
		
			[image: cover image]
		

	
		About this e-book

		This e-book is taken from an Open University module, which was originally
 published as an open educational resource on the OpenLearn website. For more
 information on OpenLearn, and to access the study units published there,
 visit http://openlearn.open.ac.uk/.

		Copyright notice

		Unless otherwise stated, this e-book is released under the terms of the
 “Creative Commons Licence”. Copyright and rights falling
 outside the terms of the Creative Commons Licence are retained or controlled
 by The Open University. Please read the full text before using any of the
 content of this e-book.

		Cover image © Lane Erickson.

		
			
				Show full text
			

		

	
		Introduction

		Access to healthcare is important to all of us. Did the arrival of state medicine in the twentieth century mean that everyone had access to good medical services? If you fell sick in 1930 where could you get treatment – from a GP, a hospital, a nurse? This unit shows that in the early twentieth century, access to care was unequally divided. The rich could afford care; working men, women and children were helped by the state; others had to rely on their own resources.

		
			Learning outcomes

		

		After studying this unit, you should be able to do the following:

		
				describe the wide range of methods of promoting health, preventing disease and providing care that were available to patients of different social groups and classes;

				be aware of the inequalities of services – in terms of both quality of care and access to different services – open to different social groups and classes;

				assess the significance of the roles of central and local governments, the private sector and voluntary associations in providing medical services;

				understand the concept of ‘medicalisation’ and assess the degree of power doctors had over people's lives in the early twentieth century.

		

	
		1 Access to healthcare, 1880–1930

		The late nineteenth and early twentieth centuries have often been described as a period of progress, when the poorer classes gained access to a whole range of medical services previously reserved for the wealthy. In the past, this opening up of care was largely attributed to the state. Across Europe, central and local governments created health insurance schemes and new welfare services to provide the poor with access to care, from general practitioners (GPs) to outpatient and hospital care, and treatment for specific complaints such as tuberculosis and venereal disease. This movement culminated in the 1940s, when it was the boast of the British government that the National Health Service provided care for all ‘from the cradle to the grave’. However, more recent studies by historians of medicine have shown that improved access to health services was also provided through charities. Old voluntary organisations, such as hospitals and dispensaries, expanded their work and strove for greater efficiency, employing professional administrators. New charities were founded, providing novel services, including help for mothers and babies. Improved access to healthcare also came about through private insurance schemes to provide GP and inpatient care to the working classes.

		While historians of medicine agree that this period saw greater provision of medical services, especially for the poorer classes, some researchers have questioned whether improved access to care was an unalloyed good. They have argued that not everyone benefited equally from improved services. Improvements in access to care were unequally distributed. New medical services were often limited to the very poorest, or to particular groups, such as working men or women and children, and levels of provision varied between countries and regions. Provision of care did not guarantee a high standard of service: detailed research by some historians has shown that the poorer classes often received a lower quality of care than their wealthier counterparts. Others have argued that there were drawbacks to more accessible medical services. They have described the early twentieth century as a period of ‘medicalisation’. As patients gained greater access to medical professionals – doctors, nurses and health educators – they became passive consumers of medical services. At the same time, the medical profession no longer simply dealt with the sick, but increasingly took a role in monitoring the lifestyle and behaviour of healthy people. As a result, people became increasingly dependent on medical practitioners to guide their lives.

		In this unit, I explore these issues through a study of the health-care services available in Britain at the end of the nineteenth and in the first decades of the twentieth centuries, using a wide range of sources. Where material is available, I make comparisons with the care available elsewhere in Europe. I cover all aspects of healthcare – from disease prevention, through care in the home, general practitioner services and finally care in institutions. I explore the access to medical services among different social groups and assess how much control practitioners had over their patients' lives by 1930.

	
		2 Patterns of disease

		Before looking at how people dealt with ill health, you need to know what sort of medical conditions were prevalent. Between the nineteenth and twentieth centuries, all over Europe, the prevailing pattern of mortality changed. Infectious diseases, which had killed huge numbers of people, were gradually brought under control. As life expectancy increased, degenerative diseases, associated with old age, began to cause more deaths. However, although people were living longer, they actually spent more time off work because of illness. James Riley's studies of the records of friendly societies, which offered health insurance (these are discussed in more detail later), have shown that workers were no longer dying from infectious diseases. Instead, they survived illness, but spent a long time recovering their health and strength (Riley, 1989, pp. 159–92).

		The friendly society records show that the complaints that caused workers to take time off were not the same as those that dominate mortality statistics (Table 1).

		
			
				Table 1 Comparison of mortality with sickness recorded by friendly societies in England and Wales
		

		
			
				View table
			

		

		
			1Lower back pain, caused by muscular inflammation or arthritis

		
			2Inflammation of the stomach lining, causing pain and discomfort after eating

		
			3A local infection, similar to, but larger than, a boil

		
			4Now recognised as a number of kidney diseases, all associated with the presence of albumin in the urine

		(Adapted from Riley, 1997, pp. 191–2, Tables 7.1 and 7.2)

		If we ignore accidents and ‘poorly identified’ complaints, the most common ailments among the working-class men insured by the friendly societies were respiratory infections – influenza, colds and bronchitis – followed by joint and muscle problems, such as rheumatism and lumbago. Few workmen reported sick with degenerative diseases. Nor did they take time off for tuberculosis (TB), one of the major killers at this time. TB was a chronic, but not disabling, disease, and men were able to work until they developed advanced symptoms.

		Friendly societies insured a select group – fairly young, fit, working men – so their records are not representative of the whole population. General practitioners saw a larger cross-section of society. Records from their practice suggest that they treated a fairly similar range of complaints to those recorded by the friendly societies – respiratory infections, rheumatism and digestive complaints, such as dyspepsia and diarrhoea. GPs did not spend much time treating degenerative diseases since they could do little for such conditions. Their case records show how patterns of disease varied by class, area and season. Middle- and upper-class patients consulted doctors about obesity, gout and nervous complaints – conditions that were rarely reported by working-class patients. The poor suffered from rickets (a consequence of a poor diet), dysentery and diarrhoea (reflecting the difficulty of keeping food clean and fresh) and infectious diseases. GPs working in industrial areas had to deal with the results of accidents and occupational diseases: miners, for example, who worked in a damp and dusty environment, suffered from high levels of bronchitis, pneumonia and pleurisy. Everywhere, the incidence of respiratory diseases increased in the winter months, while digestive complaints were more frequent in the summer (Digby, 1999, pp. 192–3, 208–14).

		Men were more likely than women or children to visit a GP (for reasons I discuss later), but not because women and children were any healthier. Children continued to suffer from a range of infectious diseases – tonsillitis, scarlet fever, chickenpox, whooping cough, measles and mumps. A survey of the health of working-class women in the 1930s found that they suffered from headaches, constipation, anaemia, rheumatism, gynaecological problems (often associated with childbirth), bad teeth, and ‘bad legs’, resulting from varicose veins, ulcers and phlebitis (inflammation of the veins) (Spring Rice, [1939] 1981, p. 37).

		While people suffered from a wide range of complaints, two diseases prompted particular public concern – tuberculosis and venereal disease (VD). Both were seen as causes of national degeneration, causing high levels of disease which weakened the population and led in turn to the birth of feeble children (Figure 1).

		
			[image:]
		

		
			
				Figure 1 This poster, issued in 1926 by the National French League against the Danger of Venereal Disease, neatly encapsulates the perceived risks associated with three diseases in the 1920s. Death watches a three-horse race, in which Tuberculosis (150,000 deaths per year) narrowly beats Syphilis (140,000 deaths per year), while Cancer causes only 40,000 deaths. These mortality statistics do not correspond to those recorded by the Registrar-General for England and Wales; in 1910, deaths from tuberculosis were thirty-two times greater than those attributed to syphilis. However, the Registrar-General's report acknowledged that there was a serious under-reporting of syphilis deaths by doctors, who did not wish to stigmatise their patients, and so recorded syphilis deaths under other disease categories. Wellcome Library, London
		

		There was also a widespread belief among the public and medical practitioners that the pace of modern life – in which information flashed through the air by telegraph, and people travelled by train and steamship at previously unimaginable speeds – caused ill health. The modern lifestyle was associated with physical disorders, including dyspepsia, diabetes and liver complaints. It was also blamed by some practitioners for an apparent epidemic of nervous diseases, such as hysteria and neurasthenia. Symptoms of anxiety, depression, insomnia, pain, involuntary movements and nervous tics were believed to result from the strain of modern life on the nervous system. In Russia, neurasthenia was associated with a cultivated ‘western’ lifestyle (Goering, 2003).

	
		3 Preserving health

		3.1 Introduction

		Surrounded by the ever-present threat of ill health, not surprisingly, people expended a good deal of time and energy on trying to stay well. The late nineteenth century saw a new emphasis on promoting health, which was defined as ‘a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity’ (quoted in Riley, 1997, p. 199). Health was not simply a desirable end in itself. The pursuit of health was portrayed as a moral duty: parents had a responsibility to protect both the health of their children and their own health, so that they could support their families. Health also became a political concern: the future strength of the nation was seen to rest on the good health of children – the future generations of soldiers and workers. At the beginning of the twentieth century, popular beliefs about the best means of preserving health were little different from those prescribed two thousand years earlier in classical Greece – good diet, fresh air, exercise and cleanliness. Such a lifestyle would keep the body in the best possible condition to fight off germs and diseases.

		3.2 Health and wealth

		While all classes regarded good health as desirable, access to various means of preserving or promoting it varied according to economic circumstances. For the upper and middle classes, with substantial amounts of disposable income, a wide range of options were available. They could access information about how to protect their health through books and articles in magazines. Many of these books were written (or at least claimed to be written) by doctors and other health-care professionals. An article about pregnancy in the opening number of Woman magazine in 1932, for example, was allegedly written by ‘Mumsie, the wife of a famous children's doctor’ – a persona neatly combining medical authority and the status of an ordinary wife and mother (Beddoe, 1989, pp. 14–15). The 1920s saw a boom in baby-care books, aimed at middle-class mothers, which not only gave practical advice on feeding, bathing and clothing, but also set out the stages of physical and psychological development, thus unwittingly creating the first generation of mothers worried that their babies walked and talked ‘late’ (Unwin and Sharland, 1992).

		Generally, the wealthier classes enjoyed the sort of varied diet thought to promote good health. They could afford meat, fish, fresh fruit and vegetables (Burnett, 1979, pp. 213–39). However, some wealthy individuals worried that they ate too much, and dieting to obtain a slim figure was a well-established activity by the 1920s. Others were concerned that their diet was too rich, and in the pursuit of health adopted simple, more ‘natural’ diets. They stopped consuming alcohol, tea, coffee and meat, and ate fruit, vegetables and cereals (the word ‘muesli’ was adopted into the English language at this time). The popularity of ‘health foods’ (such as ‘Hovis’ wholemeal bread) and vegetarianism grew from the mid-nineteenth century to become a mass movement in Germany and surrounding states by 1900, although it was much less popular in Britain. The quest for a healthy diet was closely linked with other movements – such as unorthodox medicine and feminism, whose supporters argued that overly elaborate diets tied women to the kitchen (Meyer-Renschhausen and Wirz, 1999). Even ordinary foodstuffs were marketed for their health-giving properties (Figure 2).

		
			[image:]
		

		
			
				Figure 2 In this advertisement, the image, caption and description of Ovaltine, a proprietary brand of malted milk drink, clearly link food with health. The appeal here is to a mother's desire to build up her children's health and strength; the message would have been a poignant one at a time before immunisation, when many children died from infectious diseases. Other advertisements stressed the benefits for adults, promising that a cup of Ovaltine at bedtime would ward off ‘night starvation’. Wellcome Library, London
		

		Exercise and fresh air, two more building blocks for good health, would appear to be open to all. However, only the upper and middle classes had the cash and the leisure time to participate in the craze for healthy exercise which began in the late nineteenth century. They could afford to buy bicycles, tennis rackets and golf clubs. They could also, following the German example, go rambling and hiking in the countryside, and pay to attend gymnastic exercise classes. Exercise was clearly gendered. Men and boys took part in team games (such as rugby, football and cricket), athletics and German gymnastics, which made use of apparatus such as vaulting-horses and parallel bars. Such activities were thought to develop a competitive spirit and build strong muscles, desirable qualities in the next generation of workers and soldiers. Women, too, were encouraged to exercise – not to build muscles, which were regarded as undesirable in the female sex, but to cultivate health. For women, exercise was thought to prevent curvature of the spine, chlorosis (a mysterious complaint, whose main symptoms were tiredness and a pale complexion) and hysteria, and a strong, fit body was thought to guarantee easy births and healthy offspring. Cycling, tennis, golf, team games requiring skill rather than strength (such as hockey) and Swedish gymnastics, which involved stretching the body with the aim of developing flexibility and coordination, were seen as beneficial forms of female exercise (Fletcher, 1984, pp. 1–55; Stewart, 2001, pp. 151–72).

		3.3 Hygiene

		Good hygiene – a clean home and a clean body – would also appear to have been available to all classes, but again, it was easier for the wealthier classes to achieve these goals. Newer houses, with bathrooms and laundries, modern plumbing and sanitary facilities, and servants to do the hard work, ensured that the middle and upper classes could enjoy regular baths (hot and cold), clean clothes and clean homes.

		Exercise and good personal hygiene were not just a means of protecting health but were also pursued for aesthetic reasons. Women, for example, took exercise to promote grace and suppleness, and bathing was presented as a way for them to pamper themselves with scented soaps and oils, not just to get clean (Stewart, 2001, pp. 65–72). The Ladies Diary and Housekeeper for 1917 provided beauty hints, allegedly written by ‘an eminent MD’, who suggested that ‘a cheerful disposition’ would prevent wrinkles and gave a recipe for a cream to soothe the blistered hands of overenthusiastic sportswomen. A revolution in women's clothing came about through a similar mixture of aesthetics and concerns about health. By the 1900s, tightly laced corsets were seen as a hazard to health, squashing women's internal organs (thus threatening the health of future babies) and preventing them from inhaling health-giving fresh air. Very long skirts also prevented women from taking exercise. Despite objections from some men, who found women wearing culottes or bloomers ‘manly’ and rather disgusting, women increasingly wore lighter clothing with shorter skirts and flexible stays and brassieres. By the 1920s, short tennis dresses were even considered to be chic (Stewart, 2001, pp. 72–4, 169). At this time, men's clothing also became lighter (Figure 3).

		
			[image:]
		

		
			
				Figure 3 Advertisement for Dr Rasurel's hygienic underclothing, 1906. Note the associations between the clothes being advertised and health. The reader is assured that the clothes are ‘hygienic’; they carry the name of a doctor, and the family pose surrounded by green plants, presumably in the open air. Rural settings were always seen as being more healthy than the urban environment. Wellcome Library, London
		

		3.4 Health and the working class

		However, for a large proportion of the population, altering diet, clothing or behaviour in the pursuit of better health was well nigh impossible. The working classes, who made up the vast majority of the population, survived on tight budgets. In 1913, the typical workers’ wage of £1 per week just covered the essentials of food and rent, and left limited opportunities to follow a healthier lifestyle (Pember Reeves, 1913). The staples of the working-class diet were white bread, margarine and tea. These cheap foods filled up hungry stomachs, but did not provide a balanced diet (Burnett, 1979, pp. 182–212). In 1901, one-quarter of the population were not getting enough to eat: as late as the 1930s, research showed that half the British population were eating a diet deficient in some vitamins and minerals (Burnett, 1979, pp. 245, 301–19). Just as members of the poorer classes found it difficult to afford a good diet, they also lacked the money, time, equipment and transport, never mind the energy after a long day at work, to take exercise. Personal hygiene too was difficult to achieve. Many working-class women struggled to keep their homes clean, but the poor condition of their houses, the lack of a bathroom and often hot water, and shared laundry facilities meant that the poor were inevitably dirtier than the middle classes. Doctors and midwives going into poor homes sometimes complained of the smell of their patients.

		By the beginning of the twentieth century, for the first time governments and charities stepped in to try to improve the diet, exercise and hygiene of the poorest sections of society. While organisations all over Europe shared the goal of guaranteeing the physical health of the nation, the level of provision varied between different countries, reflecting national political agendas.

		3.5 The health of mothers and children

		The health of mothers and infants was one target for action. France was among the first to introduce infant welfare schemes, as low birth rates, high infant mortality and defeat in the Franco-Prussian War led politicians to fear for the future strength of the nation. Diarrhoea among bottle-fed babies was singled out as a preventable cause of high infant mortality. From the 1890s, charities and local authorities set up infant welfare clinics called gouttes de lait, which encouraged mothers to breastfeed, gave out free milk to those that could not, and provided free regular medical examinations to check on babies’ development. Charities also provided free meals to pregnant women and the mothers of small children. To improve the health of older children, municipal authorities set up school canteens to provide free and subsidised meals. These schemes proved very popular: in Paris in 1901, over 1,400 babies were brought to clinics: in some towns, up to one-third of all mothers and infants attended. Government bodies in Britain looked to France as a model of good practice, but did not simply copy French child welfare programmes, fearing that to provide food would usurp the role of the family breadwinner and overstep the proper limits of action. Hence, the few ‘milk banks’ set up in Britain around 1900 offered subsidised rather than free milk. Instead, charities focused their efforts on education. Lectures and demonstrations on ‘mothercraft’ were offered at welfare centres (Figure 4). In Britain, efforts to provide free school meals for older children were hindered by the same reluctance to interfere in family life. Even after they were given powers to provide school meals in 1906, many local authorities were reluctant to do so and, by 1912, only around one-third of local authorities provided school meals (Dwork, 1987, pp. 93–166, 167–84).

		
			[image:]
		

		
			
				Figure 4 Leaflet advertising the new Mother's and Babies' Welcome in St Pancras, London, 1907. A charity, founded in 1907, the St Pancras Welcome offered a comprehensive range of services to mothers and babies. These were not free, but available for a small fee. Wellcome Library, London
		

		Historians are divided over the impact of such policies. Some have argued that the authorities in Britain chose to provide education, rather than food, as a cheap but ineffective solution to the problem of child poverty. They have portrayed education in ‘mothercraft’ as patronising and often impractical. Other researchers, such as Deborah Dwork, are more sympathetic, arguing that, given the government's reluctance to interfere in the family, education was a practical and effective way of helping mothers, and one which the mothers themselves appear to have found useful (Figure 5).

		
			[image:]
		

		
			
				Figure 5 Infant Welfare Centre ABC, East and West Molesey Infant Welfare Centre, c.1930. Documents such as this have prompted historians to view the education provided by Infant Welfare Centres as patronising. Here, mothers are taught in the same way as infants, by learning an ‘ABC’. Alternatively, the ‘ABC’ can be seen as a light-hearted celebration of the work of the centre, presented in a simple and appealing manner. Wellcome Library, London
		

		Governments also provided working-class children with access to physical exercise (PE) through school. Again, wider politics dictated the level of provision. By the 1930s, schoolchildren in Germany, Czechoslovakia, Russia and Italy were taught games, drill and gymnastic exercises. These facilities were much admired by British government ministers (although they did not approve of the regimes that funded them), who attempted to establish PE as a regular part of the school curriculum. Exercise was presented as a cheap form of preventive medicine, which would help to prevent ‘flat-feet, curvature of the spine, adenoids, deafness, “mental deficiency” and respiratory problems’ (quoted in Welshman, 1996, p. 34). However, in Britain, local authorities were again slow to act, and provision of PE was patchy in the state school system. Hampered by a lack of trained instructors, and the fact that many children could not afford appropriate clothing and shoes, the periods of exercise were shorter and less frequent than those provided in private schools.

		Education in hygiene was provided by both charities and local government. In Salford, before the First World War:

		
			The Ladies' Health Society worked bravely among us … Together with the ‘Sanitary Society’, they visited the ‘lowest classes’ and found ‘much that is saddening: but there are bright spots – clean homes, pretty little sitting-room kitchens … clean hearths, chests of highly polished mahogany drawers, a steady husband, a tidy wife and children’ … The Society also sold ten hundredweights of carbolic soap and distributed six hundredweights of carbolic powder [disinfectant] … The corporation lent out its whitewash brushes, distributed free, bags of lime and bottles of a preventive medicine popularly known as ‘diarrhoea mixture’, and urged hygiene on all the populace.

			(Roberts, 1971, pp. 57–8)

		

		Children were taught basic hygiene – about the need to bath weekly, to wash their hands and faces daily, and to scrub their fingernails – as part of the school curriculum. Girls (but not boys) were taught about healthy clothing – garments should be loose, warm and frequently washed.

		3.6 Health education

		The poor were not the only targets of health education. Campaigns against tuberculosis and venereal disease were aimed at all classes. Advice was dispensed through exhibitions, lectures, classes, posters, radio talks and films. Tuberculosis, the public was told, was best combated by a generally healthy lifestyle – fresh air, exercise and hygiene. The 1939 film Stand Up and Breathe, made by the National Association for the Prevention of Tuberculosis (NAPT), promoted all sorts of outdoor recreation as a means of guaranteeing health. Venereal disease could be avoided by restricting sexual activity. Campaigns sought to inform the public of the dire effects of VD – some exhibitions included graphic wax models of syphilitic lesions – in the hope that people would refrain from sex outside marriage, or, if they became infected, that they would come forward for treatment. In this educational material, ‘loose’ women were often portrayed as the source of infection, trapping vulnerable men (Figure 6). Innocent wives were the ultimate victims of VD. Infected by philandering husbands, they had sick or stillborn children (Davidson and Hall, 2001).

		
			[image:]
		

		
			
				Figure 6 Poster warning of the dangers of syphilis, c.1930. The text reads: ‘Syphilis is a social scourge. Its victims are innumerable. Many suffer from it without knowing. Syphilis among parents is one of the main causes of sickness and death among newborn children and infants. A great number of chronic infections originate in syphilis. Syphilis is a serious disease, but fortunately curable. For those infected it is a duty to obtain treatment and to avoid transmitting the disease.’ Notice the image of a glamorous woman, with fashionable haircut, makeup and jewellery, set against the less detailed image of the man. Women who had sex outside marriage – often pejoratively called ‘amateur prostitutes’ or ‘problem girls’ – were frequently blamed for infecting men with syphilis. Wellcome Library, London
		

	
		4 Domestic care

		Despite their best efforts, everyone fell ill at some point in their lives. Although historians of medicine write a great deal about how the sick were cared for by doctors and in hospitals, in the past (as nowadays) minor complaints were diagnosed and treated at home, almost entirely without the help of medical professionals, using special diets and home-made or bought-in remedies. As with preserving health, poor families had relatively few resources for treatment. They might seek advice from neighbours or friends, or perhaps a health visitor. Those prevalent joint and respiratory ailments described earlier might respond to simple forms of treatment. Linseed or onion poultices were used to treat boils or painful joints, and hot footbaths were given as a remedy for colds. These would have been within the resources of all but the very poorest. In rural areas, ancient magical remedies, such as using snails to treat warts, persisted well into the twentieth century. Poor families might also be able to produce some simple foods aimed at helping a sick member feel better – for example, gruel, soup or egg dishes.

		Better-off members of society were able to adopt more elaborate forms of domestic treatment. Medical practitioners had an indirect input into their home care through advice given in books on nursing and even diaries. The Ladies Diary and Housekeeper (1917) contained useful notes for emergencies in alphabetical order, from ‘Abdomen’ to ‘Wounds’, including what to do in cases of strangulation and how to tell if someone was dead. In cases of hysteria, the Ladies Diary recommended not sympathising with the patient, but throwing cold water in her [sic] face, then administering an anti-spasmodic draught. (Perhaps life in the Edwardian home was not as quiet as we think!) Middle-class households had more resources with which to prepare home-made remedies. For example, a well-stocked larder was a prerequisite for making the cough mixture consisting of melted butter, black treacle and lemon, which was recommended in Everywoman a Nurse (1927). The middle and upper classes could also afford to treat illnesses using special diets. Nursing manuals published between the 1890s and the 1920s provided recipes for dishes to tempt the invalid's appetite and aid recovery, including beef tea (a broth made by boiling meat in water), rice pudding and egg dishes. Brandy was given as a stimulant to the very sick. Tonic wines, fortified with quinine or iron, and red wine (perhaps because of its colour) were reputed to strengthen the blood. By the end of the century, families could purchase patent invalid foods. Cod liver oil, now given as a source of vitamin D, was recommended as a rich food which helped patients to gain weight.

		All classes purchased medicines to deal with illness within the family. These medicines were self-prescribed, and were often seen as a cheap alternative to paying for a doctor's services. Despite practitioners' bitter complaints that such medicines could do little good, and might even be harmful, the market in over-the-counter medicines boomed. In the mid-nineteenth century, the British population spent about £500,000 per year on patent medicines – by 1914, this sum had increased ten-fold (Digby, 1999, p. 228). Drugs and medicines were readily available – they were sold by retail chemists (Boots the Chemist thrived in this period, building up a chain of shops), grocers, corner shops and even by mail order, and were heavily advertised in newspapers and periodicals. Over-the-counter remedies ranged from the innocuous to the extremely potent. Thomas Beecham (after whom Beecham's Powders are named) began his career selling a preparation based on aloes, ginger and soap. At the same time, chemists sold morphine preparations, and new chemical drugs such as sulphonal (a sleeping drug). As well as medicines based on orthodox medicine, homeopathic and herbal remedies were also freely available.

		Medicines were marketed to reach all classes. Hoechst, one of the largest German pharmaceutical firms, was not above selling exactly the same pain-relieving drug under four different names and at four different prices. The following reading is an extract from Robert Roberts's book The Classic Slum, which gives a picture of the trade in patent remedies in a corner shop in the 1900s.

		
			
				Activity 1

			

			Read ‘Self-medication’. Who buys these proprietary medicines and what conditions do they hope to treat with them? What is the author's view of the effectiveness of these remedies? How does it compare with that of the purchasers?

			Click below to view the article 'Self-medication'.

			
				
					View
 document
				

			

			
				
					
					Show
 answer
				

			

		

	
		5 Calling in help

		5.1 Introduction

		When people did seek help for their ailments, most sought some form of outpatient care. For the upper and middle classes, during much of the nineteenth century, this meant calling in a general practitioner. The poorest could apply for help at the outpatient department of a charitable hospital or dispensary. Another source of help was to apply for assistance from local government – in some countries the local authorities employed doctors to care for the poor. In Britain, medical help was available through the Poor Law – the body responsible for all aspects of welfare. There was what historians call a ‘mixed economy of care’ – patients could either pay for the services of practitioners, or apply for free care from charities or local government agencies. The end of the nineteenth and beginning of the twentieth centuries saw a huge expansion in the availability of outpatient services – both through these existing outlets and through new facilities. The result was a patchwork of services, where the same care was available from numerous outlets, leading administrators to worry about inefficiencies and the over-provision of medical services.

		5.2 General practitioners

		General practitioners were the backbone of medical services. They dealt with almost every sort of complaint, from the serious to the trivial. Although it is often assumed that previous generations were prepared to put up with discomfort, in 1876, an anonymous correspondent to a friendly society magazine complained that ‘one of the most distinctive traits of this generation is its almost fidgety care about its health’ (quoted in Riley, 1997, p. 199). Working men went to the doctor with minor injuries, colds and headaches. One Yorkshire doctor recorded treating a patient for indigestion, toothache, hoarseness and hair loss (Riley, 1997, pp. 199–200). At the other end of the scale, GPs delivered babies in patients' homes, even applying anaesthetics and using forceps to speed the delivery. In rural areas, they performed major surgery. Harry Pearson Taylor, a GP on the Shetland Isles, recalled amputating a boy's arm after it had been crushed in a threshing machine. With the minister of the local church, he

		
			improvised an operation table, and got the little man on it. I disinfected the area as well as I could under the circumstances, and got all I wanted ready. I chloroformed the boy, and the Minister kept him under while I disarticulated the elbow joint. The Minister, who … knew quite a lot about medicine and surgery, had put a tourniquet on the upper arm. The weather remained so bad for several days that I was storm stayed in the island, which gave me an opportunity to attend to the patient myself. Of course there were no nurses in those far back days, and had I been able to get back to Yell [his home island], the Minister would have had to undertake the duties of a nurse.

			(Taylor, 1948, p. 76)

		

		Despite the primitive conditions of his treatment, the child made a full recovery. However, the bulk of a general practitioner's work was more mundane. GPs prescribed medicines for a range of illnesses, treated injuries and local infections, lanced boils and syringed ears.

		Middle- and upper-class patients paid directly for care from general practitioners, but they did not all pay the same fees. GPs charged according to the patient's income. In 1917, the Ladies Diary and Housekeeper provided a table of charges, based on the rental value of homes, suggesting that GPs would charge from 2s 6d to 10s 6d for a visit, and from 1 to 5 guineas for a midwifery case. By the early twentieth century, some medical practitioners built successful practices among the upper working classes, by lowering their fees to as little as 1s or even 6d – a price that put their services within reach of many working-class patients (Digby, 1999, pp. 100–3).

		In the late nineteenth century, working-class men began to obtain access to general practitioners through insurance schemes. In Britain, these schemes were run by friendly societies or sick clubs (Figure 7), in France, they were called sociétés de secours mutuels (mutual aid societies) and in Germany, Krankenkassen (literally a ‘sick box’). All worked on the same principle: for a small weekly payment, workers were entitled to financial help when ill, and had access to treatment from the society's doctor. A substantial portion of the male working population had some form of insurance cover. In Britain, friendly society membership peaked in 1900, when around half of the entire adult male population was insured. In France in 1902, over two million people belonged to some form of insurance scheme (Mitchell, 1991, p. 181). However, working women and the families of workers were often excluded from many of these schemes, and thus were less likely to go to a GP. In the twentieth century, state health insurance schemes gradually replaced the direct provision of medical care to the poor. Health insurance was set up in Germany in 1883, and in Britain in 1911 under the National Health Insurance Act. These schemes, which initially covered only the poorest workers, operated in the same way as private insurance, except that the workers' contributions were augmented by contributions from his employer and the state.

		
			[image:]
		

		
			
				Figure 7 Membership certificate of Flint Glass Makers' Friendly Society, nineteenth century. This elaborate certificate exemplifies the virtues aspired to by members of the Flint Glass Makers' Friendly Society. The main vignettes show scenes of glass processing – the common occupation of members. The female allegorical figures represent industry (with her spindle) and justice (with the scales and sword). Wellcome Library, London
		

		The combination of low fees and private and state health insurance produced a huge expansion in the number of patients who consulted a general practitioner. In Britain, the number of GPs doubled between 1860 and 1914, while the number of patients attending each practitioner remained roughly constant (Hardy, 2001, p. 17). However, not everyone was equally well provided with care. Even in the twentieth century, patients in remote Scottish islands faced a journey of several hours to consult a doctor. The situation was much worse in the eastern regions of Russia, where in 1913 the ratio of licensed practitioners to population was less than 1 in 10,000 (Hyde, 1974, p. 18).

		While more people gained access to GP services in the first decades of the century, not everyone received the same quality of treatment. Patients who paid a higher fee received a better quality of care. General practitioners would call on wealthier patients in their homes, discuss the case, and offer advice as well as therapy (Figure 8). Better-off patients were more likely to receive a thorough physical examination, using diagnostic instruments. They were also more likely to have specimens sent for laboratory tests, and to receive new treatments, such as vaccine therapy or insulin for diabetes. They also benefited from referral to specialists for further diagnosis or treatment (Digby, 1999, p. 200).

		
			[image:]
		

		
			
				Figure 8 In this cartoon, the two well-dressed ladies share the following exchange: ‘“Isn't it tiresome! I've just got a lovely new bicycle, and now my doctor absolutely forbids me to cycle! What would you advise me to do?” “Change your doctor.”’ The cartoon neatly captures the new craze for bicycling among women at the end of the nineteenth century – a fashionable pursuit, as well as a means of getting healthy exercise. It also reveals something of the upper-class attitude towards doctors – they are there to serve, and can be dismissed if the patient disagrees with the practitioner's opinion. From Punch, 29 January 1898, p. 45
		

		Well-off patients could afford to employ several practitioners if they were unhappy with the treatment offered by their original doctor. However, this was a mixed blessing, if the doctors disagreed. For example, when Sir Leslie Stephen fell ill in 1902, he was initially attended by the family practitioner, Dr Seton. The family then called in Sir Frederick Treves, a distinguished surgeon, to give another opinion. Seton thought Sir Leslie was improving, Treves thought that he was seriously ill and required an operation. The family accepted Seton's view, and he remained in charge of the case until the autumn of 1903, when another surgeon, Hugh Rigby, was called in. He brought in a GP (Dr Wilson) to visit every day. The efforts of all these medical men had little effect – Sir Leslie died in February 1904 (Trombley, 1981, pp. 77–80).

		Patients paying the lowest fees or receiving care through an insurance scheme received a much more basic consultation. In the next reading, Anne Digby examines state-funded care provided through the National Health Insurance Act of 1911.

		
			
				Activity 2

			

			Read ‘Services under the National Health Insurance Act’. In her view, did the National Health Insurance scheme provide good-quality care to all? Were both patients and doctors satisfied with the quality of the service?

			Click below to view the article 'Services under the National Health Insurance Act'.

			
				
					View
 document
				

			

			
				
					
					Show
 answer
				

			

		

		Digby's account may give the impression that patients were powerless in the face of a form of rationing of care, imposed by government and the medical profession. In fact, they exerted control over how they used the National Health Insurance system. Some commentators complained that patients abused the system by going to see their doctor for no good reason (Figure 9). Although doctors might appear to be ‘fobbing off’ their patients with stock medicines, in fact practitioners complained that patients expected to leave the surgery with a bottle of medicine (most drugs were dispensed in liquid rather than tablet form in this period). They were therefore forced to act in response to patient demand. Some of these frequently prescribed medicines had little pretensions to do any good. Elsewhere in her book, Digby reports that one doctor handed out coloured aspirins. In another practice, one of the stock medicines ‘was labelled “Mist. ADT” or “Mist. Any Damn Thing” [‘Mist.’ is an abbreviation of the Latin word for ‘mixture’] which was given to “somebody you thought there was nothing wrong with, and you could do nothing for”’ (Digby, 1999, p. 198). More alarmingly, another practitioner

		
			prescribed a mixture … called Mist. Explo. It was a clear yellow liquid made from a few bright yellow crystals dissolved in water. The crystals were apt to ignite if left to dry in the sunlight, hence the name Mist Explosive. I don't remember the exact chemistry of this wonder drug but it was a derivative of picric acid and quite harmless when well diluted and used as a bitter tonic.

			(Porter, 1999, p. 196)

		

		Such medicines seem little different to patent medicines, which doctors so frequently condemned.

		
			[image:]
		

		
			
				Figure 9 While contemporary commentators (as well as historians) expressed concern about the poor standards of care provided by panel doctors under the National Health Insurance scheme, patients were criticised for overusing the service. The caption to this cartoon, entitled A Cheap Diversion, reads: ‘“Let's go to the music-hall?” “Naw.” “Let's go to the sinnemer, then?” “Naw.” “Well, come on, let's go and see my panel doctor?” “Right-o.”’ From Punch, 1913, p. 46. Wellcome Library, London
		

		5.3 Irregular and unorthodox practitioners

		In the twentieth century, unlicensed practitioners continued to be an important source of medical advice. Faced with illness, people of all classes consulted relatives, neighbours with a reputation for curing or the local retail chemist – who had no medical training but a wide knowledge of therapies. Substantial numbers of patients from all classes chose to consult unorthodox practitioners who offered ‘natural’ forms of healing. Herbal medicine remained popular among working-class patients, and flourished in the industrial north and midlands of England. There were perhaps 2,000 herbalists practising before the First World War, and many more working part-time (Brown, 1985). By contrast, homeopathy declined in popularity in Britain and over much of Europe (with the exception of Germany and Holland). In 1874, there were around 300 practitioners in Britain; by 1909, there were 196 (Nicholls, 1988, p. 182). The decline of homeopathy did not herald any general slide in the popularity of unorthodox medicine. The early twentieth century saw the rise of Christian Science – a sect founded in 1879, whose followers rejected orthodox medical treatment in favour of mental and spiritual healing – and of osteopathy – a system of treatment devised in 1874, which was based on manipulating the joints.

		5.4 Clinics and outpatient services

		In addition to acquiring greater access to general practitioners in the late nineteenth and early twentieth centuries, poor patients also received more medical help from the outpatient departments of charitable hospitals and dispensaries. Hospital outpatient departments were an increasingly popular source of care: between 1860 and 1900, the number of patients attending the outpatient department of the London Hospital increased from 25,000 to 220,000. By 1910, there were 1.75 million attendances each year at outpatient and casualty departments across London, and provincial hospitals experienced similar levels of demand. Consequently, huge queues regularly built up, and patients had to wait for up to six hours to see a doctor. In an effort to reduce demand, some hospitals introduced a small charge for repeat consultations unless patients could prove they were unable to pay. Treatment was similar to that in a GP's surgery – a rapid examination and a routine prescription, although some patients were referred to specialist departments or admitted to the hospital as inpatients.

		Charitable dispensaries, funded by wealthy donors, were an important source of care for working-class patients in the nineteenth century right across Europe–they were founded even in Russia, where there was no strong tradition of medical charity. At the end of the nineteenth century, the charitable institutions inspired the creation of provident dispensaries, which operated as a form of health insurance. In return for a small weekly subscription (one Northampton dispensary charged 1d for adults and 2d for families), members received basic medical treatment at the dispensary's premises. The work of these dispensaries has received little attention from historians. The York Dispensary is the subject of one of the few detailed studies, and, if it is typical, then dispensaries were lively institutions, responsive to a wide range of medical needs within the community. Founded in 1788, the York Dispensary quickly became an important source of medical care: in the 1880s, around 5,000 patients – roughly 10% of the city's population – called there each year. Attendance at the dispensary peaked in 1903–4, when 9,000 patients used it, but fell after the introduction of National Health Insurance. However, the numbers of women, children and the elderly – all uninsured under NHI – increased after 1913. As well as providing consultations with a general practitioner, the dispensary had a dental service, and an inpatient and outpatient maternity service. It also played a role in dealing with outbreaks of epidemic disease (Webb, 1988).

		Around this time, other specialised dispensaries and clinics, dealing with specific diseases or particular groups of the population, opened their doors. Tuberculosis dispensaries were established by charities and local government as part of the campaign to control the disease. By 1938, there were 482 TB dispensaries in Britain, dealing with over 100,000 cases per year. In them, patients received physical examinations to check the condition of their lungs. They were given advice on diet and lifestyle to help combat the infection, and on how to avoid spreading the disease. Treatment was limited to cough mixtures and cod liver oil, which was supposed to strengthen the body and help increase weight. VD clinics providing free and confidential treatment to everyone were opened as a means of controlling the spread of infection. However, they were not attractive places – many clinics were poorly funded and rather forbidding. Clinics provided as part of the School Medical Service were more popular. Children in poorer families had little access to medical care, which their parents were unable to afford – unless a child was very ill, the parents were unlikely to call on the services of a GP. Not surprisingly, when local authorities were given powers to institute medical inspections of schoolchildren in 1906, they found many untreated complaints. ‘[I]nspection showed whole classes of children infested with head vermin; many had body lice. The worst would sit isolated in a small sanitary cordon of humiliation. They would later be kept at home, their heads shaven, reeking of some rubbed-in disinfectant’ (Roberts, 1971, p. 58). The First World War gave a new impetus to the School Medical Service: faced with the massive death toll on the battlefields, one commentator explained, ‘it behoves us to see that the rising generation is reared amid healthy surroundings and sent forth into the world under the best possible conditions’ (quoted in Webster, 1983, p. 73). Local authorities began to open clinics to treat common minor complaints. By 1920, there were 288 clinics in England and Wales, dealing with head lice, ringworm and orthopaedic conditions, providing dental inspections, free spectacles and (through local hospitals) the removal of tonsils and adenoids (enlarged lymphatic tissue between the nose and the throat, which can interfere with breathing) (Hirst, 1989, pp. 327–42; Webster, 1983, pp. 71–6).

		5.5 Nurses, district nurses and midwives

		While access to GPs and outpatient services was growing, access to nursing care was expanding in some sectors and declining in others. The numbers of trained professional nurses who were employed in wealthy households to care for seriously ill family members fell in the first decades of the twentieth century. These nurses stayed in the patient's home, carrying out the doctor's instructions, monitoring the patient's condition and providing general care – making beds, bathing the patient, giving medicines and keeping the sickroom in good order. The role of the private nurse was not an easy one: she had an ambiguous social position – above domestic servants but below family members. The ideal private nurse, according to one textbook, should possess ‘average intelligence’ but ‘more than the average amount of tact’ (Wightman, 1912, p. 10). Private nursing slowly died out after 1918, at the same time as did the live-in domestic servant. By this time, few households had enough room to accommodate a live-in nurse, and patients wealthy enough to afford a private nurse could get the same services in a nursing home (discussed in Section 6).

		At the same time, poor patients were enjoying increasing provision of nursing care. The late nineteenth century saw the creation of new charities to provide the sick poor with nursing care in the home. Some of these organisations were secular, but a substantial proportion were religious, with care provided by orders of nursing sisters. These nurses paid short visits to their patients, caring for the sick, giving advice and sometimes helping with housework. From these fragmented charities, a coordinated district nursing service developed in Britain, which remained part of the voluntary sector until the 1950s. The backbone of the service was the Queen Victoria Jubilee Institute for Nursing the Poor in their Own Homes founded in 1889. In 1896, it had 539 nurses across the country: by 1914, there were over 2,000 Queen's Nurses. Existing nursing charities became affiliated to the institute, which provided six-month training courses for ‘village nurses’ who worked in rural areas (Dingwall et al., 1988, pp. 173–97).

		In response to public demand, district nurses increasingly took on midwifery work, especially in rural areas. The demand for their services was in part driven by the increasing regulation of midwifery, and a reduction in the number of women working as midwives. From the early twentieth century, midwives attended the majority of births. Most were paid directly by their clients, and, as with other medical services, the better-off were able to afford practitioners who were better trained. Respectable working-class women would save up to employ a trained midwife to deliver their babies. The poorest women employed untrained midwives, often called handywomen, who charged lower fees and stayed on after the birth to help look after the household (Llewelyn Davies, [1915] 1978). However, in the early twentieth century, these untrained midwives were gradually pushed out of practice by the registration of midwives and new regulations on training (Dingwall et al., 1988, pp. 145–72; Loudon, 1992, pp. 172–92, 206–33).

	
		6 Hospital care

		In most aspects of medical care, the rich generally enjoyed better access to medical services and better-quality services than the poor. The only exception to this rule was hospital care. In the nineteenth century the ‘deserving’ poor – whose respectability was guaranteed by the need for them to have a letter of admission from a subscriber or employer – could receive medical and surgical treatment in charitable hospitals. The very poor could obtain care through Poor Law hospitals, which in 1926 were transferred into the hands of local authorities. As the voluntary hospitals became associated with high-quality care, some commentators complained that the poor received far better hospital care than the rich. If a poor person needed to undergo an operation, he or she might be treated in the latest, most modern facilities in a teaching hospital. A rich client would have to go through the same procedure in his home, in a room rigorously scrubbed but lacking specialised equipment.

		In the late nineteenth century, hospital facilities were gradually opened up to all classes. The upper and middle classes could receive treatment in private wards or in beds on general wards. These were not cheap: when Guy's Hospital accepted paying patients in 1884, they were charged 1 guinea per week for a ward bed and 3 guineas for a bed in a private cubicle. By 1902, private hospitals could charge as much as 4 guineas (Abel-Smith, 1964, pp. 149, 194). Alternatively, wealthy patients could pay for care in private nursing homes, which began to appear in the 1890s. By 1921, there were 26,000 nursing-home beds in England and Wales. Convalescent hospitals also offered a comfortable environment in which to recover from illness – Thomas Cook, the holiday firm, even had a facility in Egypt (Abel-Smith, 1964, pp. 133, 339).

		Those patients who were unable to afford private care, but not so poor as to qualify for charity gained access to hospitals either by directly paying a contribution towards the cost of their care or through some form of insurance. The British Provident Association offered a 1-guinea policy which paid for up to three weeks in hospital. More often, workers paid into a ‘Saturday fund’ – these were schemes where, in return for a small, regular contribution, patients were ensured access to hospital facilities (Abel-Smith, 1964, pp. 327–8, 338–9).

		While hospitals were increasingly open to all classes, there were still serious geographical inequalities. Far more beds were available in London than in any other city, and there were more facilities in urban than in rural areas. From the 1860s, small cottage hospitals helped to fill this gap, providing care to all classes in rural areas. From the outset, cottage hospitals were funded partly by patients' contributions and partly by donations. They proved popular, and numbers grew rapidly: the first cottage hospital was founded in 1859, and by 1880 there were 180 such facilities. Most were small institutions – many had around twenty beds – staffed by local general practitioners. Although cottage hospitals could not boast the high standard of facilities of the voluntary hospitals, many had operating theatres where GPs or consultant surgeons performed quite complex surgery.

		Not all hospitals offered equally good levels of care. The next reading gives a patient's view of being treated in two voluntary hospitals and a Poor Law hospital.

		
			
				Activity 3

			

			Read ‘Care in hospital’. What differences does Bella Aronovitch note between the voluntary hospitals and the Poor Law hospital? How does she describe the attitude of staff towards her, and what does she think of them?

			Click below to view the article 'Care in hospital'.

			
				
					View
 document
				

			

			
				
					
					Show
 answer
				

			

		

	
		7 Conclusion: the medicalisation of society?

		7.1 A review

		All the evidence you have looked at so far suggests that historians are right to see a ‘medicalisation’ of society in the sense that when ill, people were more likely to consult a qualified medical practitioner in 1930 than they had been in 1880. The extension of medical services – combined with the increase in chronic complaints – meant that working-class patients in particular had much greater contact with general practitioners, health visitors and nurses. However, it is also clear that there were continuing variations in the level of health-care provision. Not all social groups enjoyed the same access to medical services. Working men were the chief beneficiaries of insurance schemes, infants and children had their own clinics, but women remained poorly served. Poorer sections of society did not enjoy the same quality of services as the wealthier classes.

		Did the greater availability of treatment bring greater power to medical practitioners? Did patients become powerless consumers of medical advice?

		
			
				Activity 4

			

			Before reading the rest of this conclusion, pause and review the material given in this unit, and try to identify any evidence of doctors' power over their patients. Is there any evidence of patients exerting control when dealing with illness?

			
				
					
					Show
 answer
				

			

		

		7.2 The public take control

		There is also good evidence which suggests that the public took control over their own health by choosing not to seek medical help, or by rejecting offers of help and treatment (Figure 10).

		
			[image:]
		

		
			
				Figure 10 Not all visits from well-meaning charity workers were welcome. Lady-visitors who dispensed advice on child care were often portrayed as being nosy and interfering, and dispensing useless advice. In this cartoon, from the London Mail, 1915, the mother says to the district visitor: ‘Lumme miss! There ain't no danger of infection. Them children wot's got the measles is at the 'ead of the bed, and them wot ain't is at the foot.’ The working woman's comical response is presumably prompted by the visitor's advice to isolate the children suffering from measles – which was quite impossible in the small homes of the working classes. The cartoonist conveys the stereotyped character of the two women by their clothes. The middle-class visitor's fussy outfit of hat, gloves and umbrella contrasts with the plain and practical clothing worn by the mother. Wellcome Library, London
		

		The Women's Health Enquiry survey of working-class women of 1933 showed that a large proportion of working-class women suffered from chronic illnesses which went untreated (Spring Rice, 1981, pp. 28–43). The next reading is an extract from this survey, published in 1939.

		
			
				Activity 5

			

			Read ‘The health of working-class women’ (. What reasons does the author give for the women not receiving treatment? In the light of this source, do we need to revise our idea that state intervention ensured healthcare for all sections of society?

			Click below to view the article 'The health of working-class women'.

			
				
					View
 document
				

			

			
				
					
					Show
 answer
				

			

		

		Patients also rejected offers of care for venereal disease and tuberculosis. VD sufferers were reluctant to undergo the long and painful therapies used to treat syphilis and gonorrhoea, and often did not complete the courses of treatment. People infected with TB also refused opportunities for treatment, for fear of being stigmatised. There was a widespread fear of people with TB. Long after doctors realised that tuberculosis was infectious, many people continued to believe that the disease was hereditary, and would be passed on from parent to child. Patients were often unwilling to come forward for treatment or to follow the advice given, for fear of being identified as a ‘lunger’. One patient wrote: ‘It is depressing to find how frightened people are becoming of us. I am being turned out of my rooms, and this will make my fourth move in this particular town’ (Bryder, 1988, p. 223). People infected with TB were dismissed from their jobs, and even those who recovered from the disease found it very difficult to find employment.

		Inpatient care in specialist sanatoria, with its emphasis on fresh air at all times and a rich diet, was also unpopular. In the following reading, Linda Bryder describes patients' attitudes towards the strict sanatorium regime.

		
			
				Activity 6

			

			Read ‘Resistance to care – sanatorium treatment’. Are the patients happy to accept the prescribed regime? How successful are the sanatoria staff in imposing strict discipline on their patients?

			Click below to view the article 'Resistance to care – sanatorium treatment'.

			
				
					View
 document
				

			

			
				
					
					Show
 answer
				

			

		

		Even patients in private sanatoria rebelled against the discipline. In 1909, Alice Clark, a young woman from a wealthy family with a history of TB, went to Nordrach-sur-Mendip, the oddly named English sanatorium modelled on a German institution. The regime there was particularly strict: patients had to conform to a rigid timetable, take their own temperatures four times a day and eat a prescribed diet. Alice Clark

		
			found Nordrach-sur-Mendip a … cruel experience, for she was by now very sick and weak, complaining how bedroom windows were kept wide open at night even in subzero temperatures or during snowstorms, how she was required to empty her own chamber pot while in a high fever, and how she was forbidden to employ a nurse to attend to her. Separation from family and friends proved especially troubling to her. Within a few weeks she was writing that she felt she had been making better progress at home.

			(Holton, 1999, p. 87)

		

		Despite being allowed a sympathetic nurse (a fellow campaigner for votes for women), Clark left the sanatorium, and subsequently recovered.

		Even when ill, then, patients maintained a degree of independence over whether to seek help, and whether to follow medical advice. They showed a similar response to education by health professionals, aimed at teaching them how to maintain a healthy lifestyle. This was not a new phenomenon. In the eighteenth century, physicians had written popular books on how to preserve health. However, the early twentieth century saw a huge expansion in the way this information was disseminated – through new media such as film and radio – and in the target audience. How well people absorbed these messages about healthy living is very hard to gauge. Books, exhibitions and health films were certainly very popular, attracting large audiences. A survey by the Women's Co-operative Movement found that working-class women wanted more sources of information, advice and support during pregnancy and when bringing up small children (Llewelyn Davies, 1978). Another survey of working-class women in the 1930s found that about half of the respondents had learned some skills though a welfare centre or clinic. A smaller number claimed to have received some education through a health visitor or district nurse. However, even if people were willing to listen to advice, this does not mean that they put it into practice. Some did – a few women practised the breathing exercises they learned in school into adult life (Spring Rice, 1981, pp. 82–90).

		7.3	Childbirth

		One aspect of life which is often seen as having been ‘medicalised’ in the twentieth century is that of childbirth. Historians argue that until the nineteenth century, pregnancy and birth were dealt with within families, with minimal input from medical practitioners. By the late twentieth century, pregnancy was labelled as a form of illness by some practitioners, births took place in hospital and pregnant women, new mothers and their babies were subjected to constant supervision by medical personnel. What about the early twentieth century? Had birth come under the control of the medical profession by 1930?

		The answer has to be that it had not. Although obstetrics and gynaecology emerged as specialist areas of medicine around this time, doctors and nurses did little to monitor the health of pregnant women – in part because there was little they could do to help women in the event of complications. Even after local authorities in England and Wales established antenatal clinics, many women attended only once or twice. The medical profession did exert some control over birth, as a consequence of a concern about persistently high levels of maternal mortality. Not surprisingly, practitioners chose to focus on clinical problems associated with birth, such as sepsis and haemorrhage, rather than on social factors, such as poor diet and long working hours, which were also associated with death in childbirth. Their chosen solution to these problems was to encourage women to give birth in hospital, in sterile conditions and with medical staff on hand. The proportion of births taking place in hospitals began to rise at this time – from 15% in 1927 to 24% in 1933. This shift towards hospital birth was not entirely due to pressure from medical practitioners. Women welcomed the prospect of giving birth in hospital under anaesthesia – which midwives working in the home were not permitted to offer – and grasped the opportunity to take a few days' rest away from domestic responsibilities after the birth. The three-quarters of all babies that were born at home were also brought under a degree of medical supervision. In the twentieth century, midwives were required to be registered and to have gone through a set training programme. They were required to call in a GP if there were complications, and were told to use aseptic techniques (although these were very difficult to achieve in poor households) (Lewis, 1980, pp. 117–61; Loudon, 1992, pp. 234–53).

		Even in 1930, doctors had at best limited influence over pregnancy and childbirth. Their input would have varied between classes. A middle-class women, able to afford regular visits from a general practitioner, and to pay for childbirth in a hospital or nursing-home, would have been under regular, if not constant, medical supervision. A poor mother would have had little contact with medical services during pregnancy and would have called in a midwife to attend at the birth (Llewelyn Davies, 1978). Overall, then, early twentieth-century medical practitioners had greater influence over the sick and the healthy than had their nineteenth-century counterparts, but this influence was not all-pervasive, and nor did it go unchallenged.

	
		References

		Abel-Smith, B. (1964) The Hospitals 1800–1948, London: Heinemann.

		Beddoe, D. (1989) Back to Home and Duty: Women between the Wars 1918–1939, London: Pandora.

		Brown, P.S. (1985) ‘The vicissitudes of herbalism in late nineteenth and early twentieth-century Britain’, Medical History, vol.29, pp. 71–92.

		Bryder, L. (1988) Below the Magic Mountain: A Social History of Tuberculosis in Twentieth-Century Britain, Oxford: Clarendon Press.

		Burnett, J. (1979) Plenty and Want: A Social History of Diet in England from 1815 to the Present Day, London: Scolar Press.

		Davidson, R. and Hall, L.A. (eds) (2001) Sex, Sin and Suffering: Venereal Disease and European Society since 1870, London: Routledge.

		Digby, A. (1999) The Evolution of British General Practice 1850–1948, Oxford: Oxford University Press.

		Dingwall, R., Rafferty, A.M and Webster, C. (1988) An Introduction to the Social History of Nursing, London: Routledge.

		Dwork, D. (1987) War is Good for Babies and Other Young Children: A History of the Infant and Child Welfare Movement in England, 1898–1918, London: Tavistock.

		Fletcher, S. (1984) Women First: The Female Tradition in English Physical Education, 1880–1980, London: Athlone Press.

		Goering, L. (2003) ‘“Russian nervousness”: neurasthenia and national identity in nineteenth-century Russia’, Medical History, vol.47, pp.23–46.

		Hardy, A. (2001) Health and Medicine in Britain since 1860, Basingstoke: Palgrave.

		Hirst, J.D. (1989) ‘The growth of treatment through the School Medical Service’, Medical History, vol.33, pp. 318–42.

		Holton, S.S. (1999) ‘To live “through one's own powers”: British medicine and “invalidism” in the life of Alice Clark (1874–1934)’, Journal of Women's History, vol.11, pp. 75–96.

		Hyde, G. (1974) The Soviet Health Service: A Historical and Comparative Study, London: Lawrence and Wishart.

		Lewis, J. (1980) The Politics of Motherhood: Child and Maternal Welfare in England, 1900–1939, London: Croom Helm.

		Llewelyn Davies, M. [1915] (1978) Maternity: Letters from Working-Women, London: Virago.

		Loudon, I. (1992) Death in Childbirth: An International Study of Maternal Care and Maternal Mortality, 1800–1950, Oxford: Clarendon Press.

		Meyer-Renschhausen, E. and Wirz, A. (1999) ‘Dietetics, health reform and social order: vegetarianism as a moral philosophy. The example of Maximilian Bircher-Benner’, Medical History, vol.43, pp. 323–41.

		Mitchell, A. (1991) ‘The function and malfunction of mutual aid societies in nineteenth century France’ in J. Barry and C. Jones (eds) Medicine and Charity before the Welfare State, London: Routledge.

		Nicholls, P.A. (1988) Homeopathy and the Medical Profession, London: Croom Helm.

		Pember Reeves, M. (1913) Round About a Pound a Week, London: G. Bell.

		Porter, R. (1999) The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present, London: Fontana.

		Riley, J.C. (1989) Sickness, Recovery, and Death: A History and Forecast of Ill Health, Basingstoke: Macmillan.

		Riley, J.C. (1997) Sick, Not Dead: The Health of British Workingmen during the Mortality Decline, Baltimore and London: Johns Hopkins University Press.

		Roberts, R. (1971) The Classic Slum: Salford Life in the First Quarter of the Century, Manchester: Manchester University Press.

		Spring Rice, M. [1939] (1981) Working-Class Wives: Their Health and Conditions, London: Virago.

		Stewart, M.L. (2001) For Health and Beauty: Physical Culture for Frenchwomen, 1880s-1930s, Baltimore and London: Johns Hopkins University Press.

		Taylor, H.P. (1948) A Shetland Parish Doctor, Lerwick: T. & J. Manson.

		Trombley, S. (1981) All That Summer She Was Mad: Virginia Woolf and her Doctors, London: Junction Books.

		Unwin, C. and Sharland, E. (1992) ‘From bodies to minds in childcare literature: advice to parents in inter-war Britain’ in R. Cooter (ed.) In the Name of the Child: Health and Welfare, 1880–1940, London: Routledge, pp. 174–99.

		Webb, K.A. (1988) ‘One of the most useful charities in the city’: York Dispensary 1788–1988, York: University of York.

		Webster, C. (1983) ‘The health of the school child during the Depression’ in N. Parry and D. McNair (eds) The Fitness of the Nation – Physical and Health Education in the Nineteenth and Twentieth Centuries: Proceedings of the 1982 Annual Conference of the History of Education Society of Great Britain, Leicester: History of Education Society of Great Britain, pp. 70–85.

		Welshman, J. (1996) ‘Physical education and the School Medical Service in England and Wales, 1907–1939’, Social History of Medicine, vol.9, pp. 31–48.

		Wightman, C.F. (1912) Home Nursing Manual: With Chapters on Personal Hygiene and Care of Infants, London: George Gill.

		
			Extract references
		

		Aronovitch, B. (1974) Give It Time: An Experience of Hospital 1928–32, London: Andre Deutsch, pp. 38–43, 50–2, 55–6, 60, 62–7, 71–2, 74 (Reading 3).

		Bryder, L. (1988) Below the Magic Mountain: A Social History of Tuberculosis in Twentieth-Century Britain, Oxford: Clarendon Press, pp. 205–11 (Reading 4).

		 Digby, A. (1999) The Evolution of British General Practice, 1850–1948, Oxford: Oxford University Press, pp. 318–22 (Reading 2).

		 Roberts, R. (1971) The Classic Slum: Salford Life in the First Quarter of the Century, Manchester: Manchester University Press, pp. 97–9 (Reading 1).

		Spring Rice, M. (1981, 1st edn 1939) Working-Class Wives: Their Health and Conditions, London: Virago, pp. 39–43 (Reading 5).

		Acknowledgements

		The content acknowledged below is Proprietary (see terms and conditions) and is used under licence.

		Grateful acknowledgement is made to the following sources for permission to reproduce material in this unit:

		Text

		
			
				Reading 13.1
			: Roberts, R. ‘The Classic Slum: Salford Life in the First Quarter of the Century’, 1971, Manchester, Manchester University Press. Courtesy of Manchester University Press

		
			
				Reading 13.2
			: Digby, A. ‘The Evolution of British General Practice 1850-1948’, 1999, Oxford, Oxford University Press. Reprinted with permission from Oxford University Press

		
			
				Reading 13.3
			: Aronovitch, B. 'Give it Time. An Experience of Hospital 1928-32', 1974, London, André Deutsch

		
			
				Reading 13.4
			: Bryder, L. ‘Below the Magic Mountain. A Social History of Tuberculosis in Twentieth-Century Britain’, 1988, Oxford, Clarendon Press. Reprinted with permission from Oxford University Press

		
			
				Reading 13.5
			: Spring Rice, M ‘Working Class Wives. Their Health and Conditions’, 1981, London, Virago, first edition , 1939

		Figures

		
			
				Figures 1 - 10
			: © The Trustees of the Wellcome Trust, reproduced with permission

		All other materials included in this unit are derived from content originated at the Open University.

	
		Version

		ID: A218
			
Module code: A218
			
 Build: 1.5.0
			
Stamp: 2011-01-07T17:15:22+00:00
		

		Copyright © 2011 The Open University

	OEBPS/media/a21813.1.pdf
Part thirteen
Access to care, 1880-1930

13.1
Self-medication

Robert Roberts, The Classic Slum. Salford Life in the First
Quarter of the Century (Manchester, Manchester University
Press, 1971), pp. 97-9.

In the early twentieth century — as in the present — most illness
was diagnosed not by doctors, but by the sufferer, who also treated
the problem using over-the-counter remedies. Robert Roberts’s
account of working-class life in the north of England, seen from the
vantage point of the corner shop, gives a valuable insight into the
trade in patent medicines, and the criteria by which purchasers
judged the value of these remedies.

This was the heyday of quack medicines, a time when millions of
the new literates were reading newspaper advertisements without the
knowledge to gauge their worth. Innumerable nostrums, some harm-
less, some vicious, found ready sale among the ignorant. One had to be
seriously ill before a household would saddle itself with the expense of
calling a doctor,* in our case an elderly Irishman famous for kindness
and wheezing whisky fumes. At week ends people purged themselves
with great doses of black draught, senna pods, cascara sagrada, and

* In our district more people were sued in the county court for non-payment of doctors’
bills than for any other reason. This somewhat dents the myth of the golden-hearted medico
‘forgetting’ the debts of his poorer patients. But in that world of private enterprise many slum
doctors were hard up enough until the Health Insurance Act of 1911 (against which the BMA
fought tooth and nail) put them off their bicycles and into motor cars.

277

Health, disease and society in Europe, 1800-1930

their young with Gregory powder, licorice powder and California syrup
of figs. For all these on Friday they came to the shop in constant pro-
cession. Through the advice of doctors and wide advertisement the
working class had an awful fear of constipation, a condition brought on
by the kind of food they ate.

The sick too found relief in medicaments from the corner shop, sup-
plied by manufacturing ‘chemists’. Few of these had any qualifications.
One of the traders who sold to us had entered the profession via the
mineral water business. His early attempts at a cough medicine (6d per
two-ounce bottle), though attractive in colour, had run thin as ginger
beer and fallen a drug on the market.! But he learned quickly. With such
mixtures content and colouring meant little; high viscosity was all. His
next concoction slid down the gullet like warm pitch. Bronchitics
swore by it and sales soared.

Pills sold at a penny a box, any doubts as to their potency being
quieted by the venerable image of their maker smiling from the lid. He
had cause for amusement. Nearly all the pills appeared to possess a
dual purpose: they ‘attacked’ at one and the same time the ills of two
intestines—'Head and Stomach’, ‘Blood and Stomach’, ‘Back and
Kidney’, ‘Back and Bladder’, and indeed almost any pair of organs that
could in decency be named. Whatever their aim, however, for ease of
manufacture all pills contained the same ingredients—soap and a little
aperient;2 but they differed in colour, the ‘blood and stomach’ variety
being red, say, and the ‘back and bladder’ a pea green. Some colour
sense was required, it seemed, in marketing. A pink blood and digestive
pill might go down famously in Leeds, only to be rejected entirely by
Liverpudlians, whose stomachs would settle for nothing but a pellet in
a warm brown shade.

With us a week seldom passed without somebody’s baby having ‘con-
vulsions’. ‘Mother’s Friend’, known in the district as ‘Knock-out Drops’,
was always in demand for the fretful, especially on mid-Saturday
evenings. ‘It relieves your child from pains,’” said the advertisement,
‘and the little cherub awakes bright as a button.’ This ‘Soothing Mixture’
(laced with tincture of opium) would guarantee to keep baby in a coma
until late Sunday morning. Meanwhile mother spent two happy hours in
the Snug of the ‘Boilermaker’s’, undisturbed yet not unmarked. Tincture
of opium figured too as the kick in a pricey cough cure we sold. A good
dose would grip for a short while even the consumptive’s spasms, to
bring flickers of renewed hope that soon died.

1 failed to sell.
2 aperient: a laxative.

278

Access to care, 1880-1930

‘Therapion’ had a good run. This ‘New French Remedy’ was unique in
that it claimed not only to induce venery? but also to heal any unfortu-
nate consequences of it. ‘Therapion’, we read, ‘stimulates the vitality of
weak men, yet contains besides all the desiderata for curing gleet,* dis-
charges, piles, blotches and premature decay.” ‘French and Belgian doc-
tors’ swore by it. Floratino, too, was ‘highly recommended’. At 2s 6d a
bottle it ‘imparted a peculiarly pearly whiteness to the teeth [before the
enamel flaked] and a delightful fragrance to the breath’. With his best
suit out of pawn, a dose of Therapion and a mouth washed with Flo-
ratino, a young man could feel all set for Saturday night. ‘St Clair’s Spe-
cific for Ladies’ had more serious aims; this ‘prevented’, among other
ailments, ‘Cancer, Tumurs [sic] and varicose veins’.

The boldest purveyor, who took a quarter-page spread in the local
newspaper, appeared to be a ‘Mr W.H. Veno’. A charismatic figure, he
was shown standing before a screen in a great beam of light. ‘His mar-
vellous diagnostic power’, the advertisement assured us, ‘borders on
the superhuman. He sees a sick person at a glance, reads his disease
without asking a question and with the utmost accuracy.” He could do
this ‘blindfold’, too, and had withal a ‘rare gift’ which enabled him to
‘cure the sick and diseased in a manner that reads like miracles’. ‘Priests
and ministers of every denomination’ were numbered among his
patients. They all took, we were informed, ‘People’s Strengthener and
Health Giver'—Sea-Weed Tonic at 1s 1%d and 2s 9d a bottle. Doctors
used it too, because ‘they recognised in Sea-Weed Tonic the most
successful medicine that science has yet produced for liver, kidney and
blood diseases’.

The imposition of the first tax on patent medicines put their manu-
facturers in a dilemma. A clause in the Act appeared to imply that
proprietary medicines could still be sold free of tax provided their
purported curative powers were not advertised. From then on, until the
Act was revised, some firms merely announced the title of their prod-
uct: others paid the tax and hired professional advertising men. The
pushers of one pill, in keeping with a claim to have ‘the largest sale of
any patent medicine in the world’, made boasts of almost megaloma-
niac proportions. Their pellet ‘Cured Biliousness, Nervous Disorders,
Wind and Pain in the Stomach, Sick Headaches, Giddiness, Fulness and
Swellings After Meals, Dizziness and Drowsiness, Cold Chills, Flushes
of Heat, Loss of Appetite, Shortness of Breath, Costiveness,? Scurvy and

3 venery: the pursuit of, or indulgence in, sexual pleasure.
4 gleet: a discharge of thin, purulent matter.
5 costiveness: constipation.

279

Health, disease and society in Europe, 1800—1930

Blotches of the Skin, Disturbed Sleep, Frightful Dreams and All Ner-
vous and Trembling Sensations, Etc.” ‘This is no fiction,” the ad-man
went on. ‘These are racrs testified continually by members of all classes
of society. No Female should be without them. They will restore
Females of all ages to sound health.’

And the females took his advice: we sold them at the shop in screws
of paper, three for a halfpenny, in endless succession. A simple aperient
had taken on magic potency.

Tucked away in corners of the local newspaper one saw other
medical announcements. These offered assurances to ‘Ladies’, ‘Women’
and ‘Females’ of their ability to remove ‘obstructions’ of all kinds, ‘no
matter how obstinate or long-standing’.6 The advertisers usually had
foreign names and obscure London addresses. But most of our women
in need of such treatment relied on prayer, massive doses of pennyroyal
syrup, and the right application of hot, very soapy water. There were
even those who in desperation took abortifacients sold by vets for use
with domestic animals. Yet birth control continued to be looked upon
as a sin against the Holy Ghost.

OEBPS/copyright.html

		Copyright © 2011 The Open University
	

OEBPS/media/a21813.2.pdf
13.2
Services under the National Health
Insurance Act

Anne Digby, The Evolution of British General Practice
1850-1948 (Oxford, Oxford University Press, 1999),
pp. 318-22.

Anne Digby’s research has focused on the development of general
practice in the nineteenth century, and especially on the econom-
ics of medical practice. In The FEvolution of British General Prac-
tice she analyses the work and careers of ordinary general
practitioners through a wide range of archival material and pub-
lished medical journals. This extract examines the quality of state-
funded primary care provided through the National Health
Insurance Act of 1911.

6 A euphemism for pregnancy. These advertisements were for drugs to induce abortions.

280

Access to care, 1880-1930

Amongst key issues posed by the NHI [National Health Insurance] was
the question of whether panel patients were second-class citizens when
compared to private patients. Informing discussion were implicit value
judgements as to the appropriate standard to be sought in a public
service catering for poorer patients. Class assumptions shaped the
perceptions of bureaucrats as well as of doctors. English Insurance
Committees were circulated on whether panel patients received as good
a service as private patients, and the omissions and face-saving phrase-
ology in their replies pointed to a divided system of medical care. An
obvious indication of the two-tier nature of practice could be readily
observed in the differentiated physical accommodation and reception of
patients. Panel patients frequently queued at a back door to enter a
cramped, barely furnished surgery, there to wait their turn for the doctor
during fixed surgery hours. In contrast, their middle-class counterparts
chose personally convenient times for appointments, were greeted by a
maid at the front door, and waited in a comfortable room in the doctor’s
house for more extended medical interviews. Indeed, there was neither
incentive for the panel doctor to improve accommodation, nor any effec-
tive coercion to do so, since although the rare insurance committee
(such as Birmingham) inspected the surgery accommodation of insur-
ance doctors several times, others (like London or Devonshire), did so
only rarely or unsystematically.

The usual divide between panel and private patients was narrower in
the Manchester and Salford Scheme. A local newspaper commented
that ‘it is to the doctor’s interests to treat his panel patients with the
same consideration he treats his private patients. Otherwise he would
speedily find himself without any panel patients.” This local initiative
was predicated on payment to doctors on the basis of patient atten-
dance and not, as was the case elsewhere, on an annual capitation pay-
ment. Panel patients were therefore on the same footing as private
ones. Running for only a dozen years, the scheme collapsed under the
weight of the administrative work it had generated.

Insurance doctors had to give all proper and necessary medical serv-
ices except those requiring special skill. This meant inter alia” that
treatment of fractures or dislocation was expected but not an operation
for piles or an operation on tubercular glands. More serious cases were
referred for treatment in the outpatients departments of hospitals.
Practitioners were supplied with ‘Lloyd George’ record cards for their
NHI patients. Panel doctors recorded brief but intermittent entries for
patients, usually in relation to more serious conditions, and/or those

7inter alia: among other things.

281

Health, disease and society in Europe, 1800-1930

requiring certification in relation to employment. Diagnoses were
almost entirely for physical ailments, and few clinical measurements
were recorded as having been made in reaching them. Panel doctors
seem to have shown little or no appreciation of the value of the NHI
clinical record for their patients. The financial committee of one Scot-
tish panel even minuted that ‘the present medical record system is serv-
ing no useful purpose and in the interest of economy should be
scrapped’. Patient—doctor confidentiality in relation to NHI certification
was an issue raised by one NHI practitioner, who was outraged by the
local insurance committee’s insistence that the precise illness suffered
by the panel patient be inserted on a certificate of incapacity for work.
Interestingly, the point was made that ‘health and character are so
closely bound together that the declaration of a malady may blight the
fair face of a whole family’. The doctor won his case, and the word ‘ill-
ness’ was deemed sufficient thereafter.

Doctors complained about the fluctuating composition of their
panels, although this was usually articulated in a grouse about form fill-
ing, rather than in manifesting concern about its implications for the
continuous care of patients—a defining characteristic of good general
practice. Many panel patients moved on to a new doctor’s list because
of changes of address or of employment. Panel patients did have the
right to choose their insurance practitioners, but only very small num-
bers (between 3 and 5 per cent) were estimated to have initiated a
change in their doctor by giving notice at the end of a quarter. This find-
ing might indicate either satisfaction with the standard of service or low
patient expectation. That there was only a small trickle of panel
patients’ grievances about their doctors does not resolve this ambigu-
ity. Complaints were usually about the practitioner charging for a pro-
cedure without prior warning, or charging for one which it was thought
should have been in the category of insurance treatment rather than pri-
vate practice. Also prominent were allegations that the doctor showed
insufficient courtesy or did not respond promptly to a request for a visit.
Discourtesy or incorrect charging were complaints which were far
more likely to be upheld by insurance medical committees, and the
patient vindicated, than were charges of medical negligence when doc-
tors on NHI medical committees might feel impelled to salvage col-
leagues’ professional reputations by finding facesaving rationales for
their conduct. In some instances, however, a doctor was so clearly clin-
ically negligent that he was severely censured, and a substantial fine
was imposed. One Scottish doctor, for example, was fined §50. He had
been sent for on a Saturday afternoon, failed to attend the panel patient
until Sunday morning, when castor oil was prescribed, called subse-

282

Access to care, 1880-1930

quently on Monday morning, when the patient was sent to hospital,
where death soon ensued from appendicitis. Friendly societies also
criticized panel doctors for supplying inadequate certification in cases
involving society members as insured patients; their allegations were
well substantiated, and were usually upheld.

Standards of practice varied, not only (predictably) between individ-
ual doctors, but also in the standards laid down by insurance commit-
tees between different areas. Nottinghamshire, for example, debated
the merits of a Local Formulary, such as that introduced into the City of
Nottingham, by which a limited pharmaceutical range had been sanc-
tioned for panel patients. It concluded that stock mixtures partook of
club practice® would encourage hasty prescribing, lead to deterioration
in the mixture during storage and, although producing economies,
would not be in the interest of the insured person. Barrow in Furness,
in contrast, was only too ready to sanction and introduce a local For-
mulary. Out of twenty-eight stock mixtures which the BMA and the
Pharmaceutical Society of Great Britain listed as suitable for storing in
bulk, the Barrow in Furness Insurance Committee selected only ten
stock mixtures for use by its practitioners including cough mixtures,
tonics, and digestive or laxative medicines.

If panel doctors prescribed expensive drugs they might be vulnerable
to accusations of over-prescription, and liable to subsequent surcharg-
ing. The annual prescription cost of Fife panel doctors was continually
singled out as having been well above the Scottish average. In 1925
nineteen local doctors there were even surcharged £100 each for their
excessive prescription. The Fife insurance practitioners defended their
expenditures on the grounds that they were due both to inexperienced
panel doctors as well as to the prescription of new expensive drugs,
such as extract of liver, which was ‘of great therapeutic value’. Later,
local doctors considered that this restrictive bureaucratic policy had
been beneficially modified . . .

The calibre of NHI pharmaceutical practice has received little aca-
demic attention, but it is obvious that the predominance of small
chemists, making up a few NHI prescriptions for a handful of doctors,
was unlikely to encourage accurate dispensing. When the Notting-
hamshire Insurance Committee inquired into panel prescriptions, the
analyst they employed found that as many as one in three were sub-
standard. Generally, new drugs were not sanctioned for NHI use,
because it was stated that ‘as a specific it is still in question’, but to the

8 club practice: practice through private insurance schemes or ‘sick clubs’. Club practice
had a reputation for providing low standards of care, in order to keep down costs.

283

Health, disease and society in Europe, 1800-1930

historian the suspicion lingers that its cost was the material factor.
Appliances which were sanctioned by the NHI authorities in each
locality were listed. These might include cheaper alternatives to those
which doctors were accustomed to use, and Burnley doctors protested,
for example, about the cheaper grey bandages they were expected to
substitute for white ones for their panel patients.

For the patient the 1911 act brought real, if heavily qualified, bless-
ings. A panel doctor concluded that ‘the Insurance Act was a boon both
to the insured patient and to their medical attendant.” The doctor was
no longer involved in ‘balancing the value of his services against the
length of his patient’s purses’, while the patients were not faced with
bills and debts. But although access to a doctor undoubtedly improved
after 1911, the quality of care given was generally mediocre. Club doc-
tors before the NHI had reduced visits in favour of a swift throughput
through the surgery, and the panel doctor continued with this. The
panel system therefore institutionalized a pre-existing tension between
the club doctor and his patient in that it emphasized the quantity of care
delivered rather than intervening to improve its quality. Routinization
linked to a low standard of patient care: with overprescription; a reluc-
tance to treat difficult cases rather than to refer them elsewhere; and
under-investment in modern equipment and premises were thereby
encouraged. This trend was linked to the capitation system?® of British
insurance practice. In Germany where doctors were paid through items
of service, insurance practitioners were encouraged to offer specialist
as well as generalist services to their patients.

It was almost inevitable that the pressure of treating large numbers
of patients should have had an adverse impact on the range and quality
of patient—doctor encounters. A reluctance by panel doctors to engage
in clinical work for which no remuneration was likely, meant a readi-
ness to refer patients to hospital outpatient clinics. Even Dame Janet
Campbell (formerly in the Ministry of Health), admitted that ‘Panel
practice does not justify the keen doctor ... Work is hard, hours are
long’. At that time the doctor gave on average three-and-a-quarter min-
utes to each insurance patient in the surgery, and four minutes when on
a visit to the patient’s home. But perhaps we should not be too critical
on this score: it was not very different from the five minutes that the
NHS doctor later spent.

9 capitation: payment according to the number of patients, regardless of how much treat-
ment was provided.

284

OEBPS/answer04.html

		Answer

		The material presented here suggests that patients did regard medical practitioners as authorities and respect their advice and instructions. People were eager to consult practitioners and were prepared to wait for a consultation and advice. Despite the complications of her case, Bella Aronovitch did not question the competence of her doctors. However, patients were by no means passive or dependent on doctors. They took responsibility for their own health and illness, dealing with bouts of minor illness within the home and buying tonics and pills in the face of doctors' disapproval. Even when seeking medical help, patients exercised considerable choice over where to obtain help; if their finances permitted, they could call on several doctors, or choose to go to unorthodox practitioners. They forced doctors to fulfil their demands for medicines – even if the medicines themselves were of limited therapeutic value. Patients were not in thrall to the medical profession – while recognising and respecting the specialist knowledge of practitioners, they maintained forms of control over their health and their use of medical services.

	

OEBPS/toc.html
Contents

	
		Chapter 1
	

	
		Chapter 2
	

	
		Chapter 3
	

	
		Chapter 4
	

	
		Chapter 5
	

	
		Chapter 6
	

	
		Chapter 7
	

OEBPS/images/a218_1_003i.jpg
7~ . « ,
% 3 % A
S0US VETEMENTS: HYGIENIOUES §

OEBPS/media/a21813.3.pdf
Access to care, 1880-1930

13.3
Care in hospital

Bella Aronovitch, Give it Time. An Experience of
Hospital 1928-32 (London, André Deutsch, 1974),
pp. 38-43, 50-2, 55-6, 60, 62-7, 71-2, 74.

In February 1928 Bella Aronovitch suffered some abdominal pain.
She went to the out-patients’ department of a London hospital,
where she was diagnosed as suffering from appendicitis. She was
operated on, but the wound would not heal. As a result, she spent
the next five years being shuttled between various hospitals. Her
book gives a rare patient’s-eye-view of hospital care in the 1920s,
and makes clear the different quality of care offered by different
types of hospital.

A few days after this first operation I had a visit from the hospital
almoner.!? She came into the ward carrying a huge sheaf of papers and
looked terrifyingly efficient. Following a few minutes’ talk with Sister
she came over to me, made herself comfortable on a chair beside my
bed and for the next quarter of an hour, her conversation consisted
entirely of questions. She started with questions about my family. How
many of us were there at home? Who went to work and who were still
at school? How much did I earn when I went to work? How much rent
did we pay? What was our total income from all sources? etc., etc. Now
all the questions were the preliminary skirmishes leading to the final
question, which was; could my family afford to pay towards my upkeep
while I was in hospital and if so, how much? Having had a major opera-
tion I was stiff and sore with numerous stitches and draining tubes. Tied
under my knees was a hard, uncomfortable pillow called a ‘Donkey’,
and I was very tightly tied round the middle with an arrangement
known as a ‘many tailed bandage’. I found all those questions rather
trying. However, I answered them truthfully and to the best of my abil-
ity. As the almoner left, she told me to be sure to tell my mother to call
at her office next mid-week visiting day. She then double checked with
Mother on the answers to all questions.

10 glmoner: a hospital official who questioned patients about their financial circumstances
to ascertain whether they could pay something towards the cost of their treatment.

285

Health, disease and society in Europe, 1800-1930

[..]

I recovered fairly well after the first operation. However, the incision
did not close properly though I had been in hospital over two months.
There were strange murmurings by the ward sister which I did not
understand, about the wound being ‘slow healing’ and healing by
‘second intention’. I was able to walk a little but the difficulty of the
wound not healing persisted and it began to be evident that I could not
get beyond this stage. The specialist then suggested I should have a
second operation; as he cheerfully said, ‘Just to clear things up.’ I hardly
received this news with wild enthusiasm, but philosophically decided
that something else must be attempted, since I could hardly be very
mobile with an open wound. Moreover, I faithfully believed in that mys-
tique about the medical profession which is known as ‘having faith in
doctors’. Like numbers of working-class people I was overawed by the
fact they wrote in Latin and carried on conversations among them-
selves which nobody else understood. They swept into the ward in a
procession akin to Royalty. First came the specialist, flanked by his
first-assistant on one side and the house-surgeon on the other side:
some two paces behind were a varying number of students and this
group were immediately joined by the ward sister. The rest of the nurs-
ing staff also became alerted. It seemed like a ceremony — a rite — I imag-
ined I heard the sound of trumpets heralding the arrival of the sacred
and the great, for they appeared to take on a God-like aura and be
segregated from ordinary mortals.

[..]

After two weeks’ grace and some ten weeks after the first operation, I
had a second. . . . In those days surgery was a much slower process and
it was again six weeks before I was rid of the tubes and other para-
phernalia. I sensed an air of concealment on the part of the doctor,
though this was just a fleeting thought on my part and I did not worry.
When the specialist came to see me his face wore the usual sauve,
calm expression which concealed the fact that anything was seriously
amiss. Sister told him I was getting along fine. I regarded the fact that
I was in hospital longer than anticipated as a mere nuisance. On the
surface all seemed well. ... This same specialist had . .. set habits.
When he came into the ward he visited his own patients, of whom there
were quite a number, and I noted that he shook hands very cordially
with some of his patients. I wondered why this privilege was extended
to some and not to others. Although his cases were all surgical, there
was considerable variation as to the type of complaint, but I afterwards
discovered that there was one thing which all the patients had in

286

Access to care, 1880-1930

common with whom he shook hands - they had all paid him a private
visit at his Harley Street surgery.

The result of the second operation was much the same as the first,
that is, the incision did not heal beyond a certain stage. As part of the
treatment it was decided to give me four-hourly fomentations,!! as this
was much used before the discovery of antibiotics. The fomentation
started off by feeling burning hot, after which it soon became lukewarm
then, for most part of the four hours between one treatment and
another, I had the feeling of being wrapped round with a cold, clammy
blanket. This was continued for two weeks, day and night, making
no difference whatsoever. Among other treatments, I remember being
prescribed iodine — a few drops on a lump of sugar.

[..]

A conspiracy of silence was being maintained by the doctor and the
staff — if doubts existed, they were certainly not expressed either to
myself or Mother. The sister on this ward rarely did any dressings
though she occasionally looked on. During these viewing periods she
was always sure so far as I was concerned, it was a question of time, a
very short time and success was round the corner . . .

I walked slowly and with difficulty. The deadly monotony of hospital
routine made it hard to keep up morale and remain cheerful. There was
nothing to look at. The walls of the ward were painted dead white and
were completely bare. There was no decor, no pictures or ornaments of
any kind. The only splash of colour during the day, were the flowers
brought in by the patients’ visitors.

... Above all, there was nothing to do. In the days before radio was
installed in all hospitals, the only communication with the outside
world were newspapers, letters, books brought in by visitors and the
official visiting days. There were no organized handicrafts, no library
service, no mobile telephones; in short, there was nothing available to
prevent people with long illnesses from sinking into depression.

[..]

With the exception of two or three who had been there a long time,
there was a complete changeover of ward patients about every three
weeks.

1 fomentation: the application to the body of flannels soaked in water with or without
some added medicinal substances.

287

Health, disease and society in Europe, 1800-1930

There was no flexibility in the strict hospital rules laid down for visiting
times. One and a half hours on Sunday afternoon and one hour on
Wednesday afternoon were the official visiting times. Two and a half
hours each week was considered quite sufficient, neither was there any
allowance made for long-stay patients. Some of the ward sisters openly
considered visiting times an unwarranted interference in the cycle of
work and, as such, a nuisance. Sometimes the nurses were unable to get
the ward work done in time, so that even these meagre periods were cut
short by as much as twenty minutes and this time was always lost.

Officially the hospital allowed four visitors and not more than two at
a time for each patient. As to how this rule was implemented depended
on who was in charge. Sometimes the sister or nurse might spend the
entire time policing the ward, to see that an extra visitor did not slip
through the net. Other times a more tolerant nurse would be in charge
and not bother to harry anybody. Both visiting periods were in the after-
noon, so fewer people came on Wednesdays, since many who were
working could not get away. . . . [Shortly after, Bella Aronovitch briefly
went home, but was then admitted to another voluntary hospital.]

This new hospital was one of the smaller voluntary hospitals, looking
grey and forbidding . . . The nurse informed me that it was a rule for all
new patients to have a bath so, rather unsteadily, I followed the nurse
into a small, very untidy bathroom . . .

Hospital bathrooms, invariably cluttered with all kinds of gear, were
at best untidy, and at worst downright dirty. There never seemed to be
enough space with the result that the ward bathroom became a general
dumping ground. Neither were the bathrooms designed to provide any-
thing like enough baths or washbasins. This ward in which I had just
arrived had eighteen beds, and one small bathroom containing one very
deep bath, difficult to get in and out of . . .

However, there was this curious dichotomy in the attitude towards
cleanliness. On the one hand, all sterilized dressings and treatments
were performed with fanatical attention to the smallest detail and on
the other hand, was this antiquated Victorian bathroom equipment.

[..]

It was definitely more cheerful in the previous hospital; this ward was
quiet, dreary, with a prison-like effect. . . .

Next morning I had the usual visit from the house surgeon who, much
to my surprise, was a woman doctor. She was attractive, very feminine
and had great charm. . . . Following her visit was one from the special-
ist, who greeted me with an expression I was to hear many times. He
said, ‘And how are you —none the better for my asking?’ He was the only

288

Access to care, 1880-1930

consultant I had ever seen who cultivated no bedside manner and was
completely devoid of ‘side’. He would help himself to anything I hap-
pened to have on top of my locker such as sweets or fruit; cut himself
buttonholes from flowers in the ward — this with the help of nurses’
surgical scissors, then sit on the side of the bed and talk in a perfectly
natural way. . . .

After this first visit the specialist had a long talk to Sister away from
my bed. Sister afterwards told me that the day of operation had been
fixed for the coming Thursday. . . .

The result of this operation was absolute disaster. Within hours of it
being performed the doctor had to remove the dressing because of the
bleeding. There was some talk of my going up to the theatre again,
which really reduced me to a state of terror, since I was vomiting badly
as aresult of the recent anaesthetic. The consultant came back twice to
have alook at it and finally decided to leave it alone — to my great relief.
About a week later when the sister was changing the dressing I plucked
up enough courage to have a look at it and found it hard to believe that
part of my body was also part of myself. The specialist, who was much
given to puns and banter, kept up a running commentary with the house
surgeon, the students and the nursing staff about this piece of surgery;
somehow I found it very difficult to join in the fun.

None of the sutures held and there was a gap of some three to four
inches between one side of the incision and the other. The house sur-
geon was very kind to me during this period. She kept reassuring me
that Time was a great healer and it would all right itself . . . I do not wish
to go any further into the harrowing details, except to say my chances
of getting better were almost nil. I became completely bedridden. I did
not realize the enormity of what had happened for some time and still
thought I would get better, though it might take longer.

The behaviour of doctors and nurses towards the patient always
seemed the same — that is, whatever happened to the patient was
regarded as normal and in the natural order of things. They discussed
treatments and conditions among themselves, but there was a united
front towards the patient which might be summed up as, ‘this is how it
is — it cannot be otherwise’. . . .

One day the specialist made a very strange remark. In the course
of the usual routine questions and answers he suddenly said to me,
‘You must hate me.’ I considered this surprising statement and decided
there was no one to blame. In taking the decision to bring me to this
hospital, Mother had intended only my good and every doctor wants
his work to be successful. I have always remembered this conversation,
since it was the only time any doctor had ever said a thing like that to

289

Health, disease and society in Europe, 1800-1930

me. He was unconventional in the whole of his approach to patients,
and I was disconcerted by this remark, especially the use of the word
‘hate’[. . .].

[T]he specialist came into the ward and, after gazing thoughtfully at
the floor for some time, walked slowly towards my bed. . . . This was the
first time for some weeks he had spoken to me, although he had been in
to see his other patients. He was quite straightforward and without any
preliminaries he came quickly to the purpose of his visit. He explained
to me that the doctor in charge had to satisfy the governors that any
patient who occupied a bed for a longer than average period, would
either get better or not. . . . It seemed it was possible to stay in hospital
for a long time, if the doctor could satisfy the governors to that end.
However, if such an assurance was not forthcoming, the patient must
be moved to another hospital where they could keep people for an
indefinite period. He bluntly told me that he did not know how long I
would take to get better and would therefore have to move to another
hospital nearby: Sister would give me all the details. He added he was
very sorry, he would like to keep me but he was being pressed by the
hospital governors. . . .

[..]

Arriving by ambulance at this third hospital I could not see the outside
of the building, though what I saw of the inside resembled a morgue.
The entrance was dark with dingy yellow paintwork: there seemed to
be miles of corridors and passageways. It was curiously quiet, having
none of the bustle and sense of purpose one usually notices on entering
a hospital. There were several old people ambling about who seemed to
be dressed in a kind of uniform. . .. This was my first experience of a
Poor Law hospital. It was in 1929 and the far-reaching Public Health Act
of that year had only just been passed.

As I was wheeled through the door I was astounded by the size of the
ward — it was simply enormous. It was not only long but exceptionally
wide. There were four rows of beds very close together, with only just
enough room between each row to move around . . .

I was put into a bed along one of the inner rows, far away from the
light of any of the windows. My spirits sank and I felt over-whelmed as
I'looked round this sea of beds and faces. . .

The nurse came over, looked at me and my belongings and told
Mother to take my nightdress home. She said that the hospital supplied
nightwear and did not allow patients to wear their own clothes. I took
off my thin nightie, gave it to Mother and I was given the hospital night-
gown. This garment, made from coarse, grey flannelette, was so hard

290

Access to care, 1880-1930

and stiff I did not have the strength to unfold it and Mother helped me
to get into it. The weather was very hot, and on this summer’s day [was
enveloped in this monstrous garment, which dragged a full half yard
over my legs, with wide, gathered sleeves almost twice as long as
my arms — I felt I could scarcely breathe because of the weight. It is
difficult to imagine such a scene in the twentieth century; it was more
in keeping with 1829 than 1929.

[..]

Looking back over this period I am better able to place it in perspective.
The two previous hospitals I had been in were voluntary. I now found
myself in a Poor Law hospital attached to the workhouse. This
explained the rules with regard to clothing and why people appeared so
odd when I first saw them — they were, in fact, dressed in the workhouse
regulation clothes. I was in an institution which belonged more to the
London of Charles Dickens than the beginning of the nineteen-thirties.
... [TThe Law which empowered the London County Council to take
over and administer the workhouses had only just been passed. The
changeover took years to have full effect and I came into this hospital
before any perceptible change had taken place.

One of the arrangements made during this time was that voluntary
hospitals could, by mutual consent, get rid of their long stay and
chronic sick patients by sending them to the newly constituted council
hospitals. It was obviously pressure of this nature that obliged the
specialist to have me moved here. . . .

This hospital consisted of several very large wards. There was no
Outpatients’ department and, so far as I could see, few amenities in the
way of specialized treatment other than an operating theatre. The ward
in which I now found myself was mainly geriatric. . . .

The nursing staff were of a different background and educational level
than those in the voluntary hospitals, though they were certainly not
unkind and did their best in antiquated buildings with outmoded, limited
equipment. There was one doctor for the entire ward, a man in his early
thirties, uncommunicative and tired-looking, which was not surprising
as he always seemed to be on duty. I almost expected him to be on duty
for ever and was mildly surprised to see another doctor on night duty.

[..]

I have never, before or since, been in a hospital ward where so many
people died. Almost every night someone died and occasionally there
were as many as four deaths. ... All this was not as sinister as it
sounds. Then, as now, the problem of the aged sick was a very difficult

291

Health, disease and society in Europe, 1800—1930

one. Not to have to die in the workhouse was the unspoken prayer and
greatest wish of many aged, working-class people. The family of the
aged did their best, often in the face of unemployment and great
poverty. Having nursed an aged person for a long time, the difficulties
towards the end became more than the ordinary family could cope
with, so it was that many of these old folk were finally brought into
hospital, literally dying. Sometimes they would last a few weeks, whilst
others died overnight.

[..]

Time dragged in this ward. As usual, there was nothing to do. The only
break in the deadly monotony were the two visiting periods, Wednesday
and Sunday. By this time, I had developed a large area of extreme sore-
ness round the wound which most doctors who had not seen it before,
thought was a burn. . . . This wound gave me years of pain and made it
difficult for me to concentrate, though I did try to read every day. I was
almost completely cut off from friends I had known at home, although
some wrote or very occasionally paid me a visit. This ward was particu-
larly lonely because of the number of helpess and aged people.

[..]

I continued to lie in bed and became progressively less able to move. For
months I had experienced difficulty when trying to sit up in bed and one
day I noticed with a shock that both my legs were so stiff that I was only
able to bend them with great effort. Even simple exercises might have
saved me some of the misery I endured later, as a result of not being
helped to move about more, although this difficulty of movement cer-
tainly did not start in this hospital. I went on this way for several months.

OEBPS/js/jquery-latest.js
/*!
 * jQuery JavaScript Library v1.4.2
 * http://jquery.com/
 *
 * Copyright 2010, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2010, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Sat Feb 13 22:33:48 2010 -0500
 */
(function(window, undefined) {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
		// The jQuery object is actually just the init constructor 'enhanced'
		return new jQuery.fn.init(selector, context);
	},

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$,

	// Use the correct document accordingly with window argument (sandbox)
	document = window.document,

	// A central reference to the root jQuery(document)
	rootjQuery,

	// A simple way to check for HTML strings or ID strings
	// (both of which we optimize for)
	quickExpr = /^[^<]*(<[\w\W]+>)[^>]*$|^#([\w-]+)$/,

	// Is it a simple selector
	isSimple = /^.[^:#\[\.,]*$/,

	// Check if a string has a non-whitespace character in it
	rnotwhite = /\S/,

	// Used for trimming whitespace
	rtrim = /^(\s|\u00A0)+|(\s|\u00A0)+$/g,

	// Match a standalone tag
	rsingleTag = /^<(\w+)\s*\/?>(?:<\/\1>)?$/,

	// Keep a UserAgent string for use with jQuery.browser
	userAgent = navigator.userAgent,

	// For matching the engine and version of the browser
	browserMatch,
	
	// Has the ready events already been bound?
	readyBound = false,
	
	// The functions to execute on DOM ready
	readyList = [],

	// The ready event handler
	DOMContentLoaded,

	// Save a reference to some core methods
	toString = Object.prototype.toString,
	hasOwnProperty = Object.prototype.hasOwnProperty,
	push = Array.prototype.push,
	slice = Array.prototype.slice,
	indexOf = Array.prototype.indexOf;

jQuery.fn = jQuery.prototype = {
	init: function(selector, context) {
		var match, elem, ret, doc;

		// Handle $(""), $(null), or $(undefined)
		if (!selector) {
			return this;
		}

		// Handle $(DOMElement)
		if (selector.nodeType) {
			this.context = this[0] = selector;
			this.length = 1;
			return this;
		}
		
		// The body element only exists once, optimize finding it
		if (selector === "body" && !context) {
			this.context = document;
			this[0] = document.body;
			this.selector = "body";
			this.length = 1;
			return this;
		}

		// Handle HTML strings
		if (typeof selector === "string") {
			// Are we dealing with HTML string or an ID?
			match = quickExpr.exec(selector);

			// Verify a match, and that no context was specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					doc = (context ? context.ownerDocument || context : document);

					// If a single string is passed in and it's a single tag
					// just do a createElement and skip the rest
					ret = rsingleTag.exec(selector);

					if (ret) {
						if (jQuery.isPlainObject(context)) {
							selector = [document.createElement(ret[1])];
							jQuery.fn.attr.call(selector, context, true);

						} else {
							selector = [doc.createElement(ret[1])];
						}

					} else {
						ret = buildFragment([match[1]], [doc]);
						selector = (ret.cacheable ? ret.fragment.cloneNode(true) : ret.fragment).childNodes;
					}
					
					return jQuery.merge(this, selector);
					
				// HANDLE: $("#id")
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {
						// Handle the case where IE and Opera return items
						// by name instead of ID
						if (elem.id !== match[2]) {
							return rootjQuery.find(selector);
						}

						// Otherwise, we inject the element directly into the jQuery object
						this.length = 1;
						this[0] = elem;
					}

					this.context = document;
					this.selector = selector;
					return this;
				}

			// HANDLE: $("TAG")
			} else if (!context && /^\w+$/.test(selector)) {
				this.selector = selector;
				this.context = document;
				selector = document.getElementsByTagName(selector);
				return jQuery.merge(this, selector);

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || rootjQuery).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return jQuery(context).find(selector);
			}

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return rootjQuery.ready(selector);
		}

		if (selector.selector !== undefined) {
			this.selector = selector.selector;
			this.context = selector.context;
		}

		return jQuery.makeArray(selector, this);
	},

	// Start with an empty selector
	selector: "",

	// The current version of jQuery being used
	jquery: "1.4.2",

	// The default length of a jQuery object is 0
	length: 0,

	// The number of elements contained in the matched element set
	size: function() {
		return this.length;
	},

	toArray: function() {
		return slice.call(this, 0);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {
		return num == null ?

			// Return a 'clean' array
			this.toArray() :

			// Return just the object
			(num < 0 ? this.slice(num)[0] : this[num]);
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems, name, selector) {
		// Build a new jQuery matched element set
		var ret = jQuery();

		if (jQuery.isArray(elems)) {
			push.apply(ret, elems);
		
		} else {
			jQuery.merge(ret, elems);
		}

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		ret.context = this.context;

		if (name === "find") {
			ret.selector = this.selector + (this.selector ? " " : "") + selector;
		} else if (name) {
			ret.selector = this.selector + "." + name + "(" + selector + ")";
		}

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	// (You can seed the arguments with an array of args, but this is
	// only used internally.)
	each: function(callback, args) {
		return jQuery.each(this, callback, args);
	},
	
	ready: function(fn) {
		// Attach the listeners
		jQuery.bindReady();

		// If the DOM is already ready
		if (jQuery.isReady) {
			// Execute the function immediately
			fn.call(document, jQuery);

		// Otherwise, remember the function for later
		} else if (readyList) {
			// Add the function to the wait list
			readyList.push(fn);
		}

		return this;
	},
	
	eq: function(i) {
		return i === -1 ?
			this.slice(i) :
			this.slice(i, +i + 1);
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments),
			"slice", slice.call(arguments).join(","));
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},
	
	end: function() {
		return this.prevObject || jQuery(null);
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: [].sort,
	splice: [].splice
};

// Give the init function the jQuery prototype for later instantiation
jQuery.fn.init.prototype = jQuery.fn;

jQuery.extend = jQuery.fn.extend = function() {
	// copy reference to target object
	var target = arguments[0] || {}, i = 1, length = arguments.length, deep = false, options, name, src, copy;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;
		target = arguments[1] || {};
		// skip the boolean and the target
		i = 2;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// extend jQuery itself if only one argument is passed
	if (length === i) {
		target = this;
		--i;
	}

	for (; i < length; i++) {
		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {
			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging object literal values or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) || jQuery.isArray(copy))) {
					var clone = src && (jQuery.isPlainObject(src) || jQuery.isArray(src)) ? src
						: jQuery.isArray(copy) ? [] : {};

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({
	noConflict: function(deep) {
		window.$ = _$;

		if (deep) {
			window.jQuery = _jQuery;
		}

		return jQuery;
	},
	
	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,
	
	// Handle when the DOM is ready
	ready: function() {
		// Make sure that the DOM is not already loaded
		if (!jQuery.isReady) {
			// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
			if (!document.body) {
				return setTimeout(jQuery.ready, 13);
			}

			// Remember that the DOM is ready
			jQuery.isReady = true;

			// If there are functions bound, to execute
			if (readyList) {
				// Execute all of them
				var fn, i = 0;
				while ((fn = readyList[i++])) {
					fn.call(document, jQuery);
				}

				// Reset the list of functions
				readyList = null;
			}

			// Trigger any bound ready events
			if (jQuery.fn.triggerHandler) {
				jQuery(document).triggerHandler("ready");
			}
		}
	},
	
	bindReady: function() {
		if (readyBound) {
			return;
		}

		readyBound = true;

		// Catch cases where $(document).ready() is called after the
		// browser event has already occurred.
		if (document.readyState === "complete") {
			return jQuery.ready();
		}

		// Mozilla, Opera and webkit nightlies currently support this event
		if (document.addEventListener) {
			// Use the handy event callback
			document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
			
			// A fallback to window.onload, that will always work
			window.addEventListener("load", jQuery.ready, false);

		// If IE event model is used
		} else if (document.attachEvent) {
			// ensure firing before onload,
			// maybe late but safe also for iframes
			document.attachEvent("onreadystatechange", DOMContentLoaded);
			
			// A fallback to window.onload, that will always work
			window.attachEvent("onload", jQuery.ready);

			// If IE and not a frame
			// continually check to see if the document is ready
			var toplevel = false;

			try {
				toplevel = window.frameElement == null;
			} catch(e) {}

			if (document.documentElement.doScroll && toplevel) {
				doScrollCheck();
			}
		}
	},

	// See test/unit/core.js for details concerning isFunction.
	// Since version 1.3, DOM methods and functions like alert
	// aren't supported. They return false on IE (#2968).
	isFunction: function(obj) {
		return toString.call(obj) === "[object Function]";
	},

	isArray: function(obj) {
		return toString.call(obj) === "[object Array]";
	},

	isPlainObject: function(obj) {
		// Must be an Object.
		// Because of IE, we also have to check the presence of the constructor property.
		// Make sure that DOM nodes and window objects don't pass through, as well
		if (!obj || toString.call(obj) !== "[object Object]" || obj.nodeType || obj.setInterval) {
			return false;
		}
		
		// Not own constructor property must be Object
		if (obj.constructor
			&& !hasOwnProperty.call(obj, "constructor")
			&& !hasOwnProperty.call(obj.constructor.prototype, "isPrototypeOf")) {
			return false;
		}
		
		// Own properties are enumerated firstly, so to speed up,
		// if last one is own, then all properties are own.
	
		var key;
		for (key in obj) {}
		
		return key === undefined || hasOwnProperty.call(obj, key);
	},

	isEmptyObject: function(obj) {
		for (var name in obj) {
			return false;
		}
		return true;
	},
	
	error: function(msg) {
		throw msg;
	},
	
	parseJSON: function(data) {
		if (typeof data !== "string" || !data) {
			return null;
		}

		// Make sure leading/trailing whitespace is removed (IE can't handle it)
		data = jQuery.trim(data);
		
		// Make sure the incoming data is actual JSON
		// Logic borrowed from http://json.org/json2.js
		if (/^[\],:{}\s]*$/.test(data.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, "@")
			.replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, "]")
			.replace(/(?:^|:|,)(?:\s*\[)+/g, ""))) {

			// Try to use the native JSON parser first
			return window.JSON && window.JSON.parse ?
				window.JSON.parse(data) :
				(new Function("return " + data))();

		} else {
			jQuery.error("Invalid JSON: " + data);
		}
	},

	noop: function() {},

	// Evalulates a script in a global context
	globalEval: function(data) {
		if (data && rnotwhite.test(data)) {
			// Inspired by code by Andrea Giammarchi
			// http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
			var head = document.getElementsByTagName("head")[0] || document.documentElement,
				script = document.createElement("script");

			script.type = "text/javascript";

			if (jQuery.support.scriptEval) {
				script.appendChild(document.createTextNode(data));
			} else {
				script.text = data;
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709).
			head.insertBefore(script, head.firstChild);
			head.removeChild(script);
		}
	},

	nodeName: function(elem, name) {
		return elem.nodeName && elem.nodeName.toUpperCase() === name.toUpperCase();
	},

	// args is for internal usage only
	each: function(object, callback, args) {
		var name, i = 0,
			length = object.length,
			isObj = length === undefined || jQuery.isFunction(object);

		if (args) {
			if (isObj) {
				for (name in object) {
					if (callback.apply(object[name], args) === false) {
						break;
					}
				}
			} else {
				for (; i < length;) {
					if (callback.apply(object[i++], args) === false) {
						break;
					}
				}
			}

		// A special, fast, case for the most common use of each
		} else {
			if (isObj) {
				for (name in object) {
					if (callback.call(object[name], name, object[name]) === false) {
						break;
					}
				}
			} else {
				for (var value = object[0];
					i < length && callback.call(value, i, value) !== false; value = object[++i]) {}
			}
		}

		return object;
	},

	trim: function(text) {
		return (text || "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(array, results) {
		var ret = results || [];

		if (array != null) {
			// The window, strings (and functions) also have 'length'
			// The extra typeof function check is to prevent crashes
			// in Safari 2 (See: #3039)
			if (array.length == null || typeof array === "string" || jQuery.isFunction(array) || (typeof array !== "function" && array.setInterval)) {
				push.call(ret, array);
			} else {
				jQuery.merge(ret, array);
			}
		}

		return ret;
	},

	inArray: function(elem, array) {
		if (array.indexOf) {
			return array.indexOf(elem);
		}

		for (var i = 0, length = array.length; i < length; i++) {
			if (array[i] === elem) {
				return i;
			}
		}

		return -1;
	},

	merge: function(first, second) {
		var i = first.length, j = 0;

		if (typeof second.length === "number") {
			for (var l = second.length; j < l; j++) {
				first[i++] = second[j];
			}
		
		} else {
			while (second[j] !== undefined) {
				first[i++] = second[j++];
			}
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, inv) {
		var ret = [];

		// Go through the array, only saving the items
		// that pass the validator function
		for (var i = 0, length = elems.length; i < length; i++) {
			if (!inv !== !callback(elems[i], i)) {
				ret.push(elems[i]);
			}
		}

		return ret;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var ret = [], value;

		// Go through the array, translating each of the items to their
		// new value (or values).
		for (var i = 0, length = elems.length; i < length; i++) {
			value = callback(elems[i], i, arg);

			if (value != null) {
				ret[ret.length] = value;
			}
		}

		return ret.concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	proxy: function(fn, proxy, thisObject) {
		if (arguments.length === 2) {
			if (typeof proxy === "string") {
				thisObject = fn;
				fn = thisObject[proxy];
				proxy = undefined;

			} else if (proxy && !jQuery.isFunction(proxy)) {
				thisObject = proxy;
				proxy = undefined;
			}
		}

		if (!proxy && fn) {
			proxy = function() {
				return fn.apply(thisObject || this, arguments);
			};
		}

		// Set the guid of unique handler to the same of original handler, so it can be removed
		if (fn) {
			proxy.guid = fn.guid = fn.guid || proxy.guid || jQuery.guid++;
		}

		// So proxy can be declared as an argument
		return proxy;
	},

	// Use of jQuery.browser is frowned upon.
	// More details: http://docs.jquery.com/Utilities/jQuery.browser
	uaMatch: function(ua) {
		ua = ua.toLowerCase();

		var match = /(webkit)[\/]([\w.]+)/.exec(ua) ||
			/(opera)(?:.*version)?[\/]([\w.]+)/.exec(ua) ||
			/(msie) ([\w.]+)/.exec(ua) ||
			!/compatible/.test(ua) && /(mozilla)(?:.*? rv:([\w.]+))?/.exec(ua) ||
		 	[];

		return { browser: match[1] || "", version: match[2] || "0" };
	},

	browser: {}
});

browserMatch = jQuery.uaMatch(userAgent);
if (browserMatch.browser) {
	jQuery.browser[browserMatch.browser] = true;
	jQuery.browser.version = browserMatch.version;
}

// Deprecated, use jQuery.browser.webkit instead
if (jQuery.browser.webkit) {
	jQuery.browser.safari = true;
}

if (indexOf) {
	jQuery.inArray = function(elem, array) {
		return indexOf.call(array, elem);
	};
}

// All jQuery objects should point back to these
rootjQuery = jQuery(document);

// Cleanup functions for the document ready method
if (document.addEventListener) {
	DOMContentLoaded = function() {
		document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
		jQuery.ready();
	};

} else if (document.attachEvent) {
	DOMContentLoaded = function() {
		// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
		if (document.readyState === "complete") {
			document.detachEvent("onreadystatechange", DOMContentLoaded);
			jQuery.ready();
		}
	};
}

// The DOM ready check for Internet Explorer
function doScrollCheck() {
	if (jQuery.isReady) {
		return;
	}

	try {
		// If IE is used, use the trick by Diego Perini
		// http://javascript.nwbox.com/IEContentLoaded/
		document.documentElement.doScroll("left");
	} catch(error) {
		setTimeout(doScrollCheck, 1);
		return;
	}

	// and execute any waiting functions
	jQuery.ready();
}

function evalScript(i, elem) {
	if (elem.src) {
		jQuery.ajax({
			url: elem.src,
			async: false,
			dataType: "script"
		});
	} else {
		jQuery.globalEval(elem.text || elem.textContent || elem.innerHTML || "");
	}

	if (elem.parentNode) {
		elem.parentNode.removeChild(elem);
	}
}

// Mutifunctional method to get and set values to a collection
// The value/s can be optionally by executed if its a function
function access(elems, key, value, exec, fn, pass) {
	var length = elems.length;
	
	// Setting many attributes
	if (typeof key === "object") {
		for (var k in key) {
			access(elems, k, key[k], exec, fn, value);
		}
		return elems;
	}
	
	// Setting one attribute
	if (value !== undefined) {
		// Optionally, function values get executed if exec is true
		exec = !pass && exec && jQuery.isFunction(value);
		
		for (var i = 0; i < length; i++) {
			fn(elems[i], key, exec ? value.call(elems[i], i, fn(elems[i], key)) : value, pass);
		}
		
		return elems;
	}
	
	// Getting an attribute
	return length ? fn(elems[0], key) : undefined;
}

function now() {
	return (new Date).getTime();
}
(function() {

	jQuery.support = {};

	var root = document.documentElement,
		script = document.createElement("script"),
		div = document.createElement("div"),
		id = "script" + now();

	div.style.display = "none";
	div.innerHTML = " <link/><table></table>a<input type='checkbox'/>";

	var all = div.getElementsByTagName("*"),
		a = div.getElementsByTagName("a")[0];

	// Can't get basic test support
	if (!all || !all.length || !a) {
		return;
	}

	jQuery.support = {
		// IE strips leading whitespace when .innerHTML is used
		leadingWhitespace: div.firstChild.nodeType === 3,

		// Make sure that tbody elements aren't automatically inserted
		// IE will insert them into empty tables
		tbody: !div.getElementsByTagName("tbody").length,

		// Make sure that link elements get serialized correctly by innerHTML
		// This requires a wrapper element in IE
		htmlSerialize: !!div.getElementsByTagName("link").length,

		// Get the style information from getAttribute
		// (IE uses .cssText insted)
		style: /red/.test(a.getAttribute("style")),

		// Make sure that URLs aren't manipulated
		// (IE normalizes it by default)
		hrefNormalized: a.getAttribute("href") === "/a",

		// Make sure that element opacity exists
		// (IE uses filter instead)
		// Use a regex to work around a WebKit issue. See #5145
		opacity: /^0.55$/.test(a.style.opacity),

		// Verify style float existence
		// (IE uses styleFloat instead of cssFloat)
		cssFloat: !!a.style.cssFloat,

		// Make sure that if no value is specified for a checkbox
		// that it defaults to "on".
		// (WebKit defaults to "" instead)
		checkOn: div.getElementsByTagName("input")[0].value === "on",

		// Make sure that a selected-by-default option has a working selected property.
		// (WebKit defaults to false instead of true, IE too, if it's in an optgroup)
		optSelected: document.createElement("select").appendChild(document.createElement("option")).selected,

		parentNode: div.removeChild(div.appendChild(document.createElement("div"))).parentNode === null,

		// Will be defined later
		deleteExpando: true,
		checkClone: false,
		scriptEval: false,
		noCloneEvent: true,
		boxModel: null
	};

	script.type = "text/javascript";
	try {
		script.appendChild(document.createTextNode("window." + id + "=1;"));
	} catch(e) {}

	root.insertBefore(script, root.firstChild);

	// Make sure that the execution of code works by injecting a script
	// tag with appendChild/createTextNode
	// (IE doesn't support this, fails, and uses .text instead)
	if (window[id]) {
		jQuery.support.scriptEval = true;
		delete window[id];
	}

	// Test to see if it's possible to delete an expando from an element
	// Fails in Internet Explorer
	try {
		delete script.test;
	
	} catch(e) {
		jQuery.support.deleteExpando = false;
	}

	root.removeChild(script);

	if (div.attachEvent && div.fireEvent) {
		div.attachEvent("onclick", function click() {
			// Cloning a node shouldn't copy over any
			// bound event handlers (IE does this)
			jQuery.support.noCloneEvent = false;
			div.detachEvent("onclick", click);
		});
		div.cloneNode(true).fireEvent("onclick");
	}

	div = document.createElement("div");
	div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

	var fragment = document.createDocumentFragment();
	fragment.appendChild(div.firstChild);

	// WebKit doesn't clone checked state correctly in fragments
	jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true).lastChild.checked;

	// Figure out if the W3C box model works as expected
	// document.body must exist before we can do this
	jQuery(function() {
		var div = document.createElement("div");
		div.style.width = div.style.paddingLeft = "1px";

		document.body.appendChild(div);
		jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
		document.body.removeChild(div).style.display = 'none';

		div = null;
	});

	// Technique from Juriy Zaytsev
	// http://thinkweb2.com/projects/prototype/detecting-event-support-without-browser-sniffing/
	var eventSupported = function(eventName) {
		var el = document.createElement("div");
		eventName = "on" + eventName;

		var isSupported = (eventName in el);
		if (!isSupported) {
			el.setAttribute(eventName, "return;");
			isSupported = typeof el[eventName] === "function";
		}
		el = null;

		return isSupported;
	};
	
	jQuery.support.submitBubbles = eventSupported("submit");
	jQuery.support.changeBubbles = eventSupported("change");

	// release memory in IE
	root = script = div = all = a = null;
})();

jQuery.props = {
	"for": "htmlFor",
	"class": "className",
	readonly: "readOnly",
	maxlength: "maxLength",
	cellspacing: "cellSpacing",
	rowspan: "rowSpan",
	colspan: "colSpan",
	tabindex: "tabIndex",
	usemap: "useMap",
	frameborder: "frameBorder"
};
var expando = "jQuery" + now(), uuid = 0, windowData = {};

jQuery.extend({
	cache: {},
	
	expando:expando,

	// The following elements throw uncatchable exceptions if you
	// attempt to add expando properties to them.
	noData: {
		"embed": true,
		"object": true,
		"applet": true
	},

	data: function(elem, name, data) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache;

		if (!id && typeof name === "string" && data === undefined) {
			return null;
		}

		// Compute a unique ID for the element
		if (!id) {
			id = ++uuid;
		}

		// Avoid generating a new cache unless none exists and we
		// want to manipulate it.
		if (typeof name === "object") {
			elem[expando] = id;
			thisCache = cache[id] = jQuery.extend(true, {}, name);

		} else if (!cache[id]) {
			elem[expando] = id;
			cache[id] = {};
		}

		thisCache = cache[id];

		// Prevent overriding the named cache with undefined values
		if (data !== undefined) {
			thisCache[name] = data;
		}

		return typeof name === "string" ? thisCache[name] : thisCache;
	},

	removeData: function(elem, name) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache = cache[id];

		// If we want to remove a specific section of the element's data
		if (name) {
			if (thisCache) {
				// Remove the section of cache data
				delete thisCache[name];

				// If we've removed all the data, remove the element's cache
				if (jQuery.isEmptyObject(thisCache)) {
					jQuery.removeData(elem);
				}
			}

		// Otherwise, we want to remove all of the element's data
		} else {
			if (jQuery.support.deleteExpando) {
				delete elem[jQuery.expando];

			} else if (elem.removeAttribute) {
				elem.removeAttribute(jQuery.expando);
			}

			// Completely remove the data cache
			delete cache[id];
		}
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		if (typeof key === "undefined" && this.length) {
			return jQuery.data(this[0]);

		} else if (typeof key === "object") {
			return this.each(function() {
				jQuery.data(this, key);
			});
		}

		var parts = key.split(".");
		parts[1] = parts[1] ? "." + parts[1] : "";

		if (value === undefined) {
			var data = this.triggerHandler("getData" + parts[1] + "!", [parts[0]]);

			if (data === undefined && this.length) {
				data = jQuery.data(this[0], key);
			}
			return data === undefined && parts[1] ?
				this.data(parts[0]) :
				data;
		} else {
			return this.trigger("setData" + parts[1] + "!", [parts[0], value]).each(function() {
				jQuery.data(this, key, value);
			});
		}
	},

	removeData: function(key) {
		return this.each(function() {
			jQuery.removeData(this, key);
		});
	}
});
jQuery.extend({
	queue: function(elem, type, data) {
		if (!elem) {
			return;
		}

		type = (type || "fx") + "queue";
		var q = jQuery.data(elem, type);

		// Speed up dequeue by getting out quickly if this is just a lookup
		if (!data) {
			return q || [];
		}

		if (!q || jQuery.isArray(data)) {
			q = jQuery.data(elem, type, jQuery.makeArray(data));

		} else {
			q.push(data);
		}

		return q;
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type), fn = queue.shift();

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
		}

		if (fn) {
			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			fn.call(elem, function() {
				jQuery.dequeue(elem, type);
			});
		}
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		if (typeof type !== "string") {
			data = type;
			type = "fx";
		}

		if (data === undefined) {
			return jQuery.queue(this[0], type);
		}
		return this.each(function(i, elem) {
			var queue = jQuery.queue(this, type, data);

			if (type === "fx" && queue[0] !== "inprogress") {
				jQuery.dequeue(this, type);
			}
		});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},

	// Based off of the plugin by Clint Helfers, with permission.
	// http://blindsignals.com/index.php/2009/07/jquery-delay/
	delay: function(time, type) {
		time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
		type = type || "fx";

		return this.queue(type, function() {
			var elem = this;
			setTimeout(function() {
				jQuery.dequeue(elem, type);
			}, time);
		});
	},

	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	}
});
var rclass = /[\n\t]/g,
	rspace = /\s+/,
	rreturn = /\r/g,
	rspecialurl = /href|src|style/,
	rtype = /(button|input)/i,
	rfocusable = /(button|input|object|select|textarea)/i,
	rclickable = /^(a|area)$/i,
	rradiocheck = /radio|checkbox/;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, name, value, true, jQuery.attr);
	},

	removeAttr: function(name, fn) {
		return this.each(function(){
			jQuery.attr(this, name, "");
			if (this.nodeType === 1) {
				this.removeAttribute(name);
			}
		});
	},

	addClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.addClass(value.call(this, i, self.attr("class")));
			});
		}

		if (value && typeof value === "string") {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1) {
					if (!elem.className) {
						elem.className = value;

					} else {
						var className = " " + elem.className + " ", setClass = elem.className;
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							if (className.indexOf(" " + classNames[c] + " ") < 0) {
								setClass += " " + classNames[c];
							}
						}
						elem.className = jQuery.trim(setClass);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.removeClass(value.call(this, i, self.attr("class")));
			});
		}

		if ((value && typeof value === "string") || value === undefined) {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1 && elem.className) {
					if (value) {
						var className = (" " + elem.className + " ").replace(rclass, " ");
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							className = className.replace(" " + classNames[c] + " ", " ");
						}
						elem.className = jQuery.trim(className);

					} else {
						elem.className = "";
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value, isBool = typeof stateVal === "boolean";

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.toggleClass(value.call(this, i, self.attr("class"), stateVal), stateVal);
			});
		}

		return this.each(function() {
			if (type === "string") {
				// toggle individual class names
				var className, i = 0, self = jQuery(this),
					state = stateVal,
					classNames = value.split(rspace);

				while ((className = classNames[i++])) {
					// check each className given, space seperated list
					state = isBool ? state : !self.hasClass(className);
					self[state ? "addClass" : "removeClass"](className);
				}

			} else if (type === "undefined" || type === "boolean") {
				if (this.className) {
					// store className if set
					jQuery.data(this, "__className__", this.className);
				}

				// toggle whole className
				this.className = this.className || value === false ? "" : jQuery.data(this, "__className__") || "";
			}
		});
	},

	hasClass: function(selector) {
		var className = " " + selector + " ";
		for (var i = 0, l = this.length; i < l; i++) {
			if ((" " + this[i].className + " ").replace(rclass, " ").indexOf(className) > -1) {
				return true;
			}
		}

		return false;
	},

	val: function(value) {
		if (value === undefined) {
			var elem = this[0];

			if (elem) {
				if (jQuery.nodeName(elem, "option")) {
					return (elem.attributes.value || {}).specified ? elem.value : elem.text;
				}

				// We need to handle select boxes special
				if (jQuery.nodeName(elem, "select")) {
					var index = elem.selectedIndex,
						values = [],
						options = elem.options,
						one = elem.type === "select-one";

					// Nothing was selected
					if (index < 0) {
						return null;
					}

					// Loop through all the selected options
					for (var i = one ? index : 0, max = one ? index + 1 : options.length; i < max; i++) {
						var option = options[i];

						if (option.selected) {
							// Get the specifc value for the option
							value = jQuery(option).val();

							// We don't need an array for one selects
							if (one) {
								return value;
							}

							// Multi-Selects return an array
							values.push(value);
						}
					}

					return values;
				}

				// Handle the case where in Webkit "" is returned instead of "on" if a value isn't specified
				if (rradiocheck.test(elem.type) && !jQuery.support.checkOn) {
					return elem.getAttribute("value") === null ? "on" : elem.value;
				}
				

				// Everything else, we just grab the value
				return (elem.value || "").replace(rreturn, "");

			}

			return undefined;
		}

		var isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var self = jQuery(this), val = value;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, self.val());
			}

			// Typecast each time if the value is a Function and the appended
			// value is therefore different each time.
			if (typeof val === "number") {
				val += "";
			}

			if (jQuery.isArray(val) && rradiocheck.test(this.type)) {
				this.checked = jQuery.inArray(self.val(), val) >= 0;

			} else if (jQuery.nodeName(this, "select")) {
				var values = jQuery.makeArray(val);

				jQuery("option", this).each(function() {
					this.selected = jQuery.inArray(jQuery(this).val(), values) >= 0;
				});

				if (!values.length) {
					this.selectedIndex = -1;
				}

			} else {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	attrFn: {
		val: true,
		css: true,
		html: true,
		text: true,
		data: true,
		width: true,
		height: true,
		offset: true
	},
		
	attr: function(elem, name, value, pass) {
		// don't set attributes on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		if (pass && name in jQuery.attrFn) {
			return jQuery(elem)[name](value);
		}

		var notxml = elem.nodeType !== 1 || !jQuery.isXMLDoc(elem),
			// Whether we are setting (or getting)
			set = value !== undefined;

		// Try to normalize/fix the name
		name = notxml && jQuery.props[name] || name;

		// Only do all the following if this is a node (faster for style)
		if (elem.nodeType === 1) {
			// These attributes require special treatment
			var special = rspecialurl.test(name);

			// Safari mis-reports the default selected property of an option
			// Accessing the parent's selectedIndex property fixes it
			if (name === "selected" && !jQuery.support.optSelected) {
				var parent = elem.parentNode;
				if (parent) {
					parent.selectedIndex;
	
					// Make sure that it also works with optgroups, see #5701
					if (parent.parentNode) {
						parent.parentNode.selectedIndex;
					}
				}
			}

			// If applicable, access the attribute via the DOM 0 way
			if (name in elem && notxml && !special) {
				if (set) {
					// We can't allow the type property to be changed (since it causes problems in IE)
					if (name === "type" && rtype.test(elem.nodeName) && elem.parentNode) {
						jQuery.error("type property can't be changed");
					}

					elem[name] = value;
				}

				// browsers index elements by id/name on forms, give priority to attributes.
				if (jQuery.nodeName(elem, "form") && elem.getAttributeNode(name)) {
					return elem.getAttributeNode(name).nodeValue;
				}

				// elem.tabIndex doesn't always return the correct value when it hasn't been explicitly set
				// http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				if (name === "tabIndex") {
					var attributeNode = elem.getAttributeNode("tabIndex");

					return attributeNode && attributeNode.specified ?
						attributeNode.value :
						rfocusable.test(elem.nodeName) || rclickable.test(elem.nodeName) && elem.href ?
							0 :
							undefined;
				}

				return elem[name];
			}

			if (!jQuery.support.style && notxml && name === "style") {
				if (set) {
					elem.style.cssText = "" + value;
				}

				return elem.style.cssText;
			}

			if (set) {
				// convert the value to a string (all browsers do this but IE) see #1070
				elem.setAttribute(name, "" + value);
			}

			var attr = !jQuery.support.hrefNormalized && notxml && special ?
					// Some attributes require a special call on IE
					elem.getAttribute(name, 2) :
					elem.getAttribute(name);

			// Non-existent attributes return null, we normalize to undefined
			return attr === null ? undefined : attr;
		}

		// elem is actually elem.style ... set the style
		// Using attr for specific style information is now deprecated. Use style instead.
		return jQuery.style(elem, name, value);
	}
});
var rnamespaces = /\.(.*)$/,
	fcleanup = function(nm) {
		return nm.replace(/[^\w\s\.\|`]/g, function(ch) {
			return "\\" + ch;
		});
	};

/*
 * A number of helper functions used for managing events.
 * Many of the ideas behind this code originated from
 * Dean Edwards' addEvent library.
 */
jQuery.event = {

	// Bind an event to an element
	// Original by Dean Edwards
	add: function(elem, types, handler, data) {
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// For whatever reason, IE has trouble passing the window object
		// around, causing it to be cloned in the process
		if (elem.setInterval && (elem !== window && !elem.frameElement)) {
			elem = window;
		}

		var handleObjIn, handleObj;

		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
		}

		// Make sure that the function being executed has a unique ID
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure
		var elemData = jQuery.data(elem);

		// If no elemData is found then we must be trying to bind to one of the
		// banned noData elements
		if (!elemData) {
			return;
		}

		var events = elemData.events = elemData.events || {},
			eventHandle = elemData.handle, eventHandle;

		if (!eventHandle) {
			elemData.handle = eventHandle = function() {
				// Handle the second event of a trigger and when
				// an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && !jQuery.event.triggered ?
					jQuery.event.handle.apply(eventHandle.elem, arguments) :
					undefined;
			};
		}

		// Add elem as a property of the handle function
		// This is to prevent a memory leak with non-native events in IE.
		eventHandle.elem = elem;

		// Handle multiple events separated by a space
		// jQuery(...).bind("mouseover mouseout", fn);
		types = types.split(" ");

		var type, i = 0, namespaces;

		while ((type = types[i++])) {
			handleObj = handleObjIn ?
				jQuery.extend({}, handleObjIn) :
				{ handler: handler, data: data };

			// Namespaced event handlers
			if (type.indexOf(".") > -1) {
				namespaces = type.split(".");
				type = namespaces.shift();
				handleObj.namespace = namespaces.slice(0).sort().join(".");

			} else {
				namespaces = [];
				handleObj.namespace = "";
			}

			handleObj.type = type;
			handleObj.guid = handler.guid;

			// Get the current list of functions bound to this event
			var handlers = events[type],
				special = jQuery.event.special[type] || {};

			// Init the event handler queue
			if (!handlers) {
				handlers = events[type] = [];

				// Check for a special event handler
				// Only use addEventListener/attachEvent if the special
				// events handler returns false
				if (!special.setup || special.setup.call(elem, data, namespaces, eventHandle) === false) {
					// Bind the global event handler to the element
					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle, false);

					} else if (elem.attachEvent) {
						elem.attachEvent("on" + type, eventHandle);
					}
				}
			}
			
			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add the function to the element's handler list
			handlers.push(handleObj);

			// Keep track of which events have been used, for global triggering
			jQuery.event.global[type] = true;
		}

		// Nullify elem to prevent memory leaks in IE
		elem = null;
	},

	global: {},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, pos) {
		// don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		var ret, type, fn, i = 0, all, namespaces, namespace, special, eventType, handleObj, origType,
			elemData = jQuery.data(elem),
			events = elemData && elemData.events;

		if (!elemData || !events) {
			return;
		}

		// types is actually an event object here
		if (types && types.type) {
			handler = types.handler;
			types = types.type;
		}

		// Unbind all events for the element
		if (!types || typeof types === "string" && types.charAt(0) === ".") {
			types = types || "";

			for (type in events) {
				jQuery.event.remove(elem, type + types);
			}

			return;
		}

		// Handle multiple events separated by a space
		// jQuery(...).unbind("mouseover mouseout", fn);
		types = types.split(" ");

		while ((type = types[i++])) {
			origType = type;
			handleObj = null;
			all = type.indexOf(".") < 0;
			namespaces = [];

			if (!all) {
				// Namespaced event handlers
				namespaces = type.split(".");
				type = namespaces.shift();

				namespace = new RegExp("(^|\\.)" +
					jQuery.map(namespaces.slice(0).sort(), fcleanup).join("\\.(?:.*\\.)?") + "(\\.|$)")
			}

			eventType = events[type];

			if (!eventType) {
				continue;
			}

			if (!handler) {
				for (var j = 0; j < eventType.length; j++) {
					handleObj = eventType[j];

					if (all || namespace.test(handleObj.namespace)) {
						jQuery.event.remove(elem, origType, handleObj.handler, j);
						eventType.splice(j--, 1);
					}
				}

				continue;
			}

			special = jQuery.event.special[type] || {};

			for (var j = pos || 0; j < eventType.length; j++) {
				handleObj = eventType[j];

				if (handler.guid === handleObj.guid) {
					// remove the given handler for the given type
					if (all || namespace.test(handleObj.namespace)) {
						if (pos == null) {
							eventType.splice(j--, 1);
						}

						if (special.remove) {
							special.remove.call(elem, handleObj);
						}
					}

					if (pos != null) {
						break;
					}
				}
			}

			// remove generic event handler if no more handlers exist
			if (eventType.length === 0 || pos != null && eventType.length === 1) {
				if (!special.teardown || special.teardown.call(elem, namespaces) === false) {
					removeEvent(elem, type, elemData.handle);
				}

				ret = null;
				delete events[type];
			}
		}

		// Remove the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			var handle = elemData.handle;
			if (handle) {
				handle.elem = null;
			}

			delete elemData.events;
			delete elemData.handle;

			if (jQuery.isEmptyObject(elemData)) {
				jQuery.removeData(elem);
			}
		}
	},

	// bubbling is internal
	trigger: function(event, data, elem /*, bubbling */) {
		// Event object or event type
		var type = event.type || event,
			bubbling = arguments[3];

		if (!bubbling) {
			event = typeof event === "object" ?
				// jQuery.Event object
				event[expando] ? event :
				// Object literal
				jQuery.extend(jQuery.Event(type), event) :
				// Just the event type (string)
				jQuery.Event(type);

			if (type.indexOf("!") >= 0) {
				event.type = type = type.slice(0, -1);
				event.exclusive = true;
			}

			// Handle a global trigger
			if (!elem) {
				// Don't bubble custom events when global (to avoid too much overhead)
				event.stopPropagation();

				// Only trigger if we've ever bound an event for it
				if (jQuery.event.global[type]) {
					jQuery.each(jQuery.cache, function() {
						if (this.events && this.events[type]) {
							jQuery.event.trigger(event, data, this.handle.elem);
						}
					});
				}
			}

			// Handle triggering a single element

			// don't do events on text and comment nodes
			if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
				return undefined;
			}

			// Clean up in case it is reused
			event.result = undefined;
			event.target = elem;

			// Clone the incoming data, if any
			data = jQuery.makeArray(data);
			data.unshift(event);
		}

		event.currentTarget = elem;

		// Trigger the event, it is assumed that "handle" is a function
		var handle = jQuery.data(elem, "handle");
		if (handle) {
			handle.apply(elem, data);
		}

		var parent = elem.parentNode || elem.ownerDocument;

		// Trigger an inline bound script
		try {
			if (!(elem && elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()])) {
				if (elem["on" + type] && elem["on" + type].apply(elem, data) === false) {
					event.result = false;
				}
			}

		// prevent IE from throwing an error for some elements with some event types, see #3533
		} catch (e) {}

		if (!event.isPropagationStopped() && parent) {
			jQuery.event.trigger(event, data, parent, true);

		} else if (!event.isDefaultPrevented()) {
			var target = event.target, old,
				isClick = jQuery.nodeName(target, "a") && type === "click",
				special = jQuery.event.special[type] || {};

			if ((!special._default || special._default.call(elem, event) === false) &&
				!isClick && !(target && target.nodeName && jQuery.noData[target.nodeName.toLowerCase()])) {

				try {
					if (target[type]) {
						// Make sure that we don't accidentally re-trigger the onFOO events
						old = target["on" + type];

						if (old) {
							target["on" + type] = null;
						}

						jQuery.event.triggered = true;
						target[type]();
					}

				// prevent IE from throwing an error for some elements with some event types, see #3533
				} catch (e) {}

				if (old) {
					target["on" + type] = old;
				}

				jQuery.event.triggered = false;
			}
		}
	},

	handle: function(event) {
		var all, handlers, namespaces, namespace, events;

		event = arguments[0] = jQuery.event.fix(event || window.event);
		event.currentTarget = this;

		// Namespaced event handlers
		all = event.type.indexOf(".") < 0 && !event.exclusive;

		if (!all) {
			namespaces = event.type.split(".");
			event.type = namespaces.shift();
			namespace = new RegExp("(^|\\.)" + namespaces.slice(0).sort().join("\\.(?:.*\\.)?") + "(\\.|$)");
		}

		var events = jQuery.data(this, "events"), handlers = events[event.type];

		if (events && handlers) {
			// Clone the handlers to prevent manipulation
			handlers = handlers.slice(0);

			for (var j = 0, l = handlers.length; j < l; j++) {
				var handleObj = handlers[j];

				// Filter the functions by class
				if (all || namespace.test(handleObj.namespace)) {
					// Pass in a reference to the handler function itself
					// So that we can later remove it
					event.handler = handleObj.handler;
					event.data = handleObj.data;
					event.handleObj = handleObj;
	
					var ret = handleObj.handler.apply(this, arguments);

					if (ret !== undefined) {
						event.result = ret;
						if (ret === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}

					if (event.isImmediatePropagationStopped()) {
						break;
					}
				}
			}
		}

		return event.result;
	},

	props: "altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY originalTarget pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),

	fix: function(event) {
		if (event[expando]) {
			return event;
		}

		// store a copy of the original event object
		// and "clone" to set read-only properties
		var originalEvent = event;
		event = jQuery.Event(originalEvent);

		for (var i = this.props.length, prop; i;) {
			prop = this.props[--i];
			event[prop] = originalEvent[prop];
		}

		// Fix target property, if necessary
		if (!event.target) {
			event.target = event.srcElement || document; // Fixes #1925 where srcElement might not be defined either
		}

		// check if target is a textnode (safari)
		if (event.target.nodeType === 3) {
			event.target = event.target.parentNode;
		}

		// Add relatedTarget, if necessary
		if (!event.relatedTarget && event.fromElement) {
			event.relatedTarget = event.fromElement === event.target ? event.toElement : event.fromElement;
		}

		// Calculate pageX/Y if missing and clientX/Y available
		if (event.pageX == null && event.clientX != null) {
			var doc = document.documentElement, body = document.body;
			event.pageX = event.clientX + (doc && doc.scrollLeft || body && body.scrollLeft || 0) - (doc && doc.clientLeft || body && body.clientLeft || 0);
			event.pageY = event.clientY + (doc && doc.scrollTop || body && body.scrollTop || 0) - (doc && doc.clientTop || body && body.clientTop || 0);
		}

		// Add which for key events
		if (!event.which && ((event.charCode || event.charCode === 0) ? event.charCode : event.keyCode)) {
			event.which = event.charCode || event.keyCode;
		}

		// Add metaKey to non-Mac browsers (use ctrl for PC's and Meta for Macs)
		if (!event.metaKey && event.ctrlKey) {
			event.metaKey = event.ctrlKey;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		// Note: button is not normalized, so don't use it
		if (!event.which && event.button !== undefined) {
			event.which = (event.button & 1 ? 1 : (event.button & 2 ? 3 : (event.button & 4 ? 2 : 0)));
		}

		return event;
	},

	// Deprecated, use jQuery.guid instead
	guid: 1E8,

	// Deprecated, use jQuery.proxy instead
	proxy: jQuery.proxy,

	special: {
		ready: {
			// Make sure the ready event is setup
			setup: jQuery.bindReady,
			teardown: jQuery.noop
		},

		live: {
			add: function(handleObj) {
				jQuery.event.add(this, handleObj.origType, jQuery.extend({}, handleObj, {handler: liveHandler}));
			},

			remove: function(handleObj) {
				var remove = true,
					type = handleObj.origType.replace(rnamespaces, "");
				
				jQuery.each(jQuery.data(this, "events").live || [], function() {
					if (type === this.origType.replace(rnamespaces, "")) {
						remove = false;
						return false;
					}
				});

				if (remove) {
					jQuery.event.remove(this, handleObj.origType, liveHandler);
				}
			}

		},

		beforeunload: {
			setup: function(data, namespaces, eventHandle) {
				// We only want to do this special case on windows
				if (this.setInterval) {
					this.onbeforeunload = eventHandle;
				}

				return false;
			},
			teardown: function(namespaces, eventHandle) {
				if (this.onbeforeunload === eventHandle) {
					this.onbeforeunload = null;
				}
			}
		}
	}
};

var removeEvent = document.removeEventListener ?
	function(elem, type, handle) {
		elem.removeEventListener(type, handle, false);
	} :
	function(elem, type, handle) {
		elem.detachEvent("on" + type, handle);
	};

jQuery.Event = function(src) {
	// Allow instantiation without the 'new' keyword
	if (!this.preventDefault) {
		return new jQuery.Event(src);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;
	// Event type
	} else {
		this.type = src;
	}

	// timeStamp is buggy for some events on Firefox(#3843)
	// So we won't rely on the native value
	this.timeStamp = now();

	// Mark it as fixed
	this[expando] = true;
};

function returnFalse() {
	return false;
}
function returnTrue() {
	return true;
}

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	preventDefault: function() {
		this.isDefaultPrevented = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		
		// if preventDefault exists run it on the original event
		if (e.preventDefault) {
			e.preventDefault();
		}
		// otherwise set the returnValue property of the original event to false (IE)
		e.returnValue = false;
	},
	stopPropagation: function() {
		this.isPropagationStopped = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		// if stopPropagation exists run it on the original event
		if (e.stopPropagation) {
			e.stopPropagation();
		}
		// otherwise set the cancelBubble property of the original event to true (IE)
		e.cancelBubble = true;
	},
	stopImmediatePropagation: function() {
		this.isImmediatePropagationStopped = returnTrue;
		this.stopPropagation();
	},
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse
};

// Checks if an event happened on an element within another element
// Used in jQuery.event.special.mouseenter and mouseleave handlers
var withinElement = function(event) {
	// Check if mouse(over|out) are still within the same parent element
	var parent = event.relatedTarget;

	// Firefox sometimes assigns relatedTarget a XUL element
	// which we cannot access the parentNode property of
	try {
		// Traverse up the tree
		while (parent && parent !== this) {
			parent = parent.parentNode;
		}

		if (parent !== this) {
			// set the correct event type
			event.type = event.data;

			// handle event if we actually just moused on to a non sub-element
			jQuery.event.handle.apply(this, arguments);
		}

	// assuming we've left the element since we most likely mousedover a xul element
	} catch(e) { }
},

// In case of event delegation, we only need to rename the event.type,
// liveHandler will take care of the rest.
delegate = function(event) {
	event.type = event.data;
	jQuery.event.handle.apply(this, arguments);
};

// Create mouseenter and mouseleave events
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		setup: function(data) {
			jQuery.event.add(this, fix, data && data.selector ? delegate : withinElement, orig);
		},
		teardown: function(data) {
			jQuery.event.remove(this, fix, data && data.selector ? delegate : withinElement);
		}
	};
});

// submit delegation
if (!jQuery.support.submitBubbles) {

	jQuery.event.special.submit = {
		setup: function(data, namespaces) {
			if (this.nodeName.toLowerCase() !== "form") {
				jQuery.event.add(this, "click.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "submit" || type === "image") && jQuery(elem).closest("form").length) {
						return trigger("submit", this, arguments);
					}
				});
	
				jQuery.event.add(this, "keypress.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "text" || type === "password") && jQuery(elem).closest("form").length && e.keyCode === 13) {
						return trigger("submit", this, arguments);
					}
				});

			} else {
				return false;
			}
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialSubmit");
		}
	};

}

// change delegation, happens here so we have bind.
if (!jQuery.support.changeBubbles) {

	var formElems = /textarea|input|select/i,

	changeFilters,

	getVal = function(elem) {
		var type = elem.type, val = elem.value;

		if (type === "radio" || type === "checkbox") {
			val = elem.checked;

		} else if (type === "select-multiple") {
			val = elem.selectedIndex > -1 ?
				jQuery.map(elem.options, function(elem) {
					return elem.selected;
				}).join("-") :
				"";

		} else if (elem.nodeName.toLowerCase() === "select") {
			val = elem.selectedIndex;
		}

		return val;
	},

	testChange = function testChange(e) {
		var elem = e.target, data, val;

		if (!formElems.test(elem.nodeName) || elem.readOnly) {
			return;
		}

		data = jQuery.data(elem, "_change_data");
		val = getVal(elem);

		// the current data will be also retrieved by beforeactivate
		if (e.type !== "focusout" || elem.type !== "radio") {
			jQuery.data(elem, "_change_data", val);
		}
		
		if (data === undefined || val === data) {
			return;
		}

		if (data != null || val) {
			e.type = "change";
			return jQuery.event.trigger(e, arguments[1], elem);
		}
	};

	jQuery.event.special.change = {
		filters: {
			focusout: testChange,

			click: function(e) {
				var elem = e.target, type = elem.type;

				if (type === "radio" || type === "checkbox" || elem.nodeName.toLowerCase() === "select") {
					return testChange.call(this, e);
				}
			},

			// Change has to be called before submit
			// Keydown will be called before keypress, which is used in submit-event delegation
			keydown: function(e) {
				var elem = e.target, type = elem.type;

				if ((e.keyCode === 13 && elem.nodeName.toLowerCase() !== "textarea") ||
					(e.keyCode === 32 && (type === "checkbox" || type === "radio")) ||
					type === "select-multiple") {
					return testChange.call(this, e);
				}
			},

			// Beforeactivate happens also before the previous element is blurred
			// with this event you can't trigger a change event, but you can store
			// information/focus[in] is not needed anymore
			beforeactivate: function(e) {
				var elem = e.target;
				jQuery.data(elem, "_change_data", getVal(elem));
			}
		},

		setup: function(data, namespaces) {
			if (this.type === "file") {
				return false;
			}

			for (var type in changeFilters) {
				jQuery.event.add(this, type + ".specialChange", changeFilters[type]);
			}

			return formElems.test(this.nodeName);
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialChange");

			return formElems.test(this.nodeName);
		}
	};

	changeFilters = jQuery.event.special.change.filters;
}

function trigger(type, elem, args) {
	args[0].type = type;
	return jQuery.event.handle.apply(elem, args);
}

// Create "bubbling" focus and blur events
if (document.addEventListener) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {
		jQuery.event.special[fix] = {
			setup: function() {
				this.addEventListener(orig, handler, true);
			},
			teardown: function() {
				this.removeEventListener(orig, handler, true);
			}
		};

		function handler(e) {
			e = jQuery.event.fix(e);
			e.type = fix;
			return jQuery.event.handle.call(this, e);
		}
	});
}

jQuery.each(["bind", "one"], function(i, name) {
	jQuery.fn[name] = function(type, data, fn) {
		// Handle object literals
		if (typeof type === "object") {
			for (var key in type) {
				this[name](key, data, type[key], fn);
			}
			return this;
		}
		
		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		var handler = name === "one" ? jQuery.proxy(fn, function(event) {
			jQuery(this).unbind(event, handler);
			return fn.apply(this, arguments);
		}) : fn;

		if (type === "unload" && name !== "one") {
			this.one(type, data, fn);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.add(this[i], type, handler, data);
			}
		}

		return this;
	};
});

jQuery.fn.extend({
	unbind: function(type, fn) {
		// Handle object literals
		if (typeof type === "object" && !type.preventDefault) {
			for (var key in type) {
				this.unbind(key, type[key]);
			}

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.remove(this[i], type, fn);
			}
		}

		return this;
	},
	
	delegate: function(selector, types, data, fn) {
		return this.live(types, data, fn, selector);
	},
	
	undelegate: function(selector, types, fn) {
		if (arguments.length === 0) {
				return this.unbind("live");
		
		} else {
			return this.die(types, null, fn, selector);
		}
	},
	
	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},

	triggerHandler: function(type, data) {
		if (this[0]) {
			var event = jQuery.Event(type);
			event.preventDefault();
			event.stopPropagation();
			jQuery.event.trigger(event, data, this[0]);
			return event.result;
		}
	},

	toggle: function(fn) {
		// Save reference to arguments for access in closure
		var args = arguments, i = 1;

		// link all the functions, so any of them can unbind this click handler
		while (i < args.length) {
			jQuery.proxy(fn, args[i++]);
		}

		return this.click(jQuery.proxy(fn, function(event) {
			// Figure out which function to execute
			var lastToggle = (jQuery.data(this, "lastToggle" + fn.guid) || 0) % i;
			jQuery.data(this, "lastToggle" + fn.guid, lastToggle + 1);

			// Make sure that clicks stop
			event.preventDefault();

			// and execute the function
			return args[lastToggle].apply(this, arguments) || false;
		}));
	},

	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

var liveMap = {
	focus: "focusin",
	blur: "focusout",
	mouseenter: "mouseover",
	mouseleave: "mouseout"
};

jQuery.each(["live", "die"], function(i, name) {
	jQuery.fn[name] = function(types, data, fn, origSelector /* Internal Use Only */) {
		var type, i = 0, match, namespaces, preType,
			selector = origSelector || this.selector,
			context = origSelector ? this : jQuery(this.context);

		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		types = (types || "").split(" ");

		while ((type = types[i++]) != null) {
			match = rnamespaces.exec(type);
			namespaces = "";

			if (match) {
				namespaces = match[0];
				type = type.replace(rnamespaces, "");
			}

			if (type === "hover") {
				types.push("mouseenter" + namespaces, "mouseleave" + namespaces);
				continue;
			}

			preType = type;

			if (type === "focus" || type === "blur") {
				types.push(liveMap[type] + namespaces);
				type = type + namespaces;

			} else {
				type = (liveMap[type] || type) + namespaces;
			}

			if (name === "live") {
				// bind live handler
				context.each(function(){
					jQuery.event.add(this, liveConvert(type, selector),
						{ data: data, selector: selector, handler: fn, origType: type, origHandler: fn, preType: preType });
				});

			} else {
				// unbind live handler
				context.unbind(liveConvert(type, selector), fn);
			}
		}
		
		return this;
	}
});

function liveHandler(event) {
	var stop, elems = [], selectors = [], args = arguments,
		related, match, handleObj, elem, j, i, l, data,
		events = jQuery.data(this, "events");

	// Make sure we avoid non-left-click bubbling in Firefox (#3861)
	if (event.liveFired === this || !events || !events.live || event.button && event.type === "click") {
		return;
	}

	event.liveFired = this;

	var live = events.live.slice(0);

	for (j = 0; j < live.length; j++) {
		handleObj = live[j];

		if (handleObj.origType.replace(rnamespaces, "") === event.type) {
			selectors.push(handleObj.selector);

		} else {
			live.splice(j--, 1);
		}
	}

	match = jQuery(event.target).closest(selectors, event.currentTarget);

	for (i = 0, l = match.length; i < l; i++) {
		for (j = 0; j < live.length; j++) {
			handleObj = live[j];

			if (match[i].selector === handleObj.selector) {
				elem = match[i].elem;
				related = null;

				// Those two events require additional checking
				if (handleObj.preType === "mouseenter" || handleObj.preType === "mouseleave") {
					related = jQuery(event.relatedTarget).closest(handleObj.selector)[0];
				}

				if (!related || related !== elem) {
					elems.push({ elem: elem, handleObj: handleObj });
				}
			}
		}
	}

	for (i = 0, l = elems.length; i < l; i++) {
		match = elems[i];
		event.currentTarget = match.elem;
		event.data = match.handleObj.data;
		event.handleObj = match.handleObj;

		if (match.handleObj.origHandler.apply(match.elem, args) === false) {
			stop = false;
			break;
		}
	}

	return stop;
}

function liveConvert(type, selector) {
	return "live." + (type && type !== "*" ? type + "." : "") + selector.replace(/\./g, "`").replace(/ /g, "&");
}

jQuery.each(("blur focus focusin focusout load resize scroll unload click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup error").split(" "), function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(fn) {
		return fn ? this.bind(name, fn) : this.trigger(name);
	};

	if (jQuery.attrFn) {
		jQuery.attrFn[name] = true;
	}
});

// Prevent memory leaks in IE
// Window isn't included so as not to unbind existing unload events
// More info:
// - http://isaacschlueter.com/2006/10/msie-memory-leaks/
if (window.attachEvent && !window.addEventListener) {
	window.attachEvent("onunload", function() {
		for (var id in jQuery.cache) {
			if (jQuery.cache[id].handle) {
				// Try/Catch is to handle iframes being unloaded, see #4280
				try {
					jQuery.event.remove(jQuery.cache[id].handle.elem);
				} catch(e) {}
			}
		}
	});
}
/*!
 * Sizzle CSS Selector Engine - v1.0
 * Copyright 2009, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 * More information: http://sizzlejs.com/
 */
(function(){

var chunker = /((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^[\]]*\]|['"][^'"]*['"]|[^[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,
	done = 0,
	toString = Object.prototype.toString,
	hasDuplicate = false,
	baseHasDuplicate = true;

// Here we check if the JavaScript engine is using some sort of
// optimization where it does not always call our comparision
// function. If that is the case, discard the hasDuplicate value.
// Thus far that includes Google Chrome.
[0, 0].sort(function(){
	baseHasDuplicate = false;
	return 0;
});

var Sizzle = function(selector, context, results, seed) {
	results = results || [];
	var origContext = context = context || document;

	if (context.nodeType !== 1 && context.nodeType !== 9) {
		return [];
	}
	
	if (!selector || typeof selector !== "string") {
		return results;
	}

	var parts = [], m, set, checkSet, extra, prune = true, contextXML = isXML(context),
		soFar = selector;
	
	// Reset the position of the chunker regexp (start from head)
	while ((chunker.exec(""), m = chunker.exec(soFar)) !== null) {
		soFar = m[3];
		
		parts.push(m[1]);
		
		if (m[2]) {
			extra = m[3];
			break;
		}
	}

	if (parts.length > 1 && origPOS.exec(selector)) {
		if (parts.length === 2 && Expr.relative[parts[0]]) {
			set = posProcess(parts[0] + parts[1], context);
		} else {
			set = Expr.relative[parts[0]] ?
				[context] :
				Sizzle(parts.shift(), context);

			while (parts.length) {
				selector = parts.shift();

				if (Expr.relative[selector]) {
					selector += parts.shift();
				}
				
				set = posProcess(selector, set);
			}
		}
	} else {
		// Take a shortcut and set the context if the root selector is an ID
		// (but not if it'll be faster if the inner selector is an ID)
		if (!seed && parts.length > 1 && context.nodeType === 9 && !contextXML &&
				Expr.match.ID.test(parts[0]) && !Expr.match.ID.test(parts[parts.length - 1])) {
			var ret = Sizzle.find(parts.shift(), context, contextXML);
			context = ret.expr ? Sizzle.filter(ret.expr, ret.set)[0] : ret.set[0];
		}

		if (context) {
			var ret = seed ?
				{ expr: parts.pop(), set: makeArray(seed) } :
				Sizzle.find(parts.pop(), parts.length === 1 && (parts[0] === "~" || parts[0] === "+") && context.parentNode ? context.parentNode : context, contextXML);
			set = ret.expr ? Sizzle.filter(ret.expr, ret.set) : ret.set;

			if (parts.length > 0) {
				checkSet = makeArray(set);
			} else {
				prune = false;
			}

			while (parts.length) {
				var cur = parts.pop(), pop = cur;

				if (!Expr.relative[cur]) {
					cur = "";
				} else {
					pop = parts.pop();
				}

				if (pop == null) {
					pop = context;
				}

				Expr.relative[cur](checkSet, pop, contextXML);
			}
		} else {
			checkSet = parts = [];
		}
	}

	if (!checkSet) {
		checkSet = set;
	}

	if (!checkSet) {
		Sizzle.error(cur || selector);
	}

	if (toString.call(checkSet) === "[object Array]") {
		if (!prune) {
			results.push.apply(results, checkSet);
		} else if (context && context.nodeType === 1) {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && (checkSet[i] === true || checkSet[i].nodeType === 1 && contains(context, checkSet[i]))) {
					results.push(set[i]);
				}
			}
		} else {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && checkSet[i].nodeType === 1) {
					results.push(set[i]);
				}
			}
		}
	} else {
		makeArray(checkSet, results);
	}

	if (extra) {
		Sizzle(extra, origContext, results, seed);
		Sizzle.uniqueSort(results);
	}

	return results;
};

Sizzle.uniqueSort = function(results){
	if (sortOrder) {
		hasDuplicate = baseHasDuplicate;
		results.sort(sortOrder);

		if (hasDuplicate) {
			for (var i = 1; i < results.length; i++) {
				if (results[i] === results[i-1]) {
					results.splice(i--, 1);
				}
			}
		}
	}

	return results;
};

Sizzle.matches = function(expr, set){
	return Sizzle(expr, null, null, set);
};

Sizzle.find = function(expr, context, isXML){
	var set, match;

	if (!expr) {
		return [];
	}

	for (var i = 0, l = Expr.order.length; i < l; i++) {
		var type = Expr.order[i], match;
		
		if ((match = Expr.leftMatch[type].exec(expr))) {
			var left = match[1];
			match.splice(1,1);

			if (left.substr(left.length - 1) !== "\\") {
				match[1] = (match[1] || "").replace(/\\/g, "");
				set = Expr.find[type](match, context, isXML);
				if (set != null) {
					expr = expr.replace(Expr.match[type], "");
					break;
				}
			}
		}
	}

	if (!set) {
		set = context.getElementsByTagName("*");
	}

	return {set: set, expr: expr};
};

Sizzle.filter = function(expr, set, inplace, not){
	var old = expr, result = [], curLoop = set, match, anyFound,
		isXMLFilter = set && set[0] && isXML(set[0]);

	while (expr && set.length) {
		for (var type in Expr.filter) {
			if ((match = Expr.leftMatch[type].exec(expr)) != null && match[2]) {
				var filter = Expr.filter[type], found, item, left = match[1];
				anyFound = false;

				match.splice(1,1);

				if (left.substr(left.length - 1) === "\\") {
					continue;
				}

				if (curLoop === result) {
					result = [];
				}

				if (Expr.preFilter[type]) {
					match = Expr.preFilter[type](match, curLoop, inplace, result, not, isXMLFilter);

					if (!match) {
						anyFound = found = true;
					} else if (match === true) {
						continue;
					}
				}

				if (match) {
					for (var i = 0; (item = curLoop[i]) != null; i++) {
						if (item) {
							found = filter(item, match, i, curLoop);
							var pass = not ^ !!found;

							if (inplace && found != null) {
								if (pass) {
									anyFound = true;
								} else {
									curLoop[i] = false;
								}
							} else if (pass) {
								result.push(item);
								anyFound = true;
							}
						}
					}
				}

				if (found !== undefined) {
					if (!inplace) {
						curLoop = result;
					}

					expr = expr.replace(Expr.match[type], "");

					if (!anyFound) {
						return [];
					}

					break;
				}
			}
		}

		// Improper expression
		if (expr === old) {
			if (anyFound == null) {
				Sizzle.error(expr);
			} else {
				break;
			}
		}

		old = expr;
	}

	return curLoop;
};

Sizzle.error = function(msg) {
	throw "Syntax error, unrecognized expression: " + msg;
};

var Expr = Sizzle.selectors = {
	order: ["ID", "NAME", "TAG"],
	match: {
		ID: /#((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		CLASS: /\.((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		NAME: /\[name=['"]*((?:[\w\u00c0-\uFFFF-]|\\.)+)['"]*\]/,
		ATTR: /\[\s*((?:[\w\u00c0-\uFFFF-]|\\.)+)\s*(?:(\S?=)\s*(['"]*)(.*?)\3|)\s*\]/,
		TAG: /^((?:[\w\u00c0-\uFFFF*-]|\\.)+)/,
		CHILD: /:(only|nth|last|first)-child(?:\((even|odd|[\dn+-]*)\))?/,
		POS: /:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^-]|$)/,
		PSEUDO: /:((?:[\w\u00c0-\uFFFF-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/
	},
	leftMatch: {},
	attrMap: {
		"class": "className",
		"for": "htmlFor"
	},
	attrHandle: {
		href: function(elem){
			return elem.getAttribute("href");
		}
	},
	relative: {
		"+": function(checkSet, part){
			var isPartStr = typeof part === "string",
				isTag = isPartStr && !/\W/.test(part),
				isPartStrNotTag = isPartStr && !isTag;

			if (isTag) {
				part = part.toLowerCase();
			}

			for (var i = 0, l = checkSet.length, elem; i < l; i++) {
				if ((elem = checkSet[i])) {
					while ((elem = elem.previousSibling) && elem.nodeType !== 1) {}

					checkSet[i] = isPartStrNotTag || elem && elem.nodeName.toLowerCase() === part ?
						elem || false :
						elem === part;
				}
			}

			if (isPartStrNotTag) {
				Sizzle.filter(part, checkSet, true);
			}
		},
		">": function(checkSet, part){
			var isPartStr = typeof part === "string";

			if (isPartStr && !/\W/.test(part)) {
				part = part.toLowerCase();

				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						var parent = elem.parentNode;
						checkSet[i] = parent.nodeName.toLowerCase() === part ? parent : false;
					}
				}
			} else {
				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						checkSet[i] = isPartStr ?
							elem.parentNode :
							elem.parentNode === part;
					}
				}

				if (isPartStr) {
					Sizzle.filter(part, checkSet, true);
				}
			}
		},
		"": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("parentNode", part, doneName, checkSet, nodeCheck, isXML);
		},
		"~": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("previousSibling", part, doneName, checkSet, nodeCheck, isXML);
		}
	},
	find: {
		ID: function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? [m] : [];
			}
		},
		NAME: function(match, context){
			if (typeof context.getElementsByName !== "undefined") {
				var ret = [], results = context.getElementsByName(match[1]);

				for (var i = 0, l = results.length; i < l; i++) {
					if (results[i].getAttribute("name") === match[1]) {
						ret.push(results[i]);
					}
				}

				return ret.length === 0 ? null : ret;
			}
		},
		TAG: function(match, context){
			return context.getElementsByTagName(match[1]);
		}
	},
	preFilter: {
		CLASS: function(match, curLoop, inplace, result, not, isXML){
			match = " " + match[1].replace(/\\/g, "") + " ";

			if (isXML) {
				return match;
			}

			for (var i = 0, elem; (elem = curLoop[i]) != null; i++) {
				if (elem) {
					if (not ^ (elem.className && (" " + elem.className + " ").replace(/[\t\n]/g, " ").indexOf(match) >= 0)) {
						if (!inplace) {
							result.push(elem);
						}
					} else if (inplace) {
						curLoop[i] = false;
					}
				}
			}

			return false;
		},
		ID: function(match){
			return match[1].replace(/\\/g, "");
		},
		TAG: function(match, curLoop){
			return match[1].toLowerCase();
		},
		CHILD: function(match){
			if (match[1] === "nth") {
				// parse equations like 'even', 'odd', '5', '2n', '3n+2', '4n-1', '-n+6'
				var test = /(-?)(\d*)n((?:\+|-)?\d*)/.exec(
					match[2] === "even" && "2n" || match[2] === "odd" && "2n+1" ||
					!/\D/.test(match[2]) && "0n+" + match[2] || match[2]);

				// calculate the numbers (first)n+(last) including if they are negative
				match[2] = (test[1] + (test[2] || 1)) - 0;
				match[3] = test[3] - 0;
			}

			// TODO: Move to normal caching system
			match[0] = done++;

			return match;
		},
		ATTR: function(match, curLoop, inplace, result, not, isXML){
			var name = match[1].replace(/\\/g, "");
			
			if (!isXML && Expr.attrMap[name]) {
				match[1] = Expr.attrMap[name];
			}

			if (match[2] === "~=") {
				match[4] = " " + match[4] + " ";
			}

			return match;
		},
		PSEUDO: function(match, curLoop, inplace, result, not){
			if (match[1] === "not") {
				// If we're dealing with a complex expression, or a simple one
				if ((chunker.exec(match[3]) || "").length > 1 || /^\w/.test(match[3])) {
					match[3] = Sizzle(match[3], null, null, curLoop);
				} else {
					var ret = Sizzle.filter(match[3], curLoop, inplace, true ^ not);
					if (!inplace) {
						result.push.apply(result, ret);
					}
					return false;
				}
			} else if (Expr.match.POS.test(match[0]) || Expr.match.CHILD.test(match[0])) {
				return true;
			}
			
			return match;
		},
		POS: function(match){
			match.unshift(true);
			return match;
		}
	},
	filters: {
		enabled: function(elem){
			return elem.disabled === false && elem.type !== "hidden";
		},
		disabled: function(elem){
			return elem.disabled === true;
		},
		checked: function(elem){
			return elem.checked === true;
		},
		selected: function(elem){
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			elem.parentNode.selectedIndex;
			return elem.selected === true;
		},
		parent: function(elem){
			return !!elem.firstChild;
		},
		empty: function(elem){
			return !elem.firstChild;
		},
		has: function(elem, i, match){
			return !!Sizzle(match[3], elem).length;
		},
		header: function(elem){
			return /h\d/i.test(elem.nodeName);
		},
		text: function(elem){
			return "text" === elem.type;
		},
		radio: function(elem){
			return "radio" === elem.type;
		},
		checkbox: function(elem){
			return "checkbox" === elem.type;
		},
		file: function(elem){
			return "file" === elem.type;
		},
		password: function(elem){
			return "password" === elem.type;
		},
		submit: function(elem){
			return "submit" === elem.type;
		},
		image: function(elem){
			return "image" === elem.type;
		},
		reset: function(elem){
			return "reset" === elem.type;
		},
		button: function(elem){
			return "button" === elem.type || elem.nodeName.toLowerCase() === "button";
		},
		input: function(elem){
			return /input|select|textarea|button/i.test(elem.nodeName);
		}
	},
	setFilters: {
		first: function(elem, i){
			return i === 0;
		},
		last: function(elem, i, match, array){
			return i === array.length - 1;
		},
		even: function(elem, i){
			return i % 2 === 0;
		},
		odd: function(elem, i){
			return i % 2 === 1;
		},
		lt: function(elem, i, match){
			return i < match[3] - 0;
		},
		gt: function(elem, i, match){
			return i > match[3] - 0;
		},
		nth: function(elem, i, match){
			return match[3] - 0 === i;
		},
		eq: function(elem, i, match){
			return match[3] - 0 === i;
		}
	},
	filter: {
		PSEUDO: function(elem, match, i, array){
			var name = match[1], filter = Expr.filters[name];

			if (filter) {
				return filter(elem, i, match, array);
			} else if (name === "contains") {
				return (elem.textContent || elem.innerText || getText([elem]) || "").indexOf(match[3]) >= 0;
			} else if (name === "not") {
				var not = match[3];

				for (var i = 0, l = not.length; i < l; i++) {
					if (not[i] === elem) {
						return false;
					}
				}

				return true;
			} else {
				Sizzle.error("Syntax error, unrecognized expression: " + name);
			}
		},
		CHILD: function(elem, match){
			var type = match[1], node = elem;
			switch (type) {
				case 'only':
				case 'first':
					while ((node = node.previousSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					if (type === "first") {
						return true;
					}
					node = elem;
				case 'last':
					while ((node = node.nextSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					return true;
				case 'nth':
					var first = match[2], last = match[3];

					if (first === 1 && last === 0) {
						return true;
					}
					
					var doneName = match[0],
						parent = elem.parentNode;
	
					if (parent && (parent.sizcache !== doneName || !elem.nodeIndex)) {
						var count = 0;
						for (node = parent.firstChild; node; node = node.nextSibling) {
							if (node.nodeType === 1) {
								node.nodeIndex = ++count;
							}
						}
						parent.sizcache = doneName;
					}
					
					var diff = elem.nodeIndex - last;
					if (first === 0) {
						return diff === 0;
					} else {
						return (diff % first === 0 && diff / first >= 0);
					}
			}
		},
		ID: function(elem, match){
			return elem.nodeType === 1 && elem.getAttribute("id") === match;
		},
		TAG: function(elem, match){
			return (match === "*" && elem.nodeType === 1) || elem.nodeName.toLowerCase() === match;
		},
		CLASS: function(elem, match){
			return (" " + (elem.className || elem.getAttribute("class")) + " ")
				.indexOf(match) > -1;
		},
		ATTR: function(elem, match){
			var name = match[1],
				result = Expr.attrHandle[name] ?
					Expr.attrHandle[name](elem) :
					elem[name] != null ?
						elem[name] :
						elem.getAttribute(name),
				value = result + "",
				type = match[2],
				check = match[4];

			return result == null ?
				type === "!=" :
				type === "=" ?
				value === check :
				type === "*=" ?
				value.indexOf(check) >= 0 :
				type === "~=" ?
				(" " + value + " ").indexOf(check) >= 0 :
				!check ?
				value && result !== false :
				type === "!=" ?
				value !== check :
				type === "^=" ?
				value.indexOf(check) === 0 :
				type === "$=" ?
				value.substr(value.length - check.length) === check :
				type === "|=" ?
				value === check || value.substr(0, check.length + 1) === check + "-" :
				false;
		},
		POS: function(elem, match, i, array){
			var name = match[2], filter = Expr.setFilters[name];

			if (filter) {
				return filter(elem, i, match, array);
			}
		}
	}
};

var origPOS = Expr.match.POS;

for (var type in Expr.match) {
	Expr.match[type] = new RegExp(Expr.match[type].source + /(?![^\[]*\])(?![^\(]*\))/.source);
	Expr.leftMatch[type] = new RegExp(/(^(?:.|\r|\n)*?)/.source + Expr.match[type].source.replace(/\\(\d+)/g, function(all, num){
		return "\\" + (num - 0 + 1);
	}));
}

var makeArray = function(array, results) {
	array = Array.prototype.slice.call(array, 0);

	if (results) {
		results.push.apply(results, array);
		return results;
	}
	
	return array;
};

// Perform a simple check to determine if the browser is capable of
// converting a NodeList to an array using builtin methods.
// Also verifies that the returned array holds DOM nodes
// (which is not the case in the Blackberry browser)
try {
	Array.prototype.slice.call(document.documentElement.childNodes, 0)[0].nodeType;

// Provide a fallback method if it does not work
} catch(e){
	makeArray = function(array, results) {
		var ret = results || [];

		if (toString.call(array) === "[object Array]") {
			Array.prototype.push.apply(ret, array);
		} else {
			if (typeof array.length === "number") {
				for (var i = 0, l = array.length; i < l; i++) {
					ret.push(array[i]);
				}
			} else {
				for (var i = 0; array[i]; i++) {
					ret.push(array[i]);
				}
			}
		}

		return ret;
	};
}

var sortOrder;

if (document.documentElement.compareDocumentPosition) {
	sortOrder = function(a, b) {
		if (!a.compareDocumentPosition || !b.compareDocumentPosition) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.compareDocumentPosition ? -1 : 1;
		}

		var ret = a.compareDocumentPosition(b) & 4 ? -1 : a === b ? 0 : 1;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if ("sourceIndex" in document.documentElement) {
	sortOrder = function(a, b) {
		if (!a.sourceIndex || !b.sourceIndex) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.sourceIndex ? -1 : 1;
		}

		var ret = a.sourceIndex - b.sourceIndex;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if (document.createRange) {
	sortOrder = function(a, b) {
		if (!a.ownerDocument || !b.ownerDocument) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.ownerDocument ? -1 : 1;
		}

		var aRange = a.ownerDocument.createRange(), bRange = b.ownerDocument.createRange();
		aRange.setStart(a, 0);
		aRange.setEnd(a, 0);
		bRange.setStart(b, 0);
		bRange.setEnd(b, 0);
		var ret = aRange.compareBoundaryPoints(Range.START_TO_END, bRange);
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
}

// Utility function for retreiving the text value of an array of DOM nodes
function getText(elems) {
	var ret = "", elem;

	for (var i = 0; elems[i]; i++) {
		elem = elems[i];

		// Get the text from text nodes and CDATA nodes
		if (elem.nodeType === 3 || elem.nodeType === 4) {
			ret += elem.nodeValue;

		// Traverse everything else, except comment nodes
		} else if (elem.nodeType !== 8) {
			ret += getText(elem.childNodes);
		}
	}

	return ret;
}

// Check to see if the browser returns elements by name when
// querying by getElementById (and provide a workaround)
(function(){
	// We're going to inject a fake input element with a specified name
	var form = document.createElement("div"),
		id = "script" + (new Date).getTime();
	form.innerHTML = "";

	// Inject it into the root element, check its status, and remove it quickly
	var root = document.documentElement;
	root.insertBefore(form, root.firstChild);

	// The workaround has to do additional checks after a getElementById
	// Which slows things down for other browsers (hence the branching)
	if (document.getElementById(id)) {
		Expr.find.ID = function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? m.id === match[1] || typeof m.getAttributeNode !== "undefined" && m.getAttributeNode("id").nodeValue === match[1] ? [m] : undefined : [];
			}
		};

		Expr.filter.ID = function(elem, match){
			var node = typeof elem.getAttributeNode !== "undefined" && elem.getAttributeNode("id");
			return elem.nodeType === 1 && node && node.nodeValue === match;
		};
	}

	root.removeChild(form);
	root = form = null; // release memory in IE
})();

(function(){
	// Check to see if the browser returns only elements
	// when doing getElementsByTagName("*")

	// Create a fake element
	var div = document.createElement("div");
	div.appendChild(document.createComment(""));

	// Make sure no comments are found
	if (div.getElementsByTagName("*").length > 0) {
		Expr.find.TAG = function(match, context){
			var results = context.getElementsByTagName(match[1]);

			// Filter out possible comments
			if (match[1] === "*") {
				var tmp = [];

				for (var i = 0; results[i]; i++) {
					if (results[i].nodeType === 1) {
						tmp.push(results[i]);
					}
				}

				results = tmp;
			}

			return results;
		};
	}

	// Check to see if an attribute returns normalized href attributes
	div.innerHTML = "";
	if (div.firstChild && typeof div.firstChild.getAttribute !== "undefined" &&
			div.firstChild.getAttribute("href") !== "#") {
		Expr.attrHandle.href = function(elem){
			return elem.getAttribute("href", 2);
		};
	}

	div = null; // release memory in IE
})();

if (document.querySelectorAll) {
	(function(){
		var oldSizzle = Sizzle, div = document.createElement("div");
		div.innerHTML = "<p class='TEST'></p>";

		// Safari can't handle uppercase or unicode characters when
		// in quirks mode.
		if (div.querySelectorAll && div.querySelectorAll(".TEST").length === 0) {
			return;
		}
	
		Sizzle = function(query, context, extra, seed){
			context = context || document;

			// Only use querySelectorAll on non-XML documents
			// (ID selectors don't work in non-HTML documents)
			if (!seed && context.nodeType === 9 && !isXML(context)) {
				try {
					return makeArray(context.querySelectorAll(query), extra);
				} catch(e){}
			}
		
			return oldSizzle(query, context, extra, seed);
		};

		for (var prop in oldSizzle) {
			Sizzle[prop] = oldSizzle[prop];
		}

		div = null; // release memory in IE
	})();
}

(function(){
	var div = document.createElement("div");

	div.innerHTML = "<div class='test e'></div><div class='test'></div>";

	// Opera can't find a second classname (in 9.6)
	// Also, make sure that getElementsByClassName actually exists
	if (!div.getElementsByClassName || div.getElementsByClassName("e").length === 0) {
		return;
	}

	// Safari caches class attributes, doesn't catch changes (in 3.2)
	div.lastChild.className = "e";

	if (div.getElementsByClassName("e").length === 1) {
		return;
	}
	
	Expr.order.splice(1, 0, "CLASS");
	Expr.find.CLASS = function(match, context, isXML) {
		if (typeof context.getElementsByClassName !== "undefined" && !isXML) {
			return context.getElementsByClassName(match[1]);
		}
	};

	div = null; // release memory in IE
})();

function dirNodeCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1 && !isXML){
					elem.sizcache = doneName;
					elem.sizset = i;
				}

				if (elem.nodeName.toLowerCase() === cur) {
					match = elem;
					break;
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

function dirCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1) {
					if (!isXML) {
						elem.sizcache = doneName;
						elem.sizset = i;
					}
					if (typeof cur !== "string") {
						if (elem === cur) {
							match = true;
							break;
						}

					} else if (Sizzle.filter(cur, [elem]).length > 0) {
						match = elem;
						break;
					}
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

var contains = document.compareDocumentPosition ? function(a, b){
	return !!(a.compareDocumentPosition(b) & 16);
} : function(a, b){
	return a !== b && (a.contains ? a.contains(b) : true);
};

var isXML = function(elem){
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = (elem ? elem.ownerDocument || elem : 0).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

var posProcess = function(selector, context){
	var tmpSet = [], later = "", match,
		root = context.nodeType ? [context] : context;

	// Position selectors must be done after the filter
	// And so must :not(positional) so we move all PSEUDOs to the end
	while ((match = Expr.match.PSEUDO.exec(selector))) {
		later += match[0];
		selector = selector.replace(Expr.match.PSEUDO, "");
	}

	selector = Expr.relative[selector] ? selector + "*" : selector;

	for (var i = 0, l = root.length; i < l; i++) {
		Sizzle(selector, root[i], tmpSet);
	}

	return Sizzle.filter(later, tmpSet);
};

// EXPOSE
jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;
jQuery.expr[":"] = jQuery.expr.filters;
jQuery.unique = Sizzle.uniqueSort;
jQuery.text = getText;
jQuery.isXMLDoc = isXML;
jQuery.contains = contains;

return;

window.Sizzle = Sizzle;

})();
var runtil = /Until$/,
	rparentsprev = /^(?:parents|prevUntil|prevAll)/,
	// Note: This RegExp should be improved, or likely pulled from Sizzle
	rmultiselector = /,/,
	slice = Array.prototype.slice;

// Implement the identical functionality for filter and not
var winnow = function(elements, qualifier, keep) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) === keep;
		});

	} else if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem, i) {
			return (elem === qualifier) === keep;
		});

	} else if (typeof qualifier === "string") {
		var filtered = jQuery.grep(elements, function(elem) {
			return elem.nodeType === 1;
		});

		if (isSimple.test(qualifier)) {
			return jQuery.filter(qualifier, filtered, !keep);
		} else {
			qualifier = jQuery.filter(qualifier, filtered);
		}
	}

	return jQuery.grep(elements, function(elem, i) {
		return (jQuery.inArray(elem, qualifier) >= 0) === keep;
	});
};

jQuery.fn.extend({
	find: function(selector) {
		var ret = this.pushStack("", "find", selector), length = 0;

		for (var i = 0, l = this.length; i < l; i++) {
			length = ret.length;
			jQuery.find(selector, this[i], ret);

			if (i > 0) {
				// Make sure that the results are unique
				for (var n = length; n < ret.length; n++) {
					for (var r = 0; r < length; r++) {
						if (ret[r] === ret[n]) {
							ret.splice(n--, 1);
							break;
						}
					}
				}
			}
		}

		return ret;
	},

	has: function(target) {
		var targets = jQuery(target);
		return this.filter(function() {
			for (var i = 0, l = targets.length; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	not: function(selector) {
		return this.pushStack(winnow(this, selector, false), "not", selector);
	},

	filter: function(selector) {
		return this.pushStack(winnow(this, selector, true), "filter", selector);
	},
	
	is: function(selector) {
		return !!selector && jQuery.filter(selector, this).length > 0;
	},

	closest: function(selectors, context) {
		if (jQuery.isArray(selectors)) {
			var ret = [], cur = this[0], match, matches = {}, selector;

			if (cur && selectors.length) {
				for (var i = 0, l = selectors.length; i < l; i++) {
					selector = selectors[i];

					if (!matches[selector]) {
						matches[selector] = jQuery.expr.match.POS.test(selector) ?
							jQuery(selector, context || this.context) :
							selector;
					}
				}

				while (cur && cur.ownerDocument && cur !== context) {
					for (selector in matches) {
						match = matches[selector];

						if (match.jquery ? match.index(cur) > -1 : jQuery(cur).is(match)) {
							ret.push({ selector: selector, elem: cur });
							delete matches[selector];
						}
					}
					cur = cur.parentNode;
				}
			}

			return ret;
		}

		var pos = jQuery.expr.match.POS.test(selectors) ?
			jQuery(selectors, context || this.context) : null;

		return this.map(function(i, cur) {
			while (cur && cur.ownerDocument && cur !== context) {
				if (pos ? pos.index(cur) > -1 : jQuery(cur).is(selectors)) {
					return cur;
				}
				cur = cur.parentNode;
			}
			return null;
		});
	},
	
	// Determine the position of an element within
	// the matched set of elements
	index: function(elem) {
		if (!elem || typeof elem === "string") {
			return jQuery.inArray(this[0],
				// If it receives a string, the selector is used
				// If it receives nothing, the siblings are used
				elem ? jQuery(elem) : this.parent().children());
		}
		// Locate the position of the desired element
		return jQuery.inArray(
			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem, this);
	},

	add: function(selector, context) {
		var set = typeof selector === "string" ?
				jQuery(selector, context || this.context) :
				jQuery.makeArray(selector),
			all = jQuery.merge(this.get(), set);

		return this.pushStack(isDisconnected(set[0]) || isDisconnected(all[0]) ?
			all :
			jQuery.unique(all));
	},

	andSelf: function() {
		return this.add(this.prevObject);
	}
});

// A painfully simple check to see if an element is disconnected
// from a document (should be improved, where feasible).
function isDisconnected(node) {
	return !node || !node.parentNode || node.parentNode.nodeType === 11;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return jQuery.dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return jQuery.dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return jQuery.nth(elem, 2, "nextSibling");
	},
	prev: function(elem) {
		return jQuery.nth(elem, 2, "previousSibling");
	},
	nextAll: function(elem) {
		return jQuery.dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return jQuery.dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return jQuery.dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return jQuery.dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return jQuery.sibling(elem.parentNode.firstChild, elem);
	},
	children: function(elem) {
		return jQuery.sibling(elem.firstChild);
	},
	contents: function(elem) {
		return jQuery.nodeName(elem, "iframe") ?
			elem.contentDocument || elem.contentWindow.document :
			jQuery.makeArray(elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var ret = jQuery.map(this, fn, until);
		
		if (!runtil.test(name)) {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			ret = jQuery.filter(selector, ret);
		}

		ret = this.length > 1 ? jQuery.unique(ret) : ret;

		if ((this.length > 1 || rmultiselector.test(selector)) && rparentsprev.test(name)) {
			ret = ret.reverse();
		}

		return this.pushStack(ret, name, slice.call(arguments).join(","));
	};
});

jQuery.extend({
	filter: function(expr, elems, not) {
		if (not) {
			expr = ":not(" + expr + ")";
		}

		return jQuery.find.matches(expr, elems);
	},
	
	dir: function(elem, dir, until) {
		var matched = [], cur = elem[dir];
		while (cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery(cur).is(until))) {
			if (cur.nodeType === 1) {
				matched.push(cur);
			}
			cur = cur[dir];
		}
		return matched;
	},

	nth: function(cur, result, dir, elem) {
		result = result || 1;
		var num = 0;

		for (; cur; cur = cur[dir]) {
			if (cur.nodeType === 1 && ++num === result) {
				break;
			}
		}

		return cur;
	},

	sibling: function(n, elem) {
		var r = [];

		for (; n; n = n.nextSibling) {
			if (n.nodeType === 1 && n !== elem) {
				r.push(n);
			}
		}

		return r;
	}
});
var rinlinejQuery = / jQuery\d+="(?:\d+|null)"/g,
	rleadingWhitespace = /^\s+/,
	rxhtmlTag = /(<([\w:]+)[^>]*?)\/>/g,
	rselfClosing = /^(?:area|br|col|embed|hr|img|input|link|meta|param)$/i,
	rtagName = /<([\w:]+)/,
	rtbody = /<tbody/i,
	rhtml = /<|&#?\w+;/,
	rnocache = /<script|<object|<embed|<option|<style/i,
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i, // checked="checked" or checked (html5)
	fcloseTag = function(all, front, tag) {
		return rselfClosing.test(tag) ?
			all :
			front + "></" + tag + ">";
	},
	wrapMap = {
		option: [1, "<select multiple='multiple'>", "</select>"],
		legend: [1, "<fieldset>", "</fieldset>"],
		thead: [1, "<table>", "</table>"],
		tr: [2, "<table><tbody>", "</tbody></table>"],
		td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],
		col: [2, "<table><tbody></tbody><colgroup>", "</colgroup></table>"],
		area: [1, "<map>", "</map>"],
		_default: [0, "", ""]
	};

wrapMap.optgroup = wrapMap.option;
wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

// IE can't serialize <link> and <script> tags normally
if (!jQuery.support.htmlSerialize) {
	wrapMap._default = [1, "div<div>", "</div>"];
}

jQuery.fn.extend({
	text: function(text) {
		if (jQuery.isFunction(text)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.text(text.call(this, i, self.text()));
			});
		}

		if (typeof text !== "object" && text !== undefined) {
			return this.empty().append((this[0] && this[0].ownerDocument || document).createTextNode(text));
		}

		return jQuery.text(this);
	},

	wrapAll: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapAll(html.call(this, i));
			});
		}

		if (this[0]) {
			// The elements to wrap the target around
			var wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstChild && elem.firstChild.nodeType === 1) {
					elem = elem.firstChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this), contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		return this.each(function() {
			jQuery(this).wrapAll(html);
		});
	},

	unwrap: function() {
		return this.parent().each(function() {
			if (!jQuery.nodeName(this, "body")) {
				jQuery(this).replaceWith(this.childNodes);
			}
		}).end();
	},

	append: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.insertBefore(elem, this.firstChild);
			}
		});
	},

	before: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this);
			});
		} else if (arguments.length) {
			var set = jQuery(arguments[0]);
			set.push.apply(set, this.toArray());
			return this.pushStack(set, "before", arguments);
		}
	},

	after: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			});
		} else if (arguments.length) {
			var set = this.pushStack(this, "after", arguments);
			set.push.apply(set, jQuery(arguments[0]).toArray());
			return set;
		}
	},
	
	// keepData is for internal use only--do not document
	remove: function(selector, keepData) {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			if (!selector || jQuery.filter(selector, [elem]).length) {
				if (!keepData && elem.nodeType === 1) {
					jQuery.cleanData(elem.getElementsByTagName("*"));
					jQuery.cleanData([elem]);
				}

				if (elem.parentNode) {
					 elem.parentNode.removeChild(elem);
				}
			}
		}
		
		return this;
	},

	empty: function() {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			// Remove element nodes and prevent memory leaks
			if (elem.nodeType === 1) {
				jQuery.cleanData(elem.getElementsByTagName("*"));
			}

			// Remove any remaining nodes
			while (elem.firstChild) {
				elem.removeChild(elem.firstChild);
			}
		}
		
		return this;
	},

	clone: function(events) {
		// Do the clone
		var ret = this.map(function() {
			if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
				// IE copies events bound via attachEvent when
				// using cloneNode. Calling detachEvent on the
				// clone will also remove the events from the orignal
				// In order to get around this, we use innerHTML.
				// Unfortunately, this means some modifications to
				// attributes in IE that are actually only stored
				// as properties will not be copied (such as the
				// the name attribute on an input).
				var html = this.outerHTML, ownerDocument = this.ownerDocument;
				if (!html) {
					var div = ownerDocument.createElement("div");
					div.appendChild(this.cloneNode(true));
					html = div.innerHTML;
				}

				return jQuery.clean([html.replace(rinlinejQuery, "")
					// Handle the case in IE 8 where action=/test/> self-closes a tag
					.replace(/=([^="'>\s]+\/)>/g, '="$1">')
					.replace(rleadingWhitespace, "")], ownerDocument)[0];
			} else {
				return this.cloneNode(true);
			}
		});

		// Copy the events from the original to the clone
		if (events === true) {
			cloneCopyEvent(this, ret);
			cloneCopyEvent(this.find("*"), ret.find("*"));
		}

		// Return the cloned set
		return ret;
	},

	html: function(value) {
		if (value === undefined) {
			return this[0] && this[0].nodeType === 1 ?
				this[0].innerHTML.replace(rinlinejQuery, "") :
				null;

		// See if we can take a shortcut and just use innerHTML
		} else if (typeof value === "string" && !rnocache.test(value) &&
			(jQuery.support.leadingWhitespace || !rleadingWhitespace.test(value)) &&
			!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

			value = value.replace(rxhtmlTag, fcloseTag);

			try {
				for (var i = 0, l = this.length; i < l; i++) {
					// Remove element nodes and prevent memory leaks
					if (this[i].nodeType === 1) {
						jQuery.cleanData(this[i].getElementsByTagName("*"));
						this[i].innerHTML = value;
					}
				}

			// If using innerHTML throws an exception, use the fallback method
			} catch(e) {
				this.empty().append(value);
			}

		} else if (jQuery.isFunction(value)) {
			this.each(function(i){
				var self = jQuery(this), old = self.html();
				self.empty().append(function(){
					return value.call(this, i, old);
				});
			});

		} else {
			this.empty().append(value);
		}

		return this;
	},

	replaceWith: function(value) {
		if (this[0] && this[0].parentNode) {
			// Make sure that the elements are removed from the DOM before they are inserted
			// this can help fix replacing a parent with child elements
			if (jQuery.isFunction(value)) {
				return this.each(function(i) {
					var self = jQuery(this), old = self.html();
					self.replaceWith(value.call(this, i, old));
				});
			}

			if (typeof value !== "string") {
				value = jQuery(value).detach();
			}

			return this.each(function() {
				var next = this.nextSibling, parent = this.parentNode;

				jQuery(this).remove();

				if (next) {
					jQuery(next).before(value);
				} else {
					jQuery(parent).append(value);
				}
			});
		} else {
			return this.pushStack(jQuery(jQuery.isFunction(value) ? value() : value), "replaceWith", value);
		}
	},

	detach: function(selector) {
		return this.remove(selector, true);
	},

	domManip: function(args, table, callback) {
		var results, first, value = args[0], scripts = [], fragment, parent;

		// We can't cloneNode fragments that contain checked, in WebKit
		if (!jQuery.support.checkClone && arguments.length === 3 && typeof value === "string" && rchecked.test(value)) {
			return this.each(function() {
				jQuery(this).domManip(args, table, callback, true);
			});
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				args[0] = value.call(this, i, table ? self.html() : undefined);
				self.domManip(args, table, callback);
			});
		}

		if (this[0]) {
			parent = value && value.parentNode;

			// If we're in a fragment, just use that instead of building a new one
			if (jQuery.support.parentNode && parent && parent.nodeType === 11 && parent.childNodes.length === this.length) {
				results = { fragment: parent };

			} else {
				results = buildFragment(args, this, scripts);
			}
			
			fragment = results.fragment;
			
			if (fragment.childNodes.length === 1) {
				first = fragment = fragment.firstChild;
			} else {
				first = fragment.firstChild;
			}

			if (first) {
				table = table && jQuery.nodeName(first, "tr");

				for (var i = 0, l = this.length; i < l; i++) {
					callback.call(
						table ?
							root(this[i], first) :
							this[i],
						i > 0 || results.cacheable || this.length > 1 ?
							fragment.cloneNode(true) :
							fragment
);
				}
			}

			if (scripts.length) {
				jQuery.each(scripts, evalScript);
			}
		}

		return this;

		function root(elem, cur) {
			return jQuery.nodeName(elem, "table") ?
				(elem.getElementsByTagName("tbody")[0] ||
				elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
				elem;
		}
	}
});

function cloneCopyEvent(orig, ret) {
	var i = 0;

	ret.each(function() {
		if (this.nodeName !== (orig[i] && orig[i].nodeName)) {
			return;
		}

		var oldData = jQuery.data(orig[i++]), curData = jQuery.data(this, oldData), events = oldData && oldData.events;

		if (events) {
			delete curData.handle;
			curData.events = {};

			for (var type in events) {
				for (var handler in events[type]) {
					jQuery.event.add(this, type, events[type][handler], events[type][handler].data);
				}
			}
		}
	});
}

function buildFragment(args, nodes, scripts) {
	var fragment, cacheable, cacheresults,
		doc = (nodes && nodes[0] ? nodes[0].ownerDocument || nodes[0] : document);

	// Only cache "small" (1/2 KB) strings that are associated with the main document
	// Cloning options loses the selected state, so don't cache them
	// IE 6 doesn't like it when you put <object> or <embed> elements in a fragment
	// Also, WebKit does not clone 'checked' attributes on cloneNode, so don't cache
	if (args.length === 1 && typeof args[0] === "string" && args[0].length < 512 && doc === document &&
		!rnocache.test(args[0]) && (jQuery.support.checkClone || !rchecked.test(args[0]))) {

		cacheable = true;
		cacheresults = jQuery.fragments[args[0]];
		if (cacheresults) {
			if (cacheresults !== 1) {
				fragment = cacheresults;
			}
		}
	}

	if (!fragment) {
		fragment = doc.createDocumentFragment();
		jQuery.clean(args, doc, fragment, scripts);
	}

	if (cacheable) {
		jQuery.fragments[args[0]] = cacheresults ? fragment : 1;
	}

	return { fragment: fragment, cacheable: cacheable };
}

jQuery.fragments = {};

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var ret = [], insert = jQuery(selector),
			parent = this.length === 1 && this[0].parentNode;
		
		if (parent && parent.nodeType === 11 && parent.childNodes.length === 1 && insert.length === 1) {
			insert[original](this[0]);
			return this;
			
		} else {
			for (var i = 0, l = insert.length; i < l; i++) {
				var elems = (i > 0 ? this.clone(true) : this).get();
				jQuery.fn[original].apply(jQuery(insert[i]), elems);
				ret = ret.concat(elems);
			}
		
			return this.pushStack(ret, name, insert.selector);
		}
	};
});

jQuery.extend({
	clean: function(elems, context, fragment, scripts) {
		context = context || document;

		// !context.createElement fails in IE with an error but returns typeof 'object'
		if (typeof context.createElement === "undefined") {
			context = context.ownerDocument || context[0] && context[0].ownerDocument || document;
		}

		var ret = [];

		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			if (typeof elem === "number") {
				elem += "";
			}

			if (!elem) {
				continue;
			}

			// Convert html string into DOM nodes
			if (typeof elem === "string" && !rhtml.test(elem)) {
				elem = context.createTextNode(elem);

			} else if (typeof elem === "string") {
				// Fix "XHTML"-style tags in all browsers
				elem = elem.replace(rxhtmlTag, fcloseTag);

				// Trim whitespace, otherwise indexOf won't work as expected
				var tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase(),
					wrap = wrapMap[tag] || wrapMap._default,
					depth = wrap[0],
					div = context.createElement("div");

				// Go to html and back, then peel off extra wrappers
				div.innerHTML = wrap[1] + elem + wrap[2];

				// Move to the right depth
				while (depth--) {
					div = div.lastChild;
				}

				// Remove IE's autoinserted <tbody> from table fragments
				if (!jQuery.support.tbody) {

					// String was a <table>, *may* have spurious <tbody>
					var hasBody = rtbody.test(elem),
						tbody = tag === "table" && !hasBody ?
							div.firstChild && div.firstChild.childNodes :

							// String was a bare <thead> or <tfoot>
							wrap[1] === "<table>" && !hasBody ?
								div.childNodes :
								[];

					for (var j = tbody.length - 1; j >= 0 ; --j) {
						if (jQuery.nodeName(tbody[j], "tbody") && !tbody[j].childNodes.length) {
							tbody[j].parentNode.removeChild(tbody[j]);
						}
					}

				}

				// IE completely kills leading whitespace when innerHTML is used
				if (!jQuery.support.leadingWhitespace && rleadingWhitespace.test(elem)) {
					div.insertBefore(context.createTextNode(rleadingWhitespace.exec(elem)[0]), div.firstChild);
				}

				elem = div.childNodes;
			}

			if (elem.nodeType) {
				ret.push(elem);
			} else {
				ret = jQuery.merge(ret, elem);
			}
		}

		if (fragment) {
			for (var i = 0; ret[i]; i++) {
				if (scripts && jQuery.nodeName(ret[i], "script") && (!ret[i].type || ret[i].type.toLowerCase() === "text/javascript")) {
					scripts.push(ret[i].parentNode ? ret[i].parentNode.removeChild(ret[i]) : ret[i]);
				
				} else {
					if (ret[i].nodeType === 1) {
						ret.splice.apply(ret, [i + 1, 0].concat(jQuery.makeArray(ret[i].getElementsByTagName("script"))));
					}
					fragment.appendChild(ret[i]);
				}
			}
		}

		return ret;
	},
	
	cleanData: function(elems) {
		var data, id, cache = jQuery.cache,
			special = jQuery.event.special,
			deleteExpando = jQuery.support.deleteExpando;
		
		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			id = elem[jQuery.expando];
			
			if (id) {
				data = cache[id];
				
				if (data.events) {
					for (var type in data.events) {
						if (special[type]) {
							jQuery.event.remove(elem, type);

						} else {
							removeEvent(elem, type, data.handle);
						}
					}
				}
				
				if (deleteExpando) {
					delete elem[jQuery.expando];

				} else if (elem.removeAttribute) {
					elem.removeAttribute(jQuery.expando);
				}
				
				delete cache[id];
			}
		}
	}
});
// exclude the following css properties to add px
var rexclude = /z-?index|font-?weight|opacity|zoom|line-?height/i,
	ralpha = /alpha\([^)]*\)/,
	ropacity = /opacity=([^)]*)/,
	rfloat = /float/i,
	rdashAlpha = /-([a-z])/ig,
	rupper = /([A-Z])/g,
	rnumpx = /^-?\d+(?:px)?$/i,
	rnum = /^-?\d/,

	cssShow = { position: "absolute", visibility: "hidden", display:"block" },
	cssWidth = ["Left", "Right"],
	cssHeight = ["Top", "Bottom"],

	// cache check for defaultView.getComputedStyle
	getComputedStyle = document.defaultView && document.defaultView.getComputedStyle,
	// normalize float css property
	styleFloat = jQuery.support.cssFloat ? "cssFloat" : "styleFloat",
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn.css = function(name, value) {
	return access(this, name, value, true, function(elem, name, value) {
		if (value === undefined) {
			return jQuery.curCSS(elem, name);
		}
		
		if (typeof value === "number" && !rexclude.test(name)) {
			value += "px";
		}

		jQuery.style(elem, name, value);
	});
};

jQuery.extend({
	style: function(elem, name, value) {
		// don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		// ignore negative width and height values #1599
		if ((name === "width" || name === "height") && parseFloat(value) < 0) {
			value = undefined;
		}

		var style = elem.style || elem, set = value !== undefined;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity") {
			if (set) {
				// IE has trouble with opacity if it does not have layout
				// Force it by setting the zoom level
				style.zoom = 1;

				// Set the alpha filter to set the opacity
				var opacity = parseInt(value, 10) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")";
				var filter = style.filter || jQuery.curCSS(elem, "filter") || "";
				style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity;
			}

			return style.filter && style.filter.indexOf("opacity=") >= 0 ?
				(parseFloat(ropacity.exec(style.filter)[1]) / 100) + "":
				"";
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		name = name.replace(rdashAlpha, fcamelCase);

		if (set) {
			style[name] = value;
		}

		return style[name];
	},

	css: function(elem, name, force, extra) {
		if (name === "width" || name === "height") {
			var val, props = cssShow, which = name === "width" ? cssWidth : cssHeight;

			function getWH() {
				val = name === "width" ? elem.offsetWidth : elem.offsetHeight;

				if (extra === "border") {
					return;
				}

				jQuery.each(which, function() {
					if (!extra) {
						val -= parseFloat(jQuery.curCSS(elem, "padding" + this, true)) || 0;
					}

					if (extra === "margin") {
						val += parseFloat(jQuery.curCSS(elem, "margin" + this, true)) || 0;
					} else {
						val -= parseFloat(jQuery.curCSS(elem, "border" + this + "Width", true)) || 0;
					}
				});
			}

			if (elem.offsetWidth !== 0) {
				getWH();
			} else {
				jQuery.swap(elem, props, getWH);
			}

			return Math.max(0, Math.round(val));
		}

		return jQuery.curCSS(elem, name, force);
	},

	curCSS: function(elem, name, force) {
		var ret, style = elem.style, filter;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity" && elem.currentStyle) {
			ret = ropacity.test(elem.currentStyle.filter || "") ?
				(parseFloat(RegExp.$1) / 100) + "" :
				"";

			return ret === "" ?
				"1" :
				ret;
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		if (!force && style && style[name]) {
			ret = style[name];

		} else if (getComputedStyle) {

			// Only "float" is needed here
			if (rfloat.test(name)) {
				name = "float";
			}

			name = name.replace(rupper, "-$1").toLowerCase();

			var defaultView = elem.ownerDocument.defaultView;

			if (!defaultView) {
				return null;
			}

			var computedStyle = defaultView.getComputedStyle(elem, null);

			if (computedStyle) {
				ret = computedStyle.getPropertyValue(name);
			}

			// We should always get a number back from opacity
			if (name === "opacity" && ret === "") {
				ret = "1";
			}

		} else if (elem.currentStyle) {
			var camelCase = name.replace(rdashAlpha, fcamelCase);

			ret = elem.currentStyle[name] || elem.currentStyle[camelCase];

			// From the awesome hack by Dean Edwards
			// http://erik.eae.net/archives/2007/07/27/18.54.15/#comment-102291

			// If we're not dealing with a regular pixel number
			// but a number that has a weird ending, we need to convert it to pixels
			if (!rnumpx.test(ret) && rnum.test(ret)) {
				// Remember the original values
				var left = style.left, rsLeft = elem.runtimeStyle.left;

				// Put in the new values to get a computed value out
				elem.runtimeStyle.left = elem.currentStyle.left;
				style.left = camelCase === "fontSize" ? "1em" : (ret || 0);
				ret = style.pixelLeft + "px";

				// Revert the changed values
				style.left = left;
				elem.runtimeStyle.left = rsLeft;
			}
		}

		return ret;
	},

	// A method for quickly swapping in/out CSS properties to get correct calculations
	swap: function(elem, options, callback) {
		var old = {};

		// Remember the old values, and insert the new ones
		for (var name in options) {
			old[name] = elem.style[name];
			elem.style[name] = options[name];
		}

		callback.call(elem);

		// Revert the old values
		for (var name in options) {
			elem.style[name] = old[name];
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.hidden = function(elem) {
		var width = elem.offsetWidth, height = elem.offsetHeight,
			skip = elem.nodeName.toLowerCase() === "tr";

		return width === 0 && height === 0 && !skip ?
			true :
			width > 0 && height > 0 && !skip ?
				false :
				jQuery.curCSS(elem, "display") === "none";
	};

	jQuery.expr.filters.visible = function(elem) {
		return !jQuery.expr.filters.hidden(elem);
	};
}
var jsc = now(),
	rscript = /<script(.|\s)*?\/script>/gi,
	rselectTextarea = /select|textarea/i,
	rinput = /color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week/i,
	jsre = /=\?(&|$)/,
	rquery = /\?/,
	rts = /(\?|&)_=.*?(&|$)/,
	rurl = /^(\w+:)?\/\/([^\/?#]+)/,
	r20 = /%20/g,

	// Keep a copy of the old load method
	_load = jQuery.fn.load;

jQuery.fn.extend({
	load: function(url, params, callback) {
		if (typeof url !== "string") {
			return _load.call(this, url);

		// Don't do a request if no elements are being requested
		} else if (!this.length) {
			return this;
		}

		var off = url.indexOf(" ");
		if (off >= 0) {
			var selector = url.slice(off, url.length);
			url = url.slice(0, off);
		}

		// Default to a GET request
		var type = "GET";

		// If the second parameter was provided
		if (params) {
			// If it's a function
			if (jQuery.isFunction(params)) {
				// We assume that it's the callback
				callback = params;
				params = null;

			// Otherwise, build a param string
			} else if (typeof params === "object") {
				params = jQuery.param(params, jQuery.ajaxSettings.traditional);
				type = "POST";
			}
		}

		var self = this;

		// Request the remote document
		jQuery.ajax({
			url: url,
			type: type,
			dataType: "html",
			data: params,
			complete: function(res, status) {
				// If successful, inject the HTML into all the matched elements
				if (status === "success" || status === "notmodified") {
					// See if a selector was specified
					self.html(selector ?
						// Create a dummy div to hold the results
						jQuery("<div />")
							// inject the contents of the document in, removing the scripts
							// to avoid any 'Permission Denied' errors in IE
							.append(res.responseText.replace(rscript, ""))

							// Locate the specified elements
							.find(selector) :

						// If not, just inject the full result
						res.responseText);
				}

				if (callback) {
					self.each(callback, [res.responseText, status, res]);
				}
			}
		});

		return this;
	},

	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {
			return this.elements ? jQuery.makeArray(this.elements) : this;
		})
		.filter(function() {
			return this.name && !this.disabled &&
				(this.checked || rselectTextarea.test(this.nodeName) ||
					rinput.test(this.type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			return val == null ?
				null :
				jQuery.isArray(val) ?
					jQuery.map(val, function(val, i) {
						return { name: elem.name, value: val };
					}) :
					{ name: elem.name, value: val };
		}).get();
	}
});

// Attach a bunch of functions for handling common AJAX events
jQuery.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "), function(i, o) {
	jQuery.fn[o] = function(f) {
		return this.bind(o, f);
	};
});

jQuery.extend({

	get: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = null;
		}

		return jQuery.ajax({
			type: "GET",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	getScript: function(url, callback) {
		return jQuery.get(url, null, callback, "script");
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	post: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = {};
		}

		return jQuery.ajax({
			type: "POST",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	ajaxSetup: function(settings) {
		jQuery.extend(jQuery.ajaxSettings, settings);
	},

	ajaxSettings: {
		url: location.href,
		global: true,
		type: "GET",
		contentType: "application/x-www-form-urlencoded",
		processData: true,
		async: true,
		/*
		timeout: 0,
		data: null,
		username: null,
		password: null,
		traditional: false,
		*/
		// Create the request object; Microsoft failed to properly
		// implement the XMLHttpRequest in IE7 (can't request local files),
		// so we use the ActiveXObject when it is available
		// This function can be overriden by calling jQuery.ajaxSetup
		xhr: window.XMLHttpRequest && (window.location.protocol !== "file:" || !window.ActiveXObject) ?
			function() {
				return new window.XMLHttpRequest();
			} :
			function() {
				try {
					return new window.ActiveXObject("Microsoft.XMLHTTP");
				} catch(e) {}
			},
		accepts: {
			xml: "application/xml, text/xml",
			html: "text/html",
			script: "text/javascript, application/javascript",
			json: "application/json, text/javascript",
			text: "text/plain",
			_default: "*/*"
		}
	},

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajax: function(origSettings) {
		var s = jQuery.extend(true, {}, jQuery.ajaxSettings, origSettings);
		
		var jsonp, status, data,
			callbackContext = origSettings && origSettings.context || s,
			type = s.type.toUpperCase();

		// convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Handle JSONP Parameter Callbacks
		if (s.dataType === "jsonp") {
			if (type === "GET") {
				if (!jsre.test(s.url)) {
					s.url += (rquery.test(s.url) ? "&" : "?") + (s.jsonp || "callback") + "=?";
				}
			} else if (!s.data || !jsre.test(s.data)) {
				s.data = (s.data ? s.data + "&" : "") + (s.jsonp || "callback") + "=?";
			}
			s.dataType = "json";
		}

		// Build temporary JSONP function
		if (s.dataType === "json" && (s.data && jsre.test(s.data) || jsre.test(s.url))) {
			jsonp = s.jsonpCallback || ("jsonp" + jsc++);

			// Replace the =? sequence both in the query string and the data
			if (s.data) {
				s.data = (s.data + "").replace(jsre, "=" + jsonp + "$1");
			}

			s.url = s.url.replace(jsre, "=" + jsonp + "$1");

			// We need to make sure
			// that a JSONP style response is executed properly
			s.dataType = "script";

			// Handle JSONP-style loading
			window[jsonp] = window[jsonp] || function(tmp) {
				data = tmp;
				success();
				complete();
				// Garbage collect
				window[jsonp] = undefined;

				try {
					delete window[jsonp];
				} catch(e) {}

				if (head) {
					head.removeChild(script);
				}
			};
		}

		if (s.dataType === "script" && s.cache === null) {
			s.cache = false;
		}

		if (s.cache === false && type === "GET") {
			var ts = now();

			// try replacing _= if it is there
			var ret = s.url.replace(rts, "$1_=" + ts + "$2");

			// if nothing was replaced, add timestamp to the end
			s.url = ret + ((ret === s.url) ? (rquery.test(s.url) ? "&" : "?") + "_=" + ts : "");
		}

		// If data is available, append data to url for get requests
		if (s.data && type === "GET") {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.data;
		}

		// Watch for a new set of requests
		if (s.global && ! jQuery.active++) {
			jQuery.event.trigger("ajaxStart");
		}

		// Matches an absolute URL, and saves the domain
		var parts = rurl.exec(s.url),
			remote = parts && (parts[1] && parts[1] !== location.protocol || parts[2] !== location.host);

		// If we're requesting a remote document
		// and trying to load JSON or Script with a GET
		if (s.dataType === "script" && type === "GET" && remote) {
			var head = document.getElementsByTagName("head")[0] || document.documentElement;
			var script = document.createElement("script");
			script.src = s.url;
			if (s.scriptCharset) {
				script.charset = s.scriptCharset;
			}

			// Handle Script loading
			if (!jsonp) {
				var done = false;

				// Attach handlers for all browsers
				script.onload = script.onreadystatechange = function() {
					if (!done && (!this.readyState ||
							this.readyState === "loaded" || this.readyState === "complete")) {
						done = true;
						success();
						complete();

						// Handle memory leak in IE
						script.onload = script.onreadystatechange = null;
						if (head && script.parentNode) {
							head.removeChild(script);
						}
					}
				};
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709 and #4378).
			head.insertBefore(script, head.firstChild);

			// We handle everything using the script element injection
			return undefined;
		}

		var requestDone = false;

		// Create the request object
		var xhr = s.xhr();

		if (!xhr) {
			return;
		}

		// Open the socket
		// Passing null username, generates a login popup on Opera (#2865)
		if (s.username) {
			xhr.open(type, s.url, s.async, s.username, s.password);
		} else {
			xhr.open(type, s.url, s.async);
		}

		// Need an extra try/catch for cross domain requests in Firefox 3
		try {
			// Set the correct header, if data is being sent
			if (s.data || origSettings && origSettings.contentType) {
				xhr.setRequestHeader("Content-Type", s.contentType);
			}

			// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
			if (s.ifModified) {
				if (jQuery.lastModified[s.url]) {
					xhr.setRequestHeader("If-Modified-Since", jQuery.lastModified[s.url]);
				}

				if (jQuery.etag[s.url]) {
					xhr.setRequestHeader("If-None-Match", jQuery.etag[s.url]);
				}
			}

			// Set header so the called script knows that it's an XMLHttpRequest
			// Only send the header if it's not a remote XHR
			if (!remote) {
				xhr.setRequestHeader("X-Requested-With", "XMLHttpRequest");
			}

			// Set the Accepts header for the server, depending on the dataType
			xhr.setRequestHeader("Accept", s.dataType && s.accepts[s.dataType] ?
				s.accepts[s.dataType] + ", */*" :
				s.accepts._default);
		} catch(e) {}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend && s.beforeSend.call(callbackContext, xhr, s) === false) {
			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}

			// close opended socket
			xhr.abort();
			return false;
		}

		if (s.global) {
			trigger("ajaxSend", [xhr, s]);
		}

		// Wait for a response to come back
		var onreadystatechange = xhr.onreadystatechange = function(isTimeout) {
			// The request was aborted
			if (!xhr || xhr.readyState === 0 || isTimeout === "abort") {
				// Opera doesn't call onreadystatechange before this point
				// so we simulate the call
				if (!requestDone) {
					complete();
				}

				requestDone = true;
				if (xhr) {
					xhr.onreadystatechange = jQuery.noop;
				}

			// The transfer is complete and the data is available, or the request timed out
			} else if (!requestDone && xhr && (xhr.readyState === 4 || isTimeout === "timeout")) {
				requestDone = true;
				xhr.onreadystatechange = jQuery.noop;

				status = isTimeout === "timeout" ?
					"timeout" :
					!jQuery.httpSuccess(xhr) ?
						"error" :
						s.ifModified && jQuery.httpNotModified(xhr, s.url) ?
							"notmodified" :
							"success";

				var errMsg;

				if (status === "success") {
					// Watch for, and catch, XML document parse errors
					try {
						// process the data (runs the xml through httpData regardless of callback)
						data = jQuery.httpData(xhr, s.dataType, s);
					} catch(err) {
						status = "parsererror";
						errMsg = err;
					}
				}

				// Make sure that the request was successful or notmodified
				if (status === "success" || status === "notmodified") {
					// JSONP handles its own success callback
					if (!jsonp) {
						success();
					}
				} else {
					jQuery.handleError(s, xhr, status, errMsg);
				}

				// Fire the complete handlers
				complete();

				if (isTimeout === "timeout") {
					xhr.abort();
				}

				// Stop memory leaks
				if (s.async) {
					xhr = null;
				}
			}
		};

		// Override the abort handler, if we can (IE doesn't allow it, but that's OK)
		// Opera doesn't fire onreadystatechange at all on abort
		try {
			var oldAbort = xhr.abort;
			xhr.abort = function() {
				if (xhr) {
					oldAbort.call(xhr);
				}

				onreadystatechange("abort");
			};
		} catch(e) { }

		// Timeout checker
		if (s.async && s.timeout > 0) {
			setTimeout(function() {
				// Check to see if the request is still happening
				if (xhr && !requestDone) {
					onreadystatechange("timeout");
				}
			}, s.timeout);
		}

		// Send the data
		try {
			xhr.send(type === "POST" || type === "PUT" || type === "DELETE" ? s.data : null);
		} catch(e) {
			jQuery.handleError(s, xhr, null, e);
			// Fire the complete handlers
			complete();
		}

		// firefox 1.5 doesn't fire statechange for sync requests
		if (!s.async) {
			onreadystatechange();
		}

		function success() {
			// If a local callback was specified, fire it and pass it the data
			if (s.success) {
				s.success.call(callbackContext, data, status, xhr);
			}

			// Fire the global callback
			if (s.global) {
				trigger("ajaxSuccess", [xhr, s]);
			}
		}

		function complete() {
			// Process result
			if (s.complete) {
				s.complete.call(callbackContext, xhr, status);
			}

			// The request was completed
			if (s.global) {
				trigger("ajaxComplete", [xhr, s]);
			}

			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}
		}
		
		function trigger(type, args) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger(type, args);
		}

		// return XMLHttpRequest to allow aborting the request etc.
		return xhr;
	},

	handleError: function(s, xhr, status, e) {
		// If a local callback was specified, fire it
		if (s.error) {
			s.error.call(s.context || s, xhr, status, e);
		}

		// Fire the global callback
		if (s.global) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger("ajaxError", [xhr, s, e]);
		}
	},

	// Counter for holding the number of active queries
	active: 0,

	// Determines if an XMLHttpRequest was successful or not
	httpSuccess: function(xhr) {
		try {
			// IE error sometimes returns 1223 when it should be 204 so treat it as success, see #1450
			return !xhr.status && location.protocol === "file:" ||
				// Opera returns 0 when status is 304
				(xhr.status >= 200 && xhr.status < 300) ||
				xhr.status === 304 || xhr.status === 1223 || xhr.status === 0;
		} catch(e) {}

		return false;
	},

	// Determines if an XMLHttpRequest returns NotModified
	httpNotModified: function(xhr, url) {
		var lastModified = xhr.getResponseHeader("Last-Modified"),
			etag = xhr.getResponseHeader("Etag");

		if (lastModified) {
			jQuery.lastModified[url] = lastModified;
		}

		if (etag) {
			jQuery.etag[url] = etag;
		}

		// Opera returns 0 when status is 304
		return xhr.status === 304 || xhr.status === 0;
	},

	httpData: function(xhr, type, s) {
		var ct = xhr.getResponseHeader("content-type") || "",
			xml = type === "xml" || !type && ct.indexOf("xml") >= 0,
			data = xml ? xhr.responseXML : xhr.responseText;

		if (xml && data.documentElement.nodeName === "parsererror") {
			jQuery.error("parsererror");
		}

		// Allow a pre-filtering function to sanitize the response
		// s is checked to keep backwards compatibility
		if (s && s.dataFilter) {
			data = s.dataFilter(data, type);
		}

		// The filter can actually parse the response
		if (typeof data === "string") {
			// Get the JavaScript object, if JSON is used.
			if (type === "json" || !type && ct.indexOf("json") >= 0) {
				data = jQuery.parseJSON(data);

			// If the type is "script", eval it in global context
			} else if (type === "script" || !type && ct.indexOf("javascript") >= 0) {
				jQuery.globalEval(data);
			}
		}

		return data;
	},

	// Serialize an array of form elements or a set of
	// key/values into a query string
	param: function(a, traditional) {
		var s = [];
		
		// Set traditional to true for jQuery <= 1.3.2 behavior.
		if (traditional === undefined) {
			traditional = jQuery.ajaxSettings.traditional;
		}
		
		// If an array was passed in, assume that it is an array of form elements.
		if (jQuery.isArray(a) || a.jquery) {
			// Serialize the form elements
			jQuery.each(a, function() {
				add(this.name, this.value);
			});
			
		} else {
			// If traditional, encode the "old" way (the way 1.3.2 or older
			// did it), otherwise encode params recursively.
			for (var prefix in a) {
				buildParams(prefix, a[prefix]);
			}
		}

		// Return the resulting serialization
		return s.join("&").replace(r20, "+");

		function buildParams(prefix, obj) {
			if (jQuery.isArray(obj)) {
				// Serialize array item.
				jQuery.each(obj, function(i, v) {
					if (traditional || /\[\]$/.test(prefix)) {
						// Treat each array item as a scalar.
						add(prefix, v);
					} else {
						// If array item is non-scalar (array or object), encode its
						// numeric index to resolve deserialization ambiguity issues.
						// Note that rack (as of 1.0.0) can't currently deserialize
						// nested arrays properly, and attempting to do so may cause
						// a server error. Possible fixes are to modify rack's
						// deserialization algorithm or to provide an option or flag
						// to force array serialization to be shallow.
						buildParams(prefix + "[" + (typeof v === "object" || jQuery.isArray(v) ? i : "") + "]", v);
					}
				});
					
			} else if (!traditional && obj != null && typeof obj === "object") {
				// Serialize object item.
				jQuery.each(obj, function(k, v) {
					buildParams(prefix + "[" + k + "]", v);
				});
					
			} else {
				// Serialize scalar item.
				add(prefix, obj);
			}
		}

		function add(key, value) {
			// If value is a function, invoke it and return its value
			value = jQuery.isFunction(value) ? value() : value;
			s[s.length] = encodeURIComponent(key) + "=" + encodeURIComponent(value);
		}
	}
});
var elemdisplay = {},
	rfxtypes = /toggle|show|hide/,
	rfxnum = /^([+-]=)?([\d+-.]+)(.*)$/,
	timerId,
	fxAttrs = [
		// height animations
		["height", "marginTop", "marginBottom", "paddingTop", "paddingBottom"],
		// width animations
		["width", "marginLeft", "marginRight", "paddingLeft", "paddingRight"],
		// opacity animations
		["opacity"]
];

jQuery.fn.extend({
	show: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("show", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");

				this[i].style.display = old || "";

				if (jQuery.css(this[i], "display") === "none") {
					var nodeName = this[i].nodeName, display;

					if (elemdisplay[nodeName]) {
						display = elemdisplay[nodeName];

					} else {
						var elem = jQuery("<" + nodeName + " />").appendTo("body");

						display = elem.css("display");

						if (display === "none") {
							display = "block";
						}

						elem.remove();

						elemdisplay[nodeName] = display;
					}

					jQuery.data(this[i], "olddisplay", display);
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = jQuery.data(this[j], "olddisplay") || "";
			}

			return this;
		}
	},

	hide: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("hide", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");
				if (!old && old !== "none") {
					jQuery.data(this[i], "olddisplay", jQuery.css(this[i], "display"));
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = "none";
			}

			return this;
		}
	},

	// Save the old toggle function
	_toggle: jQuery.fn.toggle,

	toggle: function(fn, fn2) {
		var bool = typeof fn === "boolean";

		if (jQuery.isFunction(fn) && jQuery.isFunction(fn2)) {
			this._toggle.apply(this, arguments);

		} else if (fn == null || bool) {
			this.each(function() {
				var state = bool ? fn : jQuery(this).is(":hidden");
				jQuery(this)[state ? "show" : "hide"]();
			});

		} else {
			this.animate(genFx("toggle", 3), fn, fn2);
		}

		return this;
	},

	fadeTo: function(speed, to, callback) {
		return this.filter(":hidden").css("opacity", 0).show().end()
					.animate({opacity: to}, speed, callback);
	},

	animate: function(prop, speed, easing, callback) {
		var optall = jQuery.speed(speed, easing, callback);

		if (jQuery.isEmptyObject(prop)) {
			return this.each(optall.complete);
		}

		return this[optall.queue === false ? "each" : "queue"](function() {
			var opt = jQuery.extend({}, optall), p,
				hidden = this.nodeType === 1 && jQuery(this).is(":hidden"),
				self = this;

			for (p in prop) {
				var name = p.replace(rdashAlpha, fcamelCase);

				if (p !== name) {
					prop[name] = prop[p];
					delete prop[p];
					p = name;
				}

				if (prop[p] === "hide" && hidden || prop[p] === "show" && !hidden) {
					return opt.complete.call(this);
				}

				if ((p === "height" || p === "width") && this.style) {
					// Store display property
					opt.display = jQuery.css(this, "display");

					// Make sure that nothing sneaks out
					opt.overflow = this.style.overflow;
				}

				if (jQuery.isArray(prop[p])) {
					// Create (if needed) and add to specialEasing
					(opt.specialEasing = opt.specialEasing || {})[p] = prop[p][1];
					prop[p] = prop[p][0];
				}
			}

			if (opt.overflow != null) {
				this.style.overflow = "hidden";
			}

			opt.curAnim = jQuery.extend({}, prop);

			jQuery.each(prop, function(name, val) {
				var e = new jQuery.fx(self, opt, name);

				if (rfxtypes.test(val)) {
					e[val === "toggle" ? hidden ? "show" : "hide" : val](prop);

				} else {
					var parts = rfxnum.exec(val),
						start = e.cur(true) || 0;

					if (parts) {
						var end = parseFloat(parts[2]),
							unit = parts[3] || "px";

						// We need to compute starting value
						if (unit !== "px") {
							self.style[name] = (end || 1) + unit;
							start = ((end || 1) / e.cur(true)) * start;
							self.style[name] = start + unit;
						}

						// If a +=/-= token was provided, we're doing a relative animation
						if (parts[1]) {
							end = ((parts[1] === "-=" ? -1 : 1) * end) + start;
						}

						e.custom(start, end, unit);

					} else {
						e.custom(start, val, "");
					}
				}
			});

			// For JS strict compliance
			return true;
		});
	},

	stop: function(clearQueue, gotoEnd) {
		var timers = jQuery.timers;

		if (clearQueue) {
			this.queue([]);
		}

		this.each(function() {
			// go in reverse order so anything added to the queue during the loop is ignored
			for (var i = timers.length - 1; i >= 0; i--) {
				if (timers[i].elem === this) {
					if (gotoEnd) {
						// force the next step to be the last
						timers[i](true);
					}

					timers.splice(i, 1);
				}
			}
		});

		// start the next in the queue if the last step wasn't forced
		if (!gotoEnd) {
			this.dequeue();
		}

		return this;
	}

});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show", 1),
	slideUp: genFx("hide", 1),
	slideToggle: genFx("toggle", 1),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, callback) {
		return this.animate(props, speed, callback);
	};
});

jQuery.extend({
	speed: function(speed, easing, fn) {
		var opt = speed && typeof speed === "object" ? speed : {
			complete: fn || !fn && easing ||
				jQuery.isFunction(speed) && speed,
			duration: speed,
			easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
		};

		opt.duration = jQuery.fx.off ? 0 : typeof opt.duration === "number" ? opt.duration :
			jQuery.fx.speeds[opt.duration] || jQuery.fx.speeds._default;

		// Queueing
		opt.old = opt.complete;
		opt.complete = function() {
			if (opt.queue !== false) {
				jQuery(this).dequeue();
			}
			if (jQuery.isFunction(opt.old)) {
				opt.old.call(this);
			}
		};

		return opt;
	},

	easing: {
		linear: function(p, n, firstNum, diff) {
			return firstNum + diff * p;
		},
		swing: function(p, n, firstNum, diff) {
			return ((-Math.cos(p*Math.PI)/2) + 0.5) * diff + firstNum;
		}
	},

	timers: [],

	fx: function(elem, options, prop) {
		this.options = options;
		this.elem = elem;
		this.prop = prop;

		if (!options.orig) {
			options.orig = {};
		}
	}

});

jQuery.fx.prototype = {
	// Simple function for setting a style value
	update: function() {
		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		(jQuery.fx.step[this.prop] || jQuery.fx.step._default)(this);

		// Set display property to block for height/width animations
		if ((this.prop === "height" || this.prop === "width") && this.elem.style) {
			this.elem.style.display = "block";
		}
	},

	// Get the current size
	cur: function(force) {
		if (this.elem[this.prop] != null && (!this.elem.style || this.elem.style[this.prop] == null)) {
			return this.elem[this.prop];
		}

		var r = parseFloat(jQuery.css(this.elem, this.prop, force));
		return r && r > -10000 ? r : parseFloat(jQuery.curCSS(this.elem, this.prop)) || 0;
	},

	// Start an animation from one number to another
	custom: function(from, to, unit) {
		this.startTime = now();
		this.start = from;
		this.end = to;
		this.unit = unit || this.unit || "px";
		this.now = this.start;
		this.pos = this.state = 0;

		var self = this;
		function t(gotoEnd) {
			return self.step(gotoEnd);
		}

		t.elem = this.elem;

		if (t() && jQuery.timers.push(t) && !timerId) {
			timerId = setInterval(jQuery.fx.tick, 13);
		}
	},

	// Simple 'show' function
	show: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.show = true;

		// Begin the animation
		// Make sure that we start at a small width/height to avoid any
		// flash of content
		this.custom(this.prop === "width" || this.prop === "height" ? 1 : 0, this.cur());

		// Start by showing the element
		jQuery(this.elem).show();
	},

	// Simple 'hide' function
	hide: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.hide = true;

		// Begin the animation
		this.custom(this.cur(), 0);
	},

	// Each step of an animation
	step: function(gotoEnd) {
		var t = now(), done = true;

		if (gotoEnd || t >= this.options.duration + this.startTime) {
			this.now = this.end;
			this.pos = this.state = 1;
			this.update();

			this.options.curAnim[this.prop] = true;

			for (var i in this.options.curAnim) {
				if (this.options.curAnim[i] !== true) {
					done = false;
				}
			}

			if (done) {
				if (this.options.display != null) {
					// Reset the overflow
					this.elem.style.overflow = this.options.overflow;

					// Reset the display
					var old = jQuery.data(this.elem, "olddisplay");
					this.elem.style.display = old ? old : this.options.display;

					if (jQuery.css(this.elem, "display") === "none") {
						this.elem.style.display = "block";
					}
				}

				// Hide the element if the "hide" operation was done
				if (this.options.hide) {
					jQuery(this.elem).hide();
				}

				// Reset the properties, if the item has been hidden or shown
				if (this.options.hide || this.options.show) {
					for (var p in this.options.curAnim) {
						jQuery.style(this.elem, p, this.options.orig[p]);
					}
				}

				// Execute the complete function
				this.options.complete.call(this.elem);
			}

			return false;

		} else {
			var n = t - this.startTime;
			this.state = n / this.options.duration;

			// Perform the easing function, defaults to swing
			var specialEasing = this.options.specialEasing && this.options.specialEasing[this.prop];
			var defaultEasing = this.options.easing || (jQuery.easing.swing ? "swing" : "linear");
			this.pos = jQuery.easing[specialEasing || defaultEasing](this.state, n, 0, 1, this.options.duration);
			this.now = this.start + ((this.end - this.start) * this.pos);

			// Perform the next step of the animation
			this.update();
		}

		return true;
	}
};

jQuery.extend(jQuery.fx, {
	tick: function() {
		var timers = jQuery.timers;

		for (var i = 0; i < timers.length; i++) {
			if (!timers[i]()) {
				timers.splice(i--, 1);
			}
		}

		if (!timers.length) {
			jQuery.fx.stop();
		}
	},
		
	stop: function() {
		clearInterval(timerId);
		timerId = null;
	},
	
	speeds: {
		slow: 600,
 		fast: 200,
 		// Default speed
 		_default: 400
	},

	step: {
		opacity: function(fx) {
			jQuery.style(fx.elem, "opacity", fx.now);
		},

		_default: function(fx) {
			if (fx.elem.style && fx.elem.style[fx.prop] != null) {
				fx.elem.style[fx.prop] = (fx.prop === "width" || fx.prop === "height" ? Math.max(0, fx.now) : fx.now) + fx.unit;
			} else {
				fx.elem[fx.prop] = fx.now;
			}
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.animated = function(elem) {
		return jQuery.grep(jQuery.timers, function(fn) {
			return elem === fn.elem;
		}).length;
	};
}

function genFx(type, num) {
	var obj = {};

	jQuery.each(fxAttrs.concat.apply([], fxAttrs.slice(0,num)), function() {
		obj[this] = type;
	});

	return obj;
}
if ("getBoundingClientRect" in document.documentElement) {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		var box = elem.getBoundingClientRect(), doc = elem.ownerDocument, body = doc.body, docElem = doc.documentElement,
			clientTop = docElem.clientTop || body.clientTop || 0, clientLeft = docElem.clientLeft || body.clientLeft || 0,
			top = box.top + (self.pageYOffset || jQuery.support.boxModel && docElem.scrollTop || body.scrollTop) - clientTop,
			left = box.left + (self.pageXOffset || jQuery.support.boxModel && docElem.scrollLeft || body.scrollLeft) - clientLeft;

		return { top: top, left: left };
	};

} else {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		jQuery.offset.initialize();

		var offsetParent = elem.offsetParent, prevOffsetParent = elem,
			doc = elem.ownerDocument, computedStyle, docElem = doc.documentElement,
			body = doc.body, defaultView = doc.defaultView,
			prevComputedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle,
			top = elem.offsetTop, left = elem.offsetLeft;

		while ((elem = elem.parentNode) && elem !== body && elem !== docElem) {
			if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
				break;
			}

			computedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle;
			top -= elem.scrollTop;
			left -= elem.scrollLeft;

			if (elem === offsetParent) {
				top += elem.offsetTop;
				left += elem.offsetLeft;

				if (jQuery.offset.doesNotAddBorder && !(jQuery.offset.doesAddBorderForTableAndCells && /^t(able|d|h)$/i.test(elem.nodeName))) {
					top += parseFloat(computedStyle.borderTopWidth) || 0;
					left += parseFloat(computedStyle.borderLeftWidth) || 0;
				}

				prevOffsetParent = offsetParent, offsetParent = elem.offsetParent;
			}

			if (jQuery.offset.subtractsBorderForOverflowNotVisible && computedStyle.overflow !== "visible") {
				top += parseFloat(computedStyle.borderTopWidth) || 0;
				left += parseFloat(computedStyle.borderLeftWidth) || 0;
			}

			prevComputedStyle = computedStyle;
		}

		if (prevComputedStyle.position === "relative" || prevComputedStyle.position === "static") {
			top += body.offsetTop;
			left += body.offsetLeft;
		}

		if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
			top += Math.max(docElem.scrollTop, body.scrollTop);
			left += Math.max(docElem.scrollLeft, body.scrollLeft);
		}

		return { top: top, left: left };
	};
}

jQuery.offset = {
	initialize: function() {
		var body = document.body, container = document.createElement("div"), innerDiv, checkDiv, table, td, bodyMarginTop = parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0,
			html = "<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";

		jQuery.extend(container.style, { position: "absolute", top: 0, left: 0, margin: 0, border: 0, width: "1px", height: "1px", visibility: "hidden" });

		container.innerHTML = html;
		body.insertBefore(container, body.firstChild);
		innerDiv = container.firstChild;
		checkDiv = innerDiv.firstChild;
		td = innerDiv.nextSibling.firstChild.firstChild;

		this.doesNotAddBorder = (checkDiv.offsetTop !== 5);
		this.doesAddBorderForTableAndCells = (td.offsetTop === 5);

		checkDiv.style.position = "fixed", checkDiv.style.top = "20px";
		// safari subtracts parent border width here which is 5px
		this.supportsFixedPosition = (checkDiv.offsetTop === 20 || checkDiv.offsetTop === 15);
		checkDiv.style.position = checkDiv.style.top = "";

		innerDiv.style.overflow = "hidden", innerDiv.style.position = "relative";
		this.subtractsBorderForOverflowNotVisible = (checkDiv.offsetTop === -5);

		this.doesNotIncludeMarginInBodyOffset = (body.offsetTop !== bodyMarginTop);

		body.removeChild(container);
		body = container = innerDiv = checkDiv = table = td = null;
		jQuery.offset.initialize = jQuery.noop;
	},

	bodyOffset: function(body) {
		var top = body.offsetTop, left = body.offsetLeft;

		jQuery.offset.initialize();

		if (jQuery.offset.doesNotIncludeMarginInBodyOffset) {
			top += parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0;
			left += parseFloat(jQuery.curCSS(body, "marginLeft", true)) || 0;
		}

		return { top: top, left: left };
	},
	
	setOffset: function(elem, options, i) {
		// set position first, in-case top/left are set even on static elem
		if (/static/.test(jQuery.curCSS(elem, "position"))) {
			elem.style.position = "relative";
		}
		var curElem = jQuery(elem),
			curOffset = curElem.offset(),
			curTop = parseInt(jQuery.curCSS(elem, "top", true), 10) || 0,
			curLeft = parseInt(jQuery.curCSS(elem, "left", true), 10) || 0;

		if (jQuery.isFunction(options)) {
			options = options.call(elem, i, curOffset);
		}

		var props = {
			top: (options.top - curOffset.top) + curTop,
			left: (options.left - curOffset.left) + curLeft
		};
		
		if ("using" in options) {
			options.using.call(elem, props);
		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	position: function() {
		if (!this[0]) {
			return null;
		}

		var elem = this[0],

		// Get *real* offsetParent
		offsetParent = this.offsetParent(),

		// Get correct offsets
		offset = this.offset(),
		parentOffset = /^body|html$/i.test(offsetParent[0].nodeName) ? { top: 0, left: 0 } : offsetParent.offset();

		// Subtract element margins
		// note: when an element has margin: auto the offsetLeft and marginLeft
		// are the same in Safari causing offset.left to incorrectly be 0
		offset.top -= parseFloat(jQuery.curCSS(elem, "marginTop", true)) || 0;
		offset.left -= parseFloat(jQuery.curCSS(elem, "marginLeft", true)) || 0;

		// Add offsetParent borders
		parentOffset.top += parseFloat(jQuery.curCSS(offsetParent[0], "borderTopWidth", true)) || 0;
		parentOffset.left += parseFloat(jQuery.curCSS(offsetParent[0], "borderLeftWidth", true)) || 0;

		// Subtract the two offsets
		return {
			top: offset.top - parentOffset.top,
			left: offset.left - parentOffset.left
		};
	},

	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent || document.body;
			while (offsetParent && (!/^body|html$/i.test(offsetParent.nodeName) && jQuery.css(offsetParent, "position") === "static")) {
				offsetParent = offsetParent.offsetParent;
			}
			return offsetParent;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each(["Left", "Top"], function(i, name) {
	var method = "scroll" + name;

	jQuery.fn[method] = function(val) {
		var elem = this[0], win;
		
		if (!elem) {
			return null;
		}

		if (val !== undefined) {
			// Set the scroll offset
			return this.each(function() {
				win = getWindow(this);

				if (win) {
					win.scrollTo(
						!i ? val : jQuery(win).scrollLeft(),
						 i ? val : jQuery(win).scrollTop()
);

				} else {
					this[method] = val;
				}
			});
		} else {
			win = getWindow(elem);

			// Return the scroll offset
			return win ? ("pageXOffset" in win) ? win[i ? "pageYOffset" : "pageXOffset"] :
				jQuery.support.boxModel && win.document.documentElement[method] ||
					win.document.body[method] :
				elem[method];
		}
	};
});

function getWindow(elem) {
	return ("scrollTo" in elem && elem.document) ?
		elem :
		elem.nodeType === 9 ?
			elem.defaultView || elem.parentWindow :
			false;
}
// Create innerHeight, innerWidth, outerHeight and outerWidth methods
jQuery.each(["Height", "Width"], function(i, name) {

	var type = name.toLowerCase();

	// innerHeight and innerWidth
	jQuery.fn["inner" + name] = function() {
		return this[0] ?
			jQuery.css(this[0], type, false, "padding") :
			null;
	};

	// outerHeight and outerWidth
	jQuery.fn["outer" + name] = function(margin) {
		return this[0] ?
			jQuery.css(this[0], type, false, margin ? "margin" : "border") :
			null;
	};

	jQuery.fn[type] = function(size) {
		// Get window width or height
		var elem = this[0];
		if (!elem) {
			return size == null ? null : this;
		}
		
		if (jQuery.isFunction(size)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self[type](size.call(this, i, self[type]()));
			});
		}

		return ("scrollTo" in elem && elem.document) ? // does it walk and quack like a window?
			// Everyone else use document.documentElement or document.body depending on Quirks vs Standards mode
			elem.document.compatMode === "CSS1Compat" && elem.document.documentElement["client" + name] ||
			elem.document.body["client" + name] :

			// Get document width or height
			(elem.nodeType === 9) ? // is it a document
				// Either scroll[Width/Height] or offset[Width/Height], whichever is greater
				Math.max(
					elem.documentElement["client" + name],
					elem.body["scroll" + name], elem.documentElement["scroll" + name],
					elem.body["offset" + name], elem.documentElement["offset" + name]
) :

				// Get or set width or height on the element
				size === undefined ?
					// Get width or height on the element
					jQuery.css(elem, type) :

					// Set the width or height on the element (default to pixels if value is unitless)
					this.css(type, typeof size === "string" ? size : size + "px");
	};

});
// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

})(window);

OEBPS/js/jquery.tablesorter.js
/*
 *
 * TableSorter 2.0 - Client-side table sorting with ease!
 * Version 2.0.3
 * @requires jQuery v1.2.3
 *
 * Copyright (c) 2007 Christian Bach
 * Examples and docs at: http://tablesorter.com
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */
/**
 *
 * @description Create a sortable table with multi-column sorting capabilitys
 *
 * @example $('table').tablesorter();
 * @desc Create a simple tablesorter interface.
 *
 * @example $('table').tablesorter({ sortList:[[0,0],[1,0]] });
 * @desc Create a tablesorter interface and sort on the first and secound column in ascending order.
 *
 * @example $('table').tablesorter({ headers: { 0: { sorter: false}, 1: {sorter: false} } });
 * @desc Create a tablesorter interface and disableing the first and secound column headers.
 *
 * @example $('table').tablesorter({ 0: {sorter:"integer"}, 1: {sorter:"currency"} });
 * @desc Create a tablesorter interface and set a column parser for the first and secound column.
 *
 *
 * @param Object settings An object literal containing key/value pairs to provide optional settings.
 *
 * @option String cssHeader (optional) 			A string of the class name to be appended to sortable tr elements in the thead of the table.
 * 												Default value: "header"
 *
 * @option String cssAsc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a ascending sort.
 * 												Default value: "headerSortUp"
 *
 * @option String cssDesc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a descending sort.
 * 												Default value: "headerSortDown"
 *
 * @option String sortInitialOrder (optional) 	A string of the inital sorting order can be asc or desc.
 * 												Default value: "asc"
 *
 * @option String sortMultisortKey (optional) 	A string of the multi-column sort key.
 * 												Default value: "shiftKey"
 *
 * @option String textExtraction (optional) 	A string of the text-extraction method to use.
 * 												For complex html structures inside td cell set this option to "complex",
 * 												on large tables the complex option can be slow.
 * 												Default value: "simple"
 *
 * @option Object headers (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortList (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortForce (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is prepended to user-selected rules.
 * 												Default value: null
 *
 * @option Array sortAppend (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is appended to user-selected rules.
 * 												Default value: null
 *
 * @option Boolean widthFixed (optional) 		Boolean flag indicating if tablesorter should apply fixed widths to the table columns.
 * 												This is usefull when using the pager companion plugin.
 * 												This options requires the dimension jquery plugin.
 * 												Default value: false
 *
 * @option Boolean cancelSelection (optional) 	Boolean flag indicating if tablesorter should cancel selection of the table headers text.
 * 												Default value: true
 *
 * @option Boolean debug (optional) 			Boolean flag indicating if tablesorter should display debuging information usefull for development.
 *
 * @type jQuery
 *
 * @name tablesorter
 *
 * @cat Plugins/Tablesorter
 *
 * @author Christian Bach/christian.bach@polyester.se
 */

(function($) {
	$.extend({
		tablesorter: new function() {
			
			var parsers = [], widgets = [];
			
			this.defaults = {
				cssHeader: "header",
				cssAsc: "headerSortUp",
				cssDesc: "headerSortDown",
				sortInitialOrder: "asc",
				sortMultiSortKey: "shiftKey",
				sortForce: null,
				sortAppend: null,
				textExtraction: "simple",
				parsers: {},
				widgets: [],		
				widgetZebra: {css: ["even","odd"]},
				headers: {},
				widthFixed: false,
				cancelSelection: true,
				sortList: [],
				headerList: [],
				dateFormat: "us",
				decimal: '.',
				debug: false
			};
			
			/* debuging utils */
			function benchmark(s,d) {
				log(s + "," + (new Date().getTime() - d.getTime()) + "ms");
			}
			
			this.benchmark = benchmark;
			
			function log(s) {
				if (typeof console != "undefined" && typeof console.debug != "undefined") {
					console.log(s);
				} else {
					alert(s);
				}
			}
						
			/* parsers utils */
			function buildParserCache(table,$headers) {
				
				if(table.config.debug) { var parsersDebug = ""; }
				
				var rows = table.tBodies[0].rows;
				
				if(table.tBodies[0].rows[0]) {

					var list = [], cells = rows[0].cells, l = cells.length;
					
					for (var i=0;i < l; i++) {
						var p = false;
						
						if($.metadata && ($($headers[i]).metadata() && $($headers[i]).metadata().sorter)) {
						
							p = getParserById($($headers[i]).metadata().sorter);	
						
						} else if((table.config.headers[i] && table.config.headers[i].sorter)) {
	
							p = getParserById(table.config.headers[i].sorter);
						}
						if(!p) {
							p = detectParserForColumn(table,cells[i]);
						}
	
						if(table.config.debug) { parsersDebug += "column:" + i + " parser:" +p.id + "\n"; }
	
						list.push(p);
					}
				}
				
				if(table.config.debug) { log(parsersDebug); }

				return list;
			};
			
			function detectParserForColumn(table,node) {
				var l = parsers.length;
				for(var i=1; i < l; i++) {
					if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)) {
						return parsers[i];
					}
				}
				// 0 is always the generic parser (text)
				return parsers[0];
			}
			
			function getParserById(name) {
				var l = parsers.length;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == name.toLowerCase()) {	
						return parsers[i];
					}
				}
				return false;
			}
			
			/* utils */
			function buildCache(table) {
				
				if(table.config.debug) { var cacheTime = new Date(); }
				
				
				var totalRows = (table.tBodies[0] && table.tBodies[0].rows.length) || 0,
					totalCells = (table.tBodies[0].rows[0] && table.tBodies[0].rows[0].cells.length) || 0,
					parsers = table.config.parsers,
					cache = {row: [], normalized: []};
				
					for (var i=0;i < totalRows; ++i) {
					
						/** Add the table data to main data array */
						var c = table.tBodies[0].rows[i], cols = [];
					
						cache.row.push($(c));
						
						for(var j=0; j < totalCells; ++j) {
							cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));	
						}
												
						cols.push(i); // add position for rowCache
						cache.normalized.push(cols);
						cols = null;
					};
				
				if(table.config.debug) { benchmark("Building cache for " + totalRows + " rows:", cacheTime); }
				
				return cache;
			};
			
			function getElementText(config,node) {
				
				if(!node) return "";
								
				var t = "";
				
				if(config.textExtraction == "simple") {
					if(node.childNodes[0] && node.childNodes[0].hasChildNodes()) {
						t = node.childNodes[0].innerHTML;
					} else {
						t = node.innerHTML;
					}
				} else {
					if(typeof(config.textExtraction) == "function") {
						t = config.textExtraction(node);
					} else {
						t = $(node).text();
					}	
				}
				return t;
			}
			
			function appendToTable(table,cache) {
				
				if(table.config.debug) {var appendTime = new Date()}
				
				var c = cache,
					r = c.row,
					n= c.normalized,
					totalRows = n.length,
					checkCell = (n[0].length-1),
					tableBody = $(table.tBodies[0]),
					rows = [];
				
				for (var i=0;i < totalRows; i++) {
					rows.push(r[n[i][checkCell]]);	
					if(!table.config.appender) {
						
						var o = r[n[i][checkCell]];
						var l = o.length;
						for(var j=0; j < l; j++) {
							
							tableBody[0].appendChild(o[j]);
						
						}
						
						//tableBody.append(r[n[i][checkCell]]);
					}
				}	
				
				if(table.config.appender) {
				
					table.config.appender(table,rows);	
				}
				
				rows = null;
				
				if(table.config.debug) { benchmark("Rebuilt table:", appendTime); }
								
				//apply table widgets
				applyWidget(table);
				
				// trigger sortend
				setTimeout(function() {
					$(table).trigger("sortEnd");	
				},0);
				
			};
			
			function buildHeaders(table) {
				
				if(table.config.debug) { var time = new Date(); }
				
				var meta = ($.metadata) ? true : false, tableHeadersRows = [];
			
				for(var i = 0; i < table.tHead.rows.length; i++) { tableHeadersRows[i]=0; };
				
				$tableHeaders = $("thead th",table);
		
				$tableHeaders.each(function(index) {
							
					this.count = 0;
					this.column = index;
					this.order = formatSortingOrder(table.config.sortInitialOrder);
					
					if(checkHeaderMetadata(this) || checkHeaderOptions(table,index)) this.sortDisabled = true;
					
					if(!this.sortDisabled) {
						$(this).addClass(table.config.cssHeader);
					}
					
					// add cell to headerList
					table.config.headerList[index]= this;
				});
				
				if(table.config.debug) { benchmark("Built headers:", time); log($tableHeaders); }
				
				return $tableHeaders;
				
			};
						
		 	function checkCellColSpan(table, rows, row) {
 var arr = [], r = table.tHead.rows, c = r[row].cells;
				
				for(var i=0; i < c.length; i++) {
					var cell = c[i];
					
					if (cell.colSpan > 1) {
						arr = arr.concat(checkCellColSpan(table, headerArr,row++));
					} else {
						if(table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row+1])) {
							arr.push(cell);
						}
						//headerArr[row] = (i+row);
					}
				}
				return arr;
			};
			
			function checkHeaderMetadata(cell) {
				if(($.metadata) && ($(cell).metadata().sorter === false)) { return true; };
				return false;
			}
			
			function checkHeaderOptions(table,i) {	
				if((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { return true; };
				return false;
			}
			
			function applyWidget(table) {
				var c = table.config.widgets;
				var l = c.length;
				for(var i=0; i < l; i++) {
					
					getWidgetById(c[i]).format(table);
				}
				
			}
			
			function getWidgetById(name) {
				var l = widgets.length;
				for(var i=0; i < l; i++) {
					if(widgets[i].id.toLowerCase() == name.toLowerCase()) {
						return widgets[i];
					}
				}
			};
			
			function formatSortingOrder(v) {
				
				if(typeof(v) != "Number") {
					i = (v.toLowerCase() == "desc") ? 1 : 0;
				} else {
					i = (v == (0 || 1)) ? v : 0;
				}
				return i;
			}
			
			function isValueInArray(v, a) {
				var l = a.length;
				for(var i=0; i < l; i++) {
					if(a[i][0] == v) {
						return true;	
					}
				}
				return false;
			}
				
			function setHeadersCss(table,$headers, list, css) {
				// remove all header information
				$headers.removeClass(css[0]).removeClass(css[1]);
				
				var h = [];
				$headers.each(function(offset) {
						if(!this.sortDisabled) {
							h[this.column] = $(this);					
						}
				});
				
				var l = list.length;
				for(var i=0; i < l; i++) {
					h[list[i][0]].addClass(css[list[i][1]]);
				}
			}
			
			function fixColumnWidth(table,$headers) {
				var c = table.config;
				if(c.widthFixed) {
					var colgroup = $('<colgroup>');
					$("tr:first td",table.tBodies[0]).each(function() {
						colgroup.append($('<col>').css('width',$(this).width()));
					});
					$(table).prepend(colgroup);
				};
			}
			
			function updateHeaderSortCount(table,sortList) {
				var c = table.config, l = sortList.length;
				for(var i=0; i < l; i++) {
					var s = sortList[i], o = c.headerList[s[0]];
					o.count = s[1];
					o.count++;
				}
			}
			
			/* sorting methods */
			function multisort(table,sortList,cache) {
				
				if(table.config.debug) { var sortTime = new Date(); }
				
				var dynamicExp = "var sortWrapper = function(a,b) {", l = sortList.length;
					
				for(var i=0; i < l; i++) {
					
					var c = sortList[i][0];
					var order = sortList[i][1];
					var s = (getCachedSortType(table.config.parsers,c) == "text") ? ((order == 0) ? "sortText" : "sortTextDesc") : ((order == 0) ? "sortNumeric" : "sortNumericDesc");
					
					var e = "e" + i;
					
					dynamicExp += "var " + e + " = " + s + "(a[" + c + "],b[" + c + "]); ";
					dynamicExp += "if(" + e + ") { return " + e + "; } ";
					dynamicExp += "else { ";
				}
				
				// if value is the same keep orignal order	
				var orgOrderCol = cache.normalized[0].length - 1;
				dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];";
						
				for(var i=0; i < l; i++) {
					dynamicExp += "}; ";
				}
				
				dynamicExp += "return 0; ";	
				dynamicExp += "}; ";	
				
				eval(dynamicExp);
				
				cache.normalized.sort(sortWrapper);
				
				if(table.config.debug) { benchmark("Sorting on " + sortList.toString() + " and dir " + order+ " time:", sortTime); }
				
				return cache;
			};
			
			function sortText(a,b) {
				return ((a < b) ? -1 : ((a > b) ? 1 : 0));
			};
			
			function sortTextDesc(a,b) {
				return ((b < a) ? -1 : ((b > a) ? 1 : 0));
			};	
			
	 		function sortNumeric(a,b) {
				return a-b;
			};
			
			function sortNumericDesc(a,b) {
				return b-a;
			};
			
			function getCachedSortType(parsers,i) {
				return parsers[i].type;
			};
			
			/* public methods */
			this.construct = function(settings) {

				return this.each(function() {
					
					if(!this.tHead || !this.tBodies) return;
					
					var $this, $document,$headers, cache, config, shiftDown = 0, sortOrder;
					
					this.config = {};
					
					config = $.extend(this.config, $.tablesorter.defaults, settings);
					
					// store common expression for speed					
					$this = $(this);
					
					// build headers
					$headers = buildHeaders(this);
					
					// try to auto detect column type, and store in tables config
					this.config.parsers = buildParserCache(this,$headers);
					
					
					// build the cache for the tbody cells
					cache = buildCache(this);
					
					// get the css class names, could be done else where.
					var sortCSS = [config.cssDesc,config.cssAsc];
					
					// fixate columns if the users supplies the fixedWidth option
					fixColumnWidth(this);
					
					// apply event handling to headers
					// this is to big, perhaps break it out?
					$headers.click(function(e) {
						
						$this.trigger("sortStart");
						
						var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0;
						
						if(!this.sortDisabled && totalRows > 0) {
							
							
							// store exp, for speed
							var $cell = $(this);
	
							// get current column index
							var i = this.column;
							
							// get current column sort order
							this.order = this.count++ % 2;
							
							// user only whants to sort on one column
							if(!e[config.sortMultiSortKey]) {
								
								// flush the sort list
								config.sortList = [];
								
								if(config.sortForce != null) {
									var a = config.sortForce;
									for(var j=0; j < a.length; j++) {
										if(a[j][0] != i) {
											config.sortList.push(a[j]);
										}
									}
								}
								
								// add column to sort list
								config.sortList.push([i,this.order]);
							
							// multi column sorting
							} else {
								// the user has clicked on an all ready sortet column.
								if(isValueInArray(i,config.sortList)) {	
									
									// revers the sorting direction for all tables.
									for(var j=0; j < config.sortList.length; j++) {
										var s = config.sortList[j], o = config.headerList[s[0]];
										if(s[0] == i) {
											o.count = s[1];
											o.count++;
											s[1] = o.count % 2;
										}
									}	
								} else {
									// add column to sort list array
									config.sortList.push([i,this.order]);
								}
							};
							setTimeout(function() {
								//set css for headers
								setHeadersCss($this[0],$headers,config.sortList,sortCSS);
								appendToTable($this[0],multisort($this[0],config.sortList,cache));
							},1);
							// stop normal event by returning false
							return false;
						}
					// cancel selection	
					}).mousedown(function() {
						if(config.cancelSelection) {
							this.onselectstart = function() {return false};
							return false;
						}
					});
					
					// apply easy methods that trigger binded events
					$this.bind("update",function() {
						
						// rebuild parsers.
						this.config.parsers = buildParserCache(this,$headers);
						
						// rebuild the cache map
						cache = buildCache(this);
						
					}).bind("sorton",function(e,list) {
						
						$(this).trigger("sortStart");
						
						config.sortList = list;
						
						// update and store the sortlist
						var sortList = config.sortList;
						
						// update header count index
						updateHeaderSortCount(this,sortList);
						
						//set css for headers
						setHeadersCss(this,$headers,sortList,sortCSS);
						
						
						// sort the table and append it to the dom
						appendToTable(this,multisort(this,sortList,cache));

					}).bind("appendCache",function() {
						
						appendToTable(this,cache);
					
					}).bind("applyWidgetId",function(e,id) {
						
						getWidgetById(id).format(this);
						
					}).bind("applyWidgets",function() {
						// apply widgets
						applyWidget(this);
					});
					
					if($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) {
						config.sortList = $(this).metadata().sortlist;
					}
					// if user has supplied a sort list to constructor.
					if(config.sortList.length > 0) {
						$this.trigger("sorton",[config.sortList]);	
					}
					
					// apply widgets
					applyWidget(this);
				});
			};
			
			this.addParser = function(parser) {
				var l = parsers.length, a = true;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == parser.id.toLowerCase()) {
						a = false;
					}
				}
				if(a) { parsers.push(parser); };
			};
			
			this.addWidget = function(widget) {
				widgets.push(widget);
			};
			
			this.formatFloat = function(s) {
				var i = parseFloat(s);
				return (isNaN(i)) ? 0 : i;
			};
			this.formatInt = function(s) {
				var i = parseInt(s);
				return (isNaN(i)) ? 0 : i;
			};
			
			this.isDigit = function(s,config) {
				var DECIMAL = '\\' + config.decimal;
				var exp = '/(^[+]?0(' + DECIMAL +'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)' + DECIMAL +'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*' + DECIMAL +'0+$)/';
				return RegExp(exp).test($.trim(s));
			};
			
			this.clearTableBody = function(table) {
				if($.browser.msie) {
					function empty() {
						while (this.firstChild) this.removeChild(this.firstChild);
					}
					empty.apply(table.tBodies[0]);
				} else {
					table.tBodies[0].innerHTML = "";
				}
			};
		}
	});
	
	// extend plugin scope
	$.fn.extend({
 tablesorter: $.tablesorter.construct
	});
	
	var ts = $.tablesorter;
	
	// add default parsers
	ts.addParser({
		id: "text",
		is: function(s) {
			return true;
		},
		format: function(s) {
			return $.trim(s.toLowerCase());
		},
		type: "text"
	});
	
	ts.addParser({
		id: "digit",
		is: function(s,table) {
			var c = table.config;
			return $.tablesorter.isDigit(s,c);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "currency",
		is: function(s) {
			return /^[Â£$â�¬?.]/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "ipAddress",
		is: function(s) {
			return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);
		},
		format: function(s) {
			var a = s.split("."), r = "", l = a.length;
			for(var i = 0; i < l; i++) {
				var item = a[i];
			 	if(item.length == 2) {
					r += "0" + item;
			 	} else {
					r += item;
			 	}
			}
			return $.tablesorter.formatFloat(r);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "url",
		is: function(s) {
			return /^(https?|ftp|file):\/\/$/.test(s);
		},
		format: function(s) {
			return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));
		},
		type: "text"
	});
	
	ts.addParser({
		id: "isoDate",
		is: function(s) {
			return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat((s != "") ? new Date(s.replace(new RegExp(/-/g),"/")).getTime() : "0");
		},
		type: "numeric"
	});
		
	ts.addParser({
		id: "percent",
		is: function(s) {
			return /\%$/.test($.trim(s));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));
		},
		type: "numeric"
	});

	ts.addParser({
		id: "usLongDate",
		is: function(s) {
			return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
		id: "shortDate",
		is: function(s) {
			return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);
		},
		format: function(s,table) {
			var c = table.config;
			s = s.replace(/\-/g,"/");
			if(c.dateFormat == "us") {
				// reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2");
			} else if(c.dateFormat == "uk") {
				//reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1");
			} else if(c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") {
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3");	
			}
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
	 id: "time",
	 is: function(s) {
	 return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);
	 },
	 format: function(s) {
	 return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime());
	 },
	 type: "numeric"
	});
	
	
	ts.addParser({
	 id: "metadata",
	 is: function(s) {
	 return false;
	 },
	 format: function(s,table,cell) {
			var c = table.config, p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName;
	 return $(cell).metadata()[p];
	 },
	 type: "numeric"
	});
	
	// add default widgets
	ts.addWidget({
		id: "zebra",
		format: function(table) {
			if(table.config.debug) { var time = new Date(); }
			$("tr:visible",table.tBodies[0])
	 .filter(':even')
	 .removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0])
	 .end().filter(':odd')
	 .removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);
			if(table.config.debug) { $.tablesorter.benchmark("Applying Zebra widget", time); }
		}
	});	
})(jQuery);

OEBPS/images/a218_1_010i.jpg

OEBPS/images/audiobook-cover.png

OEBPS/titlepage.html
Medicine transformed: On access to health care

	The Open University

OEBPS/images/a218_1_007i.jpg
faconl

o

sl s kel

Dttt
ot

) sl

OEBPS/answer05.html

		Answer

		The author suggests that while cost was the greatest barrier to healthcare, the women had many reasons for not seeking treatment: a ‘disinclination to fuss’ over themselves, greater concern with the health of their families, exhaustion, ignorance and prejudice. The women surveyed had a fear of any sort of operation – from minor dental work to major surgery.

		The results of the Women's Health Enquiry survey showed that many women were not well served by government healthcare services – relatively few went to panel doctors or used clinics. The reading suggests that while ensuring that the population could afford medical advice and therapy was an important step towards ensuring healthcare for all, it was not the whole story. In order for the women in this survey to seek medical help, they also needed support in getting to the hospital or clinic and in looking after the home while they underwent treatment. Women also had to be cured of their fear of surgery.

	

OEBPS/images/a218_1_005i.jpg
A is Advice, which is given you free ;
B is for Babics, one, two and three.
C s the Centre in Molesey we've made ;
D our good Doclor who lends us his aid.
E stands for Economy, taught to us there,
F is the Future for which we prepare.
@ is for Glaxo, fine babics it builds ;
H is for Hygiene, which saves Doctor’s bills.
1 s for Ideal,—and Infants too,
‘3 s the Joy they bring to you
K stands for Kiddies, the big and the small
L is the Love we have for them all
M stands for Mothers, who all come to see ;
N, our Nurse Barnes, on every Friday.

is for Oyaltine, a splendid food ;
stands for Powders, which sometimes do good.
are the Questions we all like to ask,

To answer them all Nurse has quite a task.
stands for Rules, which must be obeyed ;
stands for Scales on which we are weighed. —
is for Tea, at 1d. a cup,

stands for Us, who all drink it up. >
is for Virol, it will make you grow strong, and
W, your Weight will go up before long.

X is our 'Xcellent audience here ;

Y is for Year—come again please, next year,

Z is the Z which is shown by each helper
Atthe E. & W. Molesey Infant Welfare Centre.

R me

<cHwvx

OEBPS/media/a21813.4.pdf
13.4
Resistance to care — sanatorium treatment

Linda Bryder, Below the Magic Mountain. A Social History of
Tuberculosis in Twentieth-Century Britain (Oxford,
Clarendon Press, 1988), pp. 205—11.

Bryder’s book is one of a number of works on tuberculosis pub-
lished in the 1980s. Tuberculosis was one of the greatest killers in
the nineteenth and twentieth centuries, and the factors behind its

292

Access to care, 1880-1930

decline are complex. Below the Magic Mountain explores the
campaign against tuberculosis in Britain, the treatment for the dis-
ease, the experience of TB sufferers, and public attitudes towards
the disease. In the early twentieth century, a regime of care in sana-
toria — including a rich diet, fresh air (patients even slept outside)
and exercise — was the standard form of treatment. In this extract,
Bryder records patients’ sometimes rebellious attitudes towards
the strict sanatorium regime.

Evidence suggests that the majority of patients, whether working-class
or not, were not totally submissive. ... The two greatest disciplinary
problems faced by medical superintendents were familiarity with
members of the opposite sex and consumption of alcohol.

Rules on socializing were generally strict. For example, at Eversfield
Hospital the regulations specified that ‘conversation between men
and women patients is not allowed’. Similarly at the Cheshire Joint Sana-
torium, female and male patients were gathered together only for Christ-
mas dinner. Wingfield was said to be proud of the fact that not a single
patient in his institution had become pregnant, suggesting that other
superintendents could not make the same boast, although even at Frim-
ley, Bignall considered it doubtful that no children were conceived in the
forbidden pine-forests. In 1922, analysing instances of patients discharged
irregularly, McDougall noted that in one institution for 200 patients
(male and female), there occurred only 6 cases of undue familiarity
between the sexes leading to dismissal over a period of 15 months—
which he thought was very low. There was a large number of young
people in sanatoria, not only because tuberculosis was a disease which
struck the young, but also because institutions were more receptive to
young cases who were more likely to recover than to older patients whose
disease was often more chronic. Most sanatoria admitted both sexes
although generally men outnumbered women 60 to 40. It was reputed to
be not uncommon for nurses to marry patients suggesting that despite the
prohibition, some socializing occurred there as well. Two nurses who still
live at Papworth married patients there. One pointed out that, with the
isolation of the sanatorium, there were few other social diversions. . . .

Patients were strictly forbidden to enter public houses during the Sat-
urday or Sunday afternoon leave from the institutions which was often
granted to those who were well enough. Entering a public house, or
returning to the sanatorium intoxicated, often led to instant dismissal.
McDougall reported in July 1929 that three men were discharged
that month for returning to the sanatorium in a disorderly condition. Pos-
session of alcohol by patients was also strictly forbidden, although W.E.

293

Health, disease and society in Europe, 1800-1930

Snell, medical superintendent of Colindale Hospital appeared amused by
the extreme lengths to which some patients went to acquire alcohol, sug-
gesting that at least some medical superintendents turned a blind eye . . .

Complaints by patients in sanatoria, particularly regarding the food,
were not uncommon but were generally futile, dismissed as a manifes-
tation or symptom of the disease. Tuberculous patients were reputed to
be particularly finicky about their food and therefore complaints in that
direction were not taken seriously. Norman Langdon at Papworth
claimed that there was no point complaining about the food; he recalled
one patient who was ‘sent on the bus’ in 1926 for doing so. . . .

A patient at the West Wales Sanatorium in 1923 said that all the
patients were objecting to the food. When asked why they did not repeat
their complaints to the medical superintendent, who had received none,
the witness said they were afraid. The 1923 inquiry into the administra-
tion of the West Wales Sanatorium following complaints by Maud Morris
revealed once again the futility of registering discontent. Llewellyn
Williams explained concerning the evidence of Maud, ‘The advanced
stage of the disease at the time she gave her evidence would naturally
have affected her memory and perspective.” A local doctor maintained,
‘It is true that here as well as in other Institutions of different kinds, car-
ried out at very best [sic], there are a certain few whose pathetically
hopeless physical condition reacts upon their imagination and distorts
their judgement—nothing satisfies them—though deserving every pity
and consideration the truth is seldom got at by listening to [them]. ..

Another frequent cause of discontent was the total absence of heat-
ing. The South Wales Argus reported in 1937 that all the patients in the
South Wales Sanatorium were complaining of the cold and that a visitor
who was wearing an overcoat also felt cold. Conditions in sanatoria
were often spartan, particularly in some of the converted smallpox and
isolation hospitals. Cymla Hospital in Wales was such an institution,
with 20 beds in 1914 and 60 by 1924. In 1927 its two main buildings were
described as very damp; the roof in one leaked. . . . At least one patient
discharged herself from Harefield Sanatorium, Middlesex, in 1929
because she found it too damp. In 1922, McDougall discovered that ‘the
severe climatic conditions during the winter months were the immedi-
ate cause of 26 premature discharges in the West Riding County Coun-
cil sanatoria, chiefly on account of rheumatism’. In 1923, a visitor to
Cowley Road Sanatorium, Oxford, found that all the male patients on
the verandah, with two exceptions, were soaked with the rain which
had fallen during the night, and that without any exception the top blan-
kets on the beds were wet. The water had reached the patients partly
through the roof and partly by being driven in by the wind.

294

Access to care, 1880-1930

[..]

While complaints were often futile, patients did ultimately have the
power to leave, although Marcus Paterson’s famous remark to a patient
taking his own discharge, ‘Tell your widow to send us a postcard’, was
used more than once in the following decades by medical officers of
tuberculosis institutions. . . . Peter Edwards of the Cheshire Joint Sana-
torium was said to despise those who were unable to tolerate the rigor-
ous life and left the sanatorium, ‘only to come or be carried back when
the disease became more progressive; of those poor unfortunates, he
[was] quoted as saying “they come crawling back on their knees, after
death comes knocking at the door”

Few figures are available on self-discharges, but in 7 sanatoria in Lan-
cashire, 127 out of a total of 305 patients leaving altogether in 1921-2,
took premature discharges, that is almost half, which did not strike the
Ministry of Health observers as extraordinary. In 1922, a survey of West
Riding CC sanatoria showed that out of a total of 3,205 discharges from
sanatoria (2,396 men and 809 women), 44 per cent of the male and 32
per cent of the female discharges were ‘irregular’. This included those
who discharged themselves and those who were discharged for disci-
plinary reasons (24 per cent came into the latter category). Similarly at
Peel Hall, Lancashire, 44 out of 113 patients left for reasons other than
medical, of which 39 took their own discharge and 5 were dismissed.

The high proportion of self-discharges suggests that working-class
patients did not submit to the discipline and the conditions of the sana-
torium regime as easily as the medical superintendents . . . hoped. Self-
discharging patients were also probably primarily responsible for
modifying the rigorous conditions of the institutions. Powell said in
1937 that since installing heating in some of their institutions, they had
been able to keep patients longer. The number of patients in tuberculo-
sis institutions was also higher in summer months suggesting a reluc-
tance to remain during the cold winter months. . . .

However, ‘pull factors’ from home were possibly most important in
causing self-discharges. At least one female patient at Eversfield Hospi-
tal discharged herself prematurely without consulting the medical
superintendent because her home was ‘in a dreadful pickle’. She
explained that her husband was unable to cope alone with the children
and a dependent father. H. Old of the Welsh Board of Health referred to
the constant difficulty they had in persuading women (for whom there
was little outside assistance available) to leave their domestic respon-
sibilities and undertake institutional treatment.

295

OEBPS/js/jquery.columnmanager.js
/*

 * jQuery columnManager plugin

 * Version: 0.2.5

 *

 * Copyright (c) 2007 Roman Weich

 * http://p.sohei.org

 *

 * Dual licensed under the MIT and GPL licenses

 * (This means that you can choose the license that best suits your project, and use it accordingly):

 * http://www.opensource.org/licenses/mit-license.php

 * http://www.gnu.org/licenses/gpl.html

 *

 * Changelog:

 * v 0.2.5 - 2008-01-17

 *	-change: added options "show" and "hide". with these functions the user can control the way to show or hide the cells

 *	-change: added $.fn.showColumns() and $.fn.hideColumns which allows to explicitely show or hide any given number of columns

 * v 0.2.4 - 2007-12-02

 *	-fix: a problem with the on/off css classes when manually toggling columns which were not in the column header list

 *	-fix: an error in the createColumnHeaderList function incorectly resetting the visibility state of the columns

 *	-change: restructured some of the code

 * v 0.2.3 - 2007-12-02

 *	-change: when a column header has no text but some html markup as content, the markup is used in the column header list instead of "undefined"

 * v 0.2.2 - 2007-11-27

 *	-change: added the ablity to change the on and off CSS classes in the column header list through $().toggleColumns()

 *	-change: to avoid conflicts with other plugins, the table-referencing data in the column header list is now stored as an expando and not in the class name as before

 * v 0.2.1 - 2007-08-14

 *	-fix: handling of colspans didn't work properly for the very first spanning column

 *	-change: altered the cookie handling routines for easier management

 * v 0.2.0 - 2007-04-14

 *	-change: supports tables with colspanned and rowspanned cells now

 * v 0.1.4 - 2007-04-11

 *	-change: added onToggle option to specify a custom callback function for the toggling over the column header list

 * v 0.1.3 - 2007-04-05

 *	-fix: bug when saving the value in a cookie

 *	-change: toggleColumns takes a number or an array of numbers as argument now

 * v 0.1.2 - 2007-04-02

 * 	-change: added jsDoc style documentation and examples

 * 	-change: the column index passed to toggleColumns() starts at 1 now (conforming to the values passed in the hideInList and colsHidden options)

 * v 0.1.1 - 2007-03-30

 * 	-change: changed hideInList and colsHidden options to hold integer values for the column indexes to be affected

 *	-change: made the toggleColumns function accessible through the jquery object, to toggle the state without the need for the column header list

 *	-fix: error when not finding the passed listTargetID in the dom

 * v 0.1.0 - 2007-03-27

 */

(function($)

{

	var defaults = {

		listTargetID : null,

		onClass : '',

		offClass : '',

		hideInList: [],

		colsHidden: [],

		saveState: false,

		onToggle: null,

		show: function(cell){

			showCell(cell);

		},

		hide: function(cell){

			hideCell(cell);

		}

	};

	

	var idCount = 0;

	var cookieName = 'columnManagerC';

	/**

	 * Saves the current state for the table in a cookie.

	 * @param {element} table	The table for which to save the current state.

	 */

	var saveCurrentValue = function(table)

	{

		var val = '', i = 0, colsVisible = table.cMColsVisible;

		if (table.cMSaveState && table.id && colsVisible && $.cookie)

		{

			for (; i < colsVisible.length; i++)

			{

				val += (colsVisible[i] == false) ? 0 : 1;

			}

			$.cookie(cookieName + table.id, val, {expires: 9999});

		}

	};

	

	/**

	 * Hides a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to hide.

	 */

	var hideCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(hideCell = function(c)

			{

				c.style.setAttribute('display', 'none');

			})(cell);

		}

		else

		{

			(hideCell = function(c)

			{

				c.style.display = 'none';

			})(cell);

		}

	};

	/**

	 * Makes a cell visible again.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to show.

	 */

	var showCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(showCell = function(c)

			{

				c.style.setAttribute('display', 'block');

			})(cell);

		}

		else

		{

			(showCell = function(c)

			{

				c.style.display = 'table-cell';

			})(cell);

		}

	};

	/**

	 * Returns the visible state of a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to test.

	 */

	var cellVisible = function(cell)

	{

		if (jQuery.browser.msie)

		{

			return (cellVisible = function(c)

			{

				return c.style.getAttribute('display') != 'none';

			})(cell);

		}

		else

		{

			return (cellVisible = function(c)

			{

				return c.style.display != 'none';

			})(cell);

		}

	};

	/**

	 * Returns the cell element which has the passed column index value.

	 * @param {element} table	The table element.

	 * @param {array} cells		The cells to loop through.

	 * @param {integer} col	The column index to look for.

	 */

	var getCell = function(table, cells, col)

	{

		for (var i = 0; i < cells.length; i++)

		{

			if (cells[i].realIndex === undefined) //the test is here, because rows/cells could get added after the first run

			{

				fixCellIndexes(table);

			}

			if (cells[i].realIndex == col)

			{

				return cells[i];

			}

		}

		return null;

	};

	/**

	 * Calculates the actual cellIndex value of all cells in the table and stores it in the realCell property of each cell.

	 * Thats done because the cellIndex value isn't correct when colspans or rowspans are used.

	 * Originally created by Matt Kruse for his table library - Big Thanks! (see http://www.javascripttoolbox.com/)

	 * @param {element} table	The table element.

	 */

	var fixCellIndexes = function(table)

	{

		var rows = table.rows;

		var len = rows.length;

		var matrix = [];

		for (var i = 0; i < len; i++)

		{

			var cells = rows[i].cells;

			var clen = cells.length;

			for (var j = 0; j < clen; j++)

			{

				var c = cells[j];

				var rowSpan = c.rowSpan || 1;

				var colSpan = c.colSpan || 1;

				var firstAvailCol = -1;

				if (!matrix[i])

				{

					matrix[i] = [];

				}

				var m = matrix[i];

				// Find first available column in the first row

				while (m[++firstAvailCol]) {}

				c.realIndex = firstAvailCol;

				for (var k = i; k < i + rowSpan; k++)

				{

					if (!matrix[k])

					{

						matrix[k] = [];

					}

					var matrixrow = matrix[k];

					for (var l = firstAvailCol; l < firstAvailCol + colSpan; l++)

					{

						matrixrow[l] = 1;

					}

				}

			}

		}

	};

	

	/**

	 * Manages the column display state for a table.

	 *

	 * Features:

	 * Saves the state and recreates it on the next visit of the site (requires cookie-plugin).

	 * Extracts all headers and builds an unordered() list out of them, where clicking an list element will show/hide the matching column.

	 *

	 * @param {map} options		An object for optional settings (options described below).

	 *

	 * @option {string} listTargetID	The ID attribute of the element the column header list will be added to.

	 *						Default value: null

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {array} hideInList	An array of numbers. Each column with the matching column index won't be displayed in the column header list.

	 *						Index starting at 1!

	 *						Default value: [] (all columns will be included in the list)

	 * @option {array} colsHidden	An array of numbers. Each column with the matching column index will get hidden by default.

	 *						The value is overwritten when saveState is true and a cookie is set for this table.

	 *						Index starting at 1!

	 *						Default value: []

	 * @option {boolean} saveState	Save a cookie with the sate information of each column.

	 *						Requires jQuery cookie plugin.

	 *						Default value: false

	 * @option {function} onToggle	Callback function which is triggered when the visibility state of a column was toggled through the column header list.

	 *						The passed parameters are: the column index(integer) and the visibility state(boolean).

	 *						Default value: null

	 *

	 * @option {function} show		Function which is called to show a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to block (visible)

	 *

	 * @option {function} hide		Function which is called to hide a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to none (invisible)

	 *

	 * @example $('#table').columnManager([listTargetID: "target", onClass: "on", offClass: "off"]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and sets the CSS classes for the visible("on") and hidden("off") states.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", hideInList: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" but without the first and fourth column.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", colsHidden: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and hides the first and fourth column by default.

	 *

	 * @example $('#table').columnManager([saveState: true]);

	 * @desc Enables the saving of visibility informations for the columns. Does not create a column header list! Toggle the columns visiblity through $('selector').toggleColumns().

	 *

	 * @type jQuery

	 *

	 * @name columnManager

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.columnManager = function(options)

	{

		var settings = $.extend({}, defaults, options);

		/**

		 * Creates the column header list.

		 * @param {element} table	The table element for which to create the list.

		 */

		var createColumnHeaderList = function(table)

		{

			if (!settings.listTargetID)

			{

				return;

			}

			var $target = $('#' + settings.listTargetID);

			if (!$target.length)

			{

				return;

			}

			//select headrow - when there is no thead-element, use the first row in the table

			var headRow = null;

			if (table.tHead && table.tHead.length)

			{

				headRow = table.tHead.rows[0];

			}

			else if (table.rows.length)

			{

				headRow = table.rows[0];

			}

			else

			{

				return; //no header - nothing to do

			}

			var cells = headRow.cells;

			if (!cells.length)

			{

				return; //no header - nothing to do

			}

			//create list in target element

			var $list = null;

			if ($target.get(0).nodeName.toUpperCase() == 'UL')

			{

				$list = $target;

			}

			else

			{

				$list = $('');

				$target.append($list);

			}

			var colsVisible = table.cMColsVisible;

			//create list elements from headers

			for (var i = 0; i < cells.length; i++)

			{

				if ($.inArray(i + 1, settings.hideInList) >= 0)

				{

					continue;

				}

				colsVisible[i] = (colsVisible[i] !== undefined) ? colsVisible[i] : true;

				var text = $(cells[i]).text(),

					addClass;

				if (!text.length)

				{

					text = $(cells[i]).html();

					if (!text.length) //still nothing?

					{

						text = 'No label'; // GNS - was: 'undefined'

					}

				}

				if (colsVisible[i] && settings.onClass)

				{

					addClass = settings.onClass;

				}

				else if (!colsVisible[i] && settings.offClass)

				{

					addClass = settings.offClass;

				}

				var $li = $('<li class="' + addClass + '">' + text + '').click(toggleClick);

				$li[0].cmData = {id: table.id, col: i};

				$list.append($li);

			}

			table.cMColsVisible = colsVisible;

		};

		/**

		 * called when an item in the column header list is clicked

		 */

		var toggleClick = function()

		{

			//get table id and column name

			var data = this.cmData;

			if (data && data.id && data.col >= 0)

			{

				var colNum = data.col,

					$table = $('#' + data.id);

				if ($table.length)

				{

					$table.toggleColumns([colNum + 1], settings);

					//set the appropriate classes to the column header list

					var colsVisible = $table.get(0).cMColsVisible;

					if (settings.onToggle)

					{

						settings.onToggle.apply($table.get(0), [colNum + 1, colsVisible[colNum]]);

					}

				}

			}

		};

		/**

		 * Reads the saved state from the cookie.

		 * @param {string} tableID	The ID attribute from the table.

		 */

		var getSavedValue = function(tableID)

		{

			var val = $.cookie(cookieName + tableID);

			if (val)

			{

				var ar = val.split('');

				for (var i = 0; i < ar.length; i++)

				{

					ar[i] &= 1;

				}

				return ar;

			}

			return false;

		};

 return this.each(function()

 {

			this.id = this.id || 'jQcM0O' + idCount++; //we need an id for the column header list stuff

			var i,

				colsHide = [],

				colsVisible = [];

			//fix cellIndex values

			fixCellIndexes(this);

			//some columns hidden by default?

			if (settings.colsHidden.length)

			{

				for (i = 0; i < settings.colsHidden.length; i++)

				{

					colsVisible[settings.colsHidden[i] - 1] = true;

					colsHide[settings.colsHidden[i] - 1] = true;

				}

			}

			//get saved state - and overwrite defaults

			if (settings.saveState)

			{

				var colsSaved = getSavedValue(this.id);

				if (colsSaved && colsSaved.length)

				{

					for (i = 0; i < colsSaved.length; i++)

					{

						colsVisible[i] = true;

						colsHide[i] = !colsSaved[i];

					}

				}

				this.cMSaveState = true;

			}

			//assign initial colsVisible var to the table (needed for toggling and saving the state)

			this.cMColsVisible = colsVisible;

			//something to hide already?

			if (colsHide.length)

			{

				var a = [];

				for (i = 0; i < colsHide.length; i++)

				{

					if (colsHide[i])

					{

						a[a.length] = i + 1;

					}

				}

				if (a.length)

				{

					$(this).toggleColumns(a);

				}

			}

			//create column header list

			createColumnHeaderList(this);

 });

	};

	/**

	 * Shows or hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. The display state(visible/hidden) for each column with the matching column index will get toggled.

	 *							Column index starts at 1! (see the example)

	 *

	 * @param {map} options		An object for optional settings to handle the on and off CSS classes in the column header list (options described below).

	 * @option {string} listTargetID	The ID attribute of the element with the column header.

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 * @option {function} show		Function which is called to show a table cell.

	 * @option {function} hide		Function which is called to hide a table cell.

	 *

	 * @example $('#table').toggleColumns([2, 4], {hide: function(cell) { $(cell).fadeOut("slow"); }});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for the columns "two" and "four". Use custom function to fade the cell out when hiding it.

	 *

	 * @example $('#table').toggleColumns(3, {listTargetID: 'theID', onClass: 'vis'});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for column "three" and sets or removes the CSS class 'vis' to the appropriate column header according to the visibility of the column.

	 *

	 * @type jQuery

	 *

	 * @name toggleColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.toggleColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i, toggle, di,

				rows = this.rows,

				colsVisible = this.cMColsVisible;

			if (!columns)

				return;

			if (columns.constructor == Number)

				columns = [columns];

			if (!colsVisible)

				colsVisible = this.cMColsVisible = [];

			//go through all rows in the table and hide the cells

			for (i = 0; i < rows.length; i++)

			{

				var cells = rows[i].cells;

				for (var k = 0; k < columns.length; k++)

				{

					var col = columns[k] - 1;

					if (col >= 0)

					{

						//find the cell with the correct index

						var c = getCell(this, cells, col);

						//cell not found - maybe a previous one has a colspan? - search it!

						if (!c)

						{

							var cco = col;

							while (cco > 0 && !(c = getCell(this, cells, --cco))) {} //find the previous cell

							if (!c)

							{

								continue;

							}

						}

						//set toggle direction

						if (colsVisible[col] == undefined)//not initialized yet

						{

							colsVisible[col] = true;

						}

						if (colsVisible[col])

						{

							toggle = cmo && cmo.hide ? cmo.hide : hideCell;

							di = -1;

						}

						else

						{

							toggle = cmo && cmo.show ? cmo.show : showCell;

							di = 1;

						}

						if (!c.chSpan)

						{

							c.chSpan = 0;

						}

						//the cell has a colspan - so dont show/hide - just change the colspan

						if (c.colSpan > 1 || (di == 1 && c.chSpan && cellVisible(c)))

						{

							//is the colspan even reaching this cell? if not we have a rowspan -> nothing to do

							if (c.realIndex + c.colSpan + c.chSpan - 1 < col)

							{

								continue;

							}

							c.colSpan += di;

							c.chSpan += di * -1;

						}

						else if (c.realIndex + c.chSpan < col)//a previous cell was found, but doesn't affect this one (rowspan)

						{

							continue;

						}

						else //toggle cell

						{

							toggle(c);

						}

					}

				}

			}

			//set the colsVisible var

			for (i = 0; i < columns.length; i++)

			{

				this.cMColsVisible[columns[i] - 1] = !colsVisible[columns[i] - 1];

				//set the appropriate classes to the column header list, if the options have been passed

				if (cmo && cmo.listTargetID && (cmo.onClass || cmo.offClass))

				{

					var onC = cmo.onClass, offC = cmo.offClass, $li;

					if (colsVisible[columns[i] - 1])

					{

						onC = offC;

						offC = cmo.onClass;

					}

					$li = $("#" + cmo.listTargetID + " li").filter(function(){return this.cmData && this.cmData.col == columns[i] - 1;});

					if (onC)

					{

						$li.removeClass(onC);

					}

					if (offC)

					{

						$li.addClass(offC);

					}

				}

			}

			saveCurrentValue(this);

		});

	};

	/**

	 * Shows all table columns.

	 * When columns are passed through the parameter only the passed ones become visible.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will become visible.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').showColumns();

	 * @desc Sets the visibility state of all hidden columns to visible.

	 *

	 * @example $('#table').showColumns(3);

	 * @desc Show column number three.

	 *

	 * @type jQuery

	 *

	 * @name showColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.showColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = [],

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns && columns.constructor == Number)

					columns = [columns];

				for (i = 0; i < cV.length; i++)

				{

					//if there were no columns passed, show all - or else show only the columns the user wants to see

					if (!cV[i] && (!columns || $.inArray(i + 1, columns) > -1))

						cols.push(i + 1);

				}

				

				$(this).toggleColumns(cols, cmo);

			}

		});

	};

	/**

	 * Hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will get hidden.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').hideColumns(3);

	 * @desc Hide column number three.

	 *

	 * @type jQuery

	 *

	 * @name hideColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.hideColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = columns,

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns.constructor == Number)

					columns = [columns];

				cols = [];

				for (i = 0; i < columns.length; i++)

				{

					if (cV[columns[i] - 1] || cV[columns[i] - 1] == undefined)

						cols.push(columns[i]);

				}

				

			}

			$(this).toggleColumns(cols, cmo);

		});

	};

})(jQuery);

OEBPS/images/a218_1_009i.jpg

OEBPS/answer01.html

		Answer

		Roberts's account describes a flourishing trade in patent medicines. Everyone seems to buy remedies – even the very poor, who can buy a few pills for a halfpenny – and to take them frequently. Medicines were taken routinely, to counter constipation and as tonics to strengthen the body, as well as to treat illnesses. The remedies claimed to treat a huge range of complaints, often associated with a particular organ and rather vague symptoms (such as ‘premature decay’). However, Roberts suggests that constipation related to the starchy diet is the most common reason for buying them.

		Roberts is clearly sceptical of the effects of many of these remedies and he claims that some were clearly detrimental, such as the tooth whitener. Some are all too effective – like the ‘knock-out drops’ given to babies – but are given for the wrong reasons. Despite Roberts's scepticism, the purchasers clearly have great faith in these nostrums, since they keep returning to buy more. They also make careful judgements between them – though Roberts claims that the efficacy of a medicine was less of a selling point than its colour, texture and packaging. In his comments about ‘Therapion’, and the fact that many of these patent medicines included some sort of laxative, Roberts hints at a reason for the popularity of these patent medicines – they made the purchaser feel better.

	

OEBPS/media/a21813.5.pdf
Health, disease and society in Europe, 1800-1930

13.5
The health of working-class women

Margery Spring Rice, Working-Class Wives. Their Health and
Conditions (London, Virago, 1981, first edn, 1939), pp. 39-43.

In 1933, the Women’s Health Enquiry Committee, formed of repre-
sentatives from voluntary associations, launched an investigation
into the health of married women, believing that illness was more
widespread than was generally believed. Their concern reflected a
general concern with the health of mothers and children, who
were seen as crucial to the ‘national health’. The 1,250 responses to
the Committee’s questionnaire confirmed their suspicions — few
working-class women enjoyed good health. Most were worn down
by large families, bad housing and poor diet. The Committee rec-
ommended the extension of maternity and child health services
and of National Health Insurance cover to families, more govern-
ment support for housing, and the provision of family allowances.

[W]omen show a general disinclination to fuss about themselves, which
is the result partly of their exhausting work, partly of their preoccupa-
tion with the welfare of their families and partly of ignorance, or a curi-
ous failure to apply to themselves what they do know about health in
general. Advice therefore is not sought as often as it should be, or if
sought is not taken. . ..

The most important controlling factor in this is poverty, especially in
those illnesses which the woman thinks she can fairly safely overlook,
such as headaches, constipation, anaemia and bad teeth. Here is a typi-
cal example of this attitude, governed by lack of funds. ... Mrs. F. of
Sheffield. She is 47 and has had seven children, of whom two have died.
Her husband is a railway drayman. She gets §2 17s. 0d. housekeeping
... She has rheumatism, (since she had an operation for gall-stones two
years ago,) toothache, headache and back-ache. For none of these does
she consult anyone. She owes her private doctor for the last five years’
attendance, including the last confinement, $14, which she pays off in
1/~ weekly instalments . . .

Rheumatism, gynaecological troubles and bad legs being much more
crippling to work, show a larger percentage of advice sought and treat-
ment taken. Gynaecological trouble has other features in respect of
treatment. The woman probably does not recognise the symptoms

296

Access to care, 1880-1930

herself. (‘Backache since birth of baby’. ‘Internal trouble through con-
finements’, are frequent complaints for which no advice and treatment
have been sought,) and in the absence of a thorough post-natal exami-
nation, the trouble is not discovered till the birth of the next child, often
not then if she has not been attended by a doctor. When it is discovered,
much greater pressure is brought to bear on her by the doctor or nurse
to have the matter attended to. An example of this is given by a Man-
chester woman of 35 who has three children. She has had very bad
backache since her first confinement, and at her second confinement
the doctor diagnosed a prolapse!? and advised an operation. She could
not face this then, but the condition has got worse since the birth of the
third child, and she is now ‘waiting for the bed in the hospital’. . . .

The comparative percentages for professional treatment in the seven
specially analysed ailments are:—

Headaches 30% are professionally treated.
Constipation 36% ” ’”
Anzemia 38% " ” ”
Bad teeth 43% 7 ” ”
Rheumatism 56% ” ”
Gynaecological trouble 59% ” ”
Bad Legs 60% ” ”

The best of these figures shows a deplorably low percentage of
treatment and it is not entirely explained by poverty, or a courageous
neglect. There is also a good deal of prejudice and/or fear due to igno-
rance. This is apparent particularly in cases where hospital treatment,
an operation or otherwise, is needed . . .

Another country woman aged 41, very poor, with four children, and a
very bad house, has a ‘torn lower bowel and dropped womb’ and she
says of both ‘These could be righted in hospital, but don’t like the idea.’
The bowel trouble dates from her first confinement, the prolapse from
her second.[.. .]

An even sadder story of the efforts to cure ill-health is given by the
records of the inefficacy of treatment. Over and over again the woman
is unable to continue a treatment begun, either because it involves too
much expense, or a weekly visit to a hospital and hours of waiting for
which she cannot spare the time. Almoners and Health Visitors who

13 prolapse: a slipping downward of an organ (in this case, the uterus) from its normal
position.

297

Health, disease and society in Europe, 1800-1930

have added notes show disappointment in the woman’s improvement
after treatment, but the one method of treatment which seems to have
a magical effect is three or four weeks convalescence at the sea.

The professional advice that the women receive appears to vary
greatly in value. It is noticeable that many who have consulted their
own doctor for such an ailment as bad backache or anamia have been
told to change their diet, to eat more nourishing food, to rest more, to
sleep more and to get more fresh air. The changes are rung on these
remedies over and over again.

A woman in Leeds who has had nine children of whom the seventh
and eighth have died, has 44/- a week house-keeping money, and a poor
house; she suffers from angsgemia, neurasthenia and loss of appetite.
She has a private doctor who ‘advises rest, nourishment and not to
worry'. . . . Another in London with six children says ‘My Doctor before
each child advised always rest and usually bed which is practically
impossible.’

298

OEBPS/answer06.html

		Answer

		Despite the gravity of their illness, the patients in TB sanatoria are not passive. They complain about the food, the spartan conditions and about having to sleep in the open air in bad weather (and not without good reason, it would seem!). They also fight against the rules and attempt to maintain normal patterns of life, by mixing with patients of the opposite sex and drinking. Ultimately, they reject the whole sanatorium experience by simply leaving – and Bryder's figures suggest that a very large proportion of patients did not go through the prescribed course of treatment.

		Staff in the sanatoria are clearly keen to enforce the rules – they fight against complaints by trying to discredit the patient's judgement (although Bryder notes that the introduction of heating may have been a response to patients' discomfort). Their main sanction is to send patients home for breaking the rules. This may explain why staff are so dismissive of patients who discharge themselves – they are not only rejecting the care offered, but also subverting the main sanction used to enforce discipline.

	

OEBPS/images/a218_1_002i.jpg
e Gt o ot

The Childrens Daily B
Buikds wp Robust Consriranons

OVALTINE

OEBPS/images/cover.png
(O

The Open
University

Medicine transformed:
on access to health care

OEBPS/answer03.html

		Answer

		Aronovitch notes several differences between the voluntary and Poor Law hospitals. Larger wards, fewer staff, the numbers of geriatric patients and the uniforms mark out the Poor Law hospital. However, there are many similarities. She describes all the hospitals as being highly ordered institutions, organised to suit the staff, not the patients – for example in the rules on visiting times. None of the staff make any efforts to ensure that patients are kept amused, and as a result the whole environment is very depressing.

		According to Aronovitch, all the hospital staff maintain a rather supercilious attitude towards her. No one is willing to discuss her treatment, or the likely outcome of her case. Indeed, some even joke about her condition in her presence. The consultants have the most superior attitude. Perhaps the consultant in the first hospital, who shakes hands with his private patients, would have spent more time talking to them. A woman doctor she finds easy to talk to – but she clearly still joins in the professional ‘conspiracy of silence’. Curiously, Aronovitch seems to accept the doctors' view that ‘this is the way things are’ and does not question their competence or complain about the ineffectiveness of the care she receives.

	

OEBPS/table01.html

		
						Table 1 Comparison of mortality with sickness recorded by friendly societies in England and Wales

		
			
				
							Leading causes of death in England and Wales among men, in 1908
							Leading causes of sickness in three friendly societies, 1896–1919
				

			
			
				
							Cause
							% of total
							Cause
							% of total
				

				
							Heart disease
							14
							Accidents
							16
				

				
							Tuberculosis
							14
							Poorly identified
							13
				

				
							Old age
							8
							Influenza and catarrh
							13
				

				
							Cancer
							8
							Bronchitis
							9
				

				
							Bronchitis
							7
							Rheumatism
							4
				

				
							Pneumonia
							7
							Lumbago1
					
							4
				

				
							Cerebral haemorrhage
							5
							Gastritis2
					
							2
				

				
							Accidents
							5
							Carbuncle3
					
							2
				

				
							Bright's disease4
					
							3
							Tonsillitis
							1
				

				
							Influenza
							3
							Skin ulcers
							1
				

				
							Apoplexy
							2
							
							
				

			
		

		
			► Reveal options

		

		
			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/a218_1_001i.jpg
LIGUE NATIONALE FRANGAISEcovrur s PERIL VENERIEN

TUBERCULOSE : 150000 MORTS s
SYPHILIS :140000

CANCER 40000
B M

OFFICE DHYGIENE SOCIALE 4 TARN--GARONNE

OEBPS/js/jquery.cookie.js
/**
 * Cookie plugin
 *
 * Copyright (c) 2006 Klaus Hartl (stilbuero.de)
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */

/**
 * Create a cookie with the given name and value and other optional parameters.
 *
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Set the value of a cookie.
 * @example $.cookie('the_cookie', 'the_value', { expires: 7, path: '/', domain: 'jquery.com', secure: true });
 * @desc Create a cookie with all available options.
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Create a session cookie.
 * @example $.cookie('the_cookie', null);
 * @desc Delete a cookie by passing null as value. Keep in mind that you have to use the same path and domain
 * used when the cookie was set.
 *
 * @param String name The name of the cookie.
 * @param String value The value of the cookie.
 * @param Object options An object literal containing key/value pairs to provide optional cookie attributes.
 * @option Number|Date expires Either an integer specifying the expiration date from now on in days or a Date object.
 * If a negative value is specified (e.g. a date in the past), the cookie will be deleted.
 * If set to null or omitted, the cookie will be a session cookie and will not be retained
 * when the the browser exits.
 * @option String path The value of the path atribute of the cookie (default: path of page that created the cookie).
 * @option String domain The value of the domain attribute of the cookie (default: domain of page that created the cookie).
 * @option Boolean secure If true, the secure attribute of the cookie will be set and the cookie transmission will
 * require a secure protocol (like HTTPS).
 * @type undefined
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */

/**
 * Get the value of a cookie with the given name.
 *
 * @example $.cookie('the_cookie');
 * @desc Get the value of a cookie.
 *
 * @param String name The name of the cookie.
 * @return The value of the cookie.
 * @type String
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */
jQuery.cookie = function(name, value, options) {
 if (typeof value != 'undefined') { // name and value given, set cookie
 options = options || {};
 if (value === null) {
 value = '';
 options.expires = -1;
 }
 var expires = '';
 if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) {
 var date;
 if (typeof options.expires == 'number') {
 date = new Date();
 date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000));
 } else {
 date = options.expires;
 }
 expires = '; expires=' + date.toUTCString(); // use expires attribute, max-age is not supported by IE
 }
 // CAUTION: Needed to parenthesize options.path and options.domain
 // in the following expressions, otherwise they evaluate to undefined
 // in the packed version for some reason...
 var path = options.path ? '; path=' + (options.path) : '';
 var domain = options.domain ? '; domain=' + (options.domain) : '';
 var secure = options.secure ? '; secure' : '';
 document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join('');
 } else { // only name given, get cookie
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }
};

OEBPS/images/a218_1_006i.jpg
Pour tout SYPHILITIOUE cestun devoir de se
i féviter de transmetts

OEBPS/copyright-full.html

		Copyright notice

		Unless otherwise stated, this e-book is released under the terms of the “Creative Commons
 Licence”. In short, this allows you to use the e-book throughout the world
 without payment for non-commercial purposes only. Please read the Creative Commons Licence in
 full before making use of the e-book.

		You must however read these rights subject to any restrictions on use applying to the e-book
 or any part of it.

		When using the e-book you must attribute us and any identified author in accordance with the
 terms of the Creative Commons License. Each e-book has an
 “Acknowledgements” section which will identify the author/owner(s) and any
 Special Restriction(s) applying. You must take account of and abide by any restrictions set
 out in this section when using the e-book.

		This e-book also contains proprietary content which is owned by or licensed to us and which
 is not subject to the Creative Commons Licence. This content, which will be identified as
 “PROPRIETARY” include, but are not limited to, our logos and trading
 names, certain photographic and video images and sound recordings. This proprietary content is
 protected by intellectual property rights and should remain in context at all times.
 Unauthorised use of this content may constitute intellectual property infringement.

		Copyright and rights falling outside the terms of the Creative Commons Licence are retained
 or controlled by The Open University.

		Cover photograph © Lane Erickson.

	

OEBPS/images/a218_1_008i.jpg

OEBPS/images/a218_1_004i.jpg
Bring your Baby !
to be Weighed!

MOTHERS' & BABIES' WELCOME.
6, Chalton St., Euston Road,

Hours for Weighing, etc.

Tuesdays and Fridays, from 215 to
330 oclock:

o ndy dctor atend 1o welh babiesand

el fector,
“omething
Carerotfinoss e refrred o doctor,
ispensaries, or hespiats.

| Welcome Club. _1d. per week.

OEBPS/answer02.html

		Answer

		Digby makes clear that ‘panel’ patients received a lower-quality service in virtually every aspect of care than did private patients – including the surgery accommodation, the range of medicines prescribed, the length of consultation and the quality of the dressings. However, patients seemed happy with the service – relatively few of them changed their doctor or complained about the care they received. Digby suggests, however, that this may have been because they had low expectations of a service that they saw as similar to that provided by earlier sick clubs. Despite the long hours and heavy workload, doctors also seemed reasonably happy working under the National Health Insurance scheme, which provided them with a guaranteed income. However, she also notes instances of doctors not accepting that panel patients should receive poor care: for example, some were accused of ‘over-prescribing’ (i.e. not conforming to the expected standard of prescribing) and others complained about the use of poorer-quality bandages for their panel patients.

	

