx: function(elem, options, prop) {
		this.options = options;
		this.elem = elem;
		this.prop = prop;

		if (!options.orig) {
			options.orig = {};
		}
	}

});

jQuery.fx.prototype = {
	// Simple function for setting a style value
	update: function() {
		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		(jQuery.fx.step[this.prop] || jQuery.fx.step._default)(this);

		// Set display property to block for height/width animations
		if ((this.prop === "height" || this.prop === "width") && this.elem.style) {
			this.elem.style.display = "block";
		}
	},

	// Get the current size
	cur: function(force) {
		if (this.elem[this.prop] != null && (!this.elem.style || this.elem.style[this.prop] == null)) {
			return this.elem[this.prop];
		}

		var r = parseFloat(jQuery.css(this.elem, this.prop, force));
		return r && r > -10000 ? r : parseFloat(jQuery.curCSS(this.elem, this.prop)) || 0;
	},

	// Start an animation from one number to another
	custom: function(from, to, unit) {
		this.startTime = now();
		this.start = from;
		this.end = to;
		this.unit = unit || this.unit || "px";
		this.now = this.start;
		this.pos = this.state = 0;

		var self = this;
		function t(gotoEnd) {
			return self.step(gotoEnd);
		}

		t.elem = this.elem;

		if (t() && jQuery.timers.push(t) && !timerId) {
			timerId = setInterval(jQuery.fx.tick, 13);
		}
	},

	// Simple 'show' function
	show: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.show = true;

		// Begin the animation
		// Make sure that we start at a small width/height to avoid any
		// flash of content
		this.custom(this.prop === "width" || this.prop === "height" ? 1 : 0, this.cur());

		// Start by showing the element
		jQuery(this.elem).show();
	},

	// Simple 'hide' function
	hide: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.hide = true;

		// Begin the animation
		this.custom(this.cur(), 0);
	},

	// Each step of an animation
	step: function(gotoEnd) {
		var t = now(), done = true;

		if (gotoEnd || t >= this.options.duration + this.startTime) {
			this.now = this.end;
			this.pos = this.state = 1;
			this.update();

			this.options.curAnim[this.prop] = true;

			for (var i in this.options.curAnim) {
				if (this.options.curAnim[i] !== true) {
					done = false;
				}
			}

			if (done) {
				if (this.options.display != null) {
					// Reset the overflow
					this.elem.style.overflow = this.options.overflow;

					// Reset the display
					var old = jQuery.data(this.elem, "olddisplay");
					this.elem.style.display = old ? old : this.options.display;

					if (jQuery.css(this.elem, "display") === "none") {
						this.elem.style.display = "block";
					}
				}

				// Hide the element if the "hide" operation was done
				if (this.options.hide) {
					jQuery(this.elem).hide();
				}

				// Reset the properties, if the item has been hidden or shown
				if (this.options.hide || this.options.show) {
					for (var p in this.options.curAnim) {
						jQuery.style(this.elem, p, this.options.orig[p]);
					}
				}

				// Execute the complete function
				this.options.complete.call(this.elem);
			}

			return false;

		} else {
			var n = t - this.startTime;
			this.state = n / this.options.duration;

			// Perform the easing function, defaults to swing
			var specialEasing = this.options.specialEasing && this.options.specialEasing[this.prop];
			var defaultEasing = this.options.easing || (jQuery.easing.swing ? "swing" : "linear");
			this.pos = jQuery.easing[specialEasing || defaultEasing](this.state, n, 0, 1, this.options.duration);
			this.now = this.start + ((this.end - this.start) * this.pos);

			// Perform the next step of the animation
			this.update();
		}

		return true;
	}
};

jQuery.extend(jQuery.fx, {
	tick: function() {
		var timers = jQuery.timers;

		for (var i = 0; i < timers.length; i++) {
			if (!timers[i]()) {
				timers.splice(i--, 1);
			}
		}

		if (!timers.length) {
			jQuery.fx.stop();
		}
	},
		
	stop: function() {
		clearInterval(timerId);
		timerId = null;
	},
	
	speeds: {
		slow: 600,
 		fast: 200,
 		// Default speed
 		_default: 400
	},

	step: {
		opacity: function(fx) {
			jQuery.style(fx.elem, "opacity", fx.now);
		},

		_default: function(fx) {
			if (fx.elem.style && fx.elem.style[fx.prop] != null) {
				fx.elem.style[fx.prop] = (fx.prop === "width" || fx.prop === "height" ? Math.max(0, fx.now) : fx.now) + fx.unit;
			} else {
				fx.elem[fx.prop] = fx.now;
			}
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.animated = function(elem) {
		return jQuery.grep(jQuery.timers, function(fn) {
			return elem === fn.elem;
		}).length;
	};
}

function genFx(type, num) {
	var obj = {};

	jQuery.each(fxAttrs.concat.apply([], fxAttrs.slice(0,num)), function() {
		obj[this] = type;
	});

	return obj;
}
if ("getBoundingClientRect" in document.documentElement) {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		var box = elem.getBoundingClientRect(), doc = elem.ownerDocument, body = doc.body, docElem = doc.documentElement,
			clientTop = docElem.clientTop || body.clientTop || 0, clientLeft = docElem.clientLeft || body.clientLeft || 0,
			top = box.top + (self.pageYOffset || jQuery.support.boxModel && docElem.scrollTop || body.scrollTop) - clientTop,
			left = box.left + (self.pageXOffset || jQuery.support.boxModel && docElem.scrollLeft || body.scrollLeft) - clientLeft;

		return { top: top, left: left };
	};

} else {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		jQuery.offset.initialize();

		var offsetParent = elem.offsetParent, prevOffsetParent = elem,
			doc = elem.ownerDocument, computedStyle, docElem = doc.documentElement,
			body = doc.body, defaultView = doc.defaultView,
			prevComputedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle,
			top = elem.offsetTop, left = elem.offsetLeft;

		while ((elem = elem.parentNode) && elem !== body && elem !== docElem) {
			if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
				break;
			}

			computedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle;
			top -= elem.scrollTop;
			left -= elem.scrollLeft;

			if (elem === offsetParent) {
				top += elem.offsetTop;
				left += elem.offsetLeft;

				if (jQuery.offset.doesNotAddBorder && !(jQuery.offset.doesAddBorderForTableAndCells && /^t(able|d|h)$/i.test(elem.nodeName))) {
					top += parseFloat(computedStyle.borderTopWidth) || 0;
					left += parseFloat(computedStyle.borderLeftWidth) || 0;
				}

				prevOffsetParent = offsetParent, offsetParent = elem.offsetParent;
			}

			if (jQuery.offset.subtractsBorderForOverflowNotVisible && computedStyle.overflow !== "visible") {
				top += parseFloat(computedStyle.borderTopWidth) || 0;
				left += parseFloat(computedStyle.borderLeftWidth) || 0;
			}

			prevComputedStyle = computedStyle;
		}

		if (prevComputedStyle.position === "relative" || prevComputedStyle.position === "static") {
			top += body.offsetTop;
			left += body.offsetLeft;
		}

		if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
			top += Math.max(docElem.scrollTop, body.scrollTop);
			left += Math.max(docElem.scrollLeft, body.scrollLeft);
		}

		return { top: top, left: left };
	};
}

jQuery.offset = {
	initialize: function() {
		var body = document.body, container = document.createElement("div"), innerDiv, checkDiv, table, td, bodyMarginTop = parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0,
			html = "<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";

		jQuery.extend(container.style, { position: "absolute", top: 0, left: 0, margin: 0, border: 0, width: "1px", height: "1px", visibility: "hidden" });

		container.innerHTML = html;
		body.insertBefore(container, body.firstChild);
		innerDiv = container.firstChild;
		checkDiv = innerDiv.firstChild;
		td = innerDiv.nextSibling.firstChild.firstChild;

		this.doesNotAddBorder = (checkDiv.offsetTop !== 5);
		this.doesAddBorderForTableAndCells = (td.offsetTop === 5);

		checkDiv.style.position = "fixed", checkDiv.style.top = "20px";
		// safari subtracts parent border width here which is 5px
		this.supportsFixedPosition = (checkDiv.offsetTop === 20 || checkDiv.offsetTop === 15);
		checkDiv.style.position = checkDiv.style.top = "";

		innerDiv.style.overflow = "hidden", innerDiv.style.position = "relative";
		this.subtractsBorderForOverflowNotVisible = (checkDiv.offsetTop === -5);

		this.doesNotIncludeMarginInBodyOffset = (body.offsetTop !== bodyMarginTop);

		body.removeChild(container);
		body = container = innerDiv = checkDiv = table = td = null;
		jQuery.offset.initialize = jQuery.noop;
	},

	bodyOffset: function(body) {
		var top = body.offsetTop, left = body.offsetLeft;

		jQuery.offset.initialize();

		if (jQuery.offset.doesNotIncludeMarginInBodyOffset) {
			top += parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0;
			left += parseFloat(jQuery.curCSS(body, "marginLeft", true)) || 0;
		}

		return { top: top, left: left };
	},
	
	setOffset: function(elem, options, i) {
		// set position first, in-case top/left are set even on static elem
		if (/static/.test(jQuery.curCSS(elem, "position"))) {
			elem.style.position = "relative";
		}
		var curElem = jQuery(elem),
			curOffset = curElem.offset(),
			curTop = parseInt(jQuery.curCSS(elem, "top", true), 10) || 0,
			curLeft = parseInt(jQuery.curCSS(elem, "left", true), 10) || 0;

		if (jQuery.isFunction(options)) {
			options = options.call(elem, i, curOffset);
		}

		var props = {
			top: (options.top - curOffset.top) + curTop,
			left: (options.left - curOffset.left) + curLeft
		};
		
		if ("using" in options) {
			options.using.call(elem, props);
		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	position: function() {
		if (!this[0]) {
			return null;
		}

		var elem = this[0],

		// Get *real* offsetParent
		offsetParent = this.offsetParent(),

		// Get correct offsets
		offset = this.offset(),
		parentOffset = /^body|html$/i.test(offsetParent[0].nodeName) ? { top: 0, left: 0 } : offsetParent.offset();

		// Subtract element margins
		// note: when an element has margin: auto the offsetLeft and marginLeft
		// are the same in Safari causing offset.left to incorrectly be 0
		offset.top -= parseFloat(jQuery.curCSS(elem, "marginTop", true)) || 0;
		offset.left -= parseFloat(jQuery.curCSS(elem, "marginLeft", true)) || 0;

		// Add offsetParent borders
		parentOffset.top += parseFloat(jQuery.curCSS(offsetParent[0], "borderTopWidth", true)) || 0;
		parentOffset.left += parseFloat(jQuery.curCSS(offsetParent[0], "borderLeftWidth", true)) || 0;

		// Subtract the two offsets
		return {
			top: offset.top - parentOffset.top,
			left: offset.left - parentOffset.left
		};
	},

	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent || document.body;
			while (offsetParent && (!/^body|html$/i.test(offsetParent.nodeName) && jQuery.css(offsetParent, "position") === "static")) {
				offsetParent = offsetParent.offsetParent;
			}
			return offsetParent;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each(["Left", "Top"], function(i, name) {
	var method = "scroll" + name;

	jQuery.fn[method] = function(val) {
		var elem = this[0], win;
		
		if (!elem) {
			return null;
		}

		if (val !== undefined) {
			// Set the scroll offset
			return this.each(function() {
				win = getWindow(this);

				if (win) {
					win.scrollTo(
						!i ? val : jQuery(win).scrollLeft(),
						 i ? val : jQuery(win).scrollTop()
);

				} else {
					this[method] = val;
				}
			});
		} else {
			win = getWindow(elem);

			// Return the scroll offset
			return win ? ("pageXOffset" in win) ? win[i ? "pageYOffset" : "pageXOffset"] :
				jQuery.support.boxModel && win.document.documentElement[method] ||
					win.document.body[method] :
				elem[method];
		}
	};
});

function getWindow(elem) {
	return ("scrollTo" in elem && elem.document) ?
		elem :
		elem.nodeType === 9 ?
			elem.defaultView || elem.parentWindow :
			false;
}
// Create innerHeight, innerWidth, outerHeight and outerWidth methods
jQuery.each(["Height", "Width"], function(i, name) {

	var type = name.toLowerCase();

	// innerHeight and innerWidth
	jQuery.fn["inner" + name] = function() {
		return this[0] ?
			jQuery.css(this[0], type, false, "padding") :
			null;
	};

	// outerHeight and outerWidth
	jQuery.fn["outer" + name] = function(margin) {
		return this[0] ?
			jQuery.css(this[0], type, false, margin ? "margin" : "border") :
			null;
	};

	jQuery.fn[type] = function(size) {
		// Get window width or height
		var elem = this[0];
		if (!elem) {
			return size == null ? null : this;
		}
		
		if (jQuery.isFunction(size)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self[type](size.call(this, i, self[type]()));
			});
		}

		return ("scrollTo" in elem && elem.document) ? // does it walk and quack like a window?
			// Everyone else use document.documentElement or document.body depending on Quirks vs Standards mode
			elem.document.compatMode === "CSS1Compat" && elem.document.documentElement["client" + name] ||
			elem.document.body["client" + name] :

			// Get document width or height
			(elem.nodeType === 9) ? // is it a document
				// Either scroll[Width/Height] or offset[Width/Height], whichever is greater
				Math.max(
					elem.documentElement["client" + name],
					elem.body["scroll" + name], elem.documentElement["scroll" + name],
					elem.body["offset" + name], elem.documentElement["offset" + name]
) :

				// Get or set width or height on the element
				size === undefined ?
					// Get width or height on the element
					jQuery.css(elem, type) :

					// Set the width or height on the element (default to pixels if value is unitless)
					this.css(type, typeof size === "string" ? size : size + "px");
	};

});
// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

})(window);

OEBPS/media/plate1.pdf

12

Plate 4.1 Allan Ramsay, David Hume, 1766, oil on canvas, 76.2 x 63.5 cm, Scottish National Portrait Gallery, Edinburgh.

Photo: SNPG/Bridgeman Art Library.

OEBPS/images/a207_3_001i.jpg

OEBPS/media/plate3.pdf

13

Plate 4.2 Joseph Wright of Derby, Lecture on the Orrery in which a Candle is used to create an Eclipse, 1766,

oil on canvas, 147.3 x 203 cm, Derby Museum and Art Gallery. Photo: reproduced by courtesy of Derby Museum and Art

Gallery/Bridgeman Art Library/John Webb.

Plate 4.3 William Blake, Isaac Newton, c.1795, colour print finished in ink and watercolour on paper, Tate Gallery, London.

Photo: © Tate, London 2002.

OEBPS/media/plate2.pdf

13

Plate 4.2 Joseph Wright of Derby, Lecture on the Orrery in which a Candle is used to create an Eclipse, 1766,

oil on canvas, 147.3 x 203 cm, Derby Museum and Art Gallery. Photo: reproduced by courtesy of Derby Museum and Art

Gallery/Bridgeman Art Library/John Webb.

Plate 4.3 William Blake, Isaac Newton, c.1795, colour print finished in ink and watercolour on paper, Tate Gallery, London.

Photo: © Tate, London 2002.

OEBPS/images/a207_3_002i.jpg

OEBPS/images/a207_3_005i.jpg

OEBPS/discussion08.html

		
			

			
Discussion

		
			

A change of environment is always detrimental to the thing moved. Moving to a new body is less of a change than ceasing to have any body at all. So it is more plausible that we could survive migration to another body than that we cease to be embodied at all. This is true even if the new body is an animal's, since animals’ bodies bear many similarities to our own.

		

	

OEBPS/discussion10.html

		
			

			
Discussion

		
			

It is unlikely you will understand the point Hume is trying to make in every paragraph. But do make a mental note of how much of the essay you now more or less understand. When you have finished, recall your reaction to the exercise on p. 179. I hope this will reveal the extent to which an apparently obscure piece of writing may in fact contain a carefully constructed discussion, which careful study can render accessible.

		

	

OEBPS/discussion03.html

		
			

			
Discussion

		
			

The point of (b) is merely to help you appreciate the task that Hume has set himself. The reasoning is, at first sight, quite persuasive. If you came up with your own objections to it, compare them to Hume's own objections, to which we now turn.

		

	

OEBPS/discussion04.html

		
			

			
Discussion

		
			

Hume is challenging the first clause by asking for evidence to support the assumption that God is just. God may well manifest his justice in an afterlife, but this is not something we have any experience of, and so not something we have a right to assume – and nothing we see in this life supports the assumption either.

		

	

