
		
			[image: cover image]
		

	
		About this ebook

		This ebook is taken from an Open University module, which was originally
 published as an open educational resource on the OpenLearn website.
 For
 more information on OpenLearn, and to access the study units published there,
 visit http://openlearn.open.ac.uk/.

		Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the
 “Creative Commons Licence”. Copyright and rights falling outside
 the terms of the Creative Commons Licence are retained or controlled by The Open
 University. Please read the full text before using any of the content of this
 ebook.

		Cover photograph © Goldmund Lukic.

		
			
				Show full text
			

		

	
		
			Word and image
			

			
			
			
			
			
			
			
			
			
		
		Introduction

		This unit deals with a range of printed literary texts which use visual communication as a meaning-making resource. Different aspects of texts, such as typography and images – and the way they are combined – will be considered with a view to understanding how their analysis can illuminate aspects of literary creativity.

		There are examples of creativity in texts which utilise communicative resources beyond the means of language alone, such as plays and other performance art, and the translated Alice in Wonderland which included images made culturally appropriate to a Catalan reader. Here I look more closely at printed texts to see what – and how – combinations of word and image communicate to us as readers. For this, I will be using three approaches: semiotics, a ‘literary studies’ approach, and a look at what postmodern theory can illuminate about visual playfulness in literature.

		
			In this unit you will work through the following materials.

			Chapter 6 of ‘Word and image’ (allow 7–8 hours).

			Reading A: Extracts from 'Signs and myths' by Jonathan Bignell.

			Reading B: Extract from 'Narratives of identity and history in settler colony texts' by Clare Bradford.

			Reading C: Extracts from 'Postmodernism and the picturebook' by David Lewis.

			
				‘Visual effects in poetry’ (allow about 45 minutes).

			
				‘she being Brand’ (allow about 30 minutes).

			Data collection and analysis: multimodal children's literature (ongoing).

		

		
			Learning outcomes

		

		After studying this unit you should be able to critically evaluate:

		
				how visual and verbal modes of communication combine in printed texts to produce meaning(s);

				how ideas from semiotics, Formalism and postmodern literary criticism may be used in the analysis and interpretation of multimodal texts;

				the significance of shared cultural knowledge and understanding in the way multimodal texts are interpreted and valued by readers and society.

		

	
		1 Introduction

		In this unit you will look at ways in which visual aspects add further layers of meaning to printed literary texts and may be considered to contribute to their poetic function.

		As you read, look out for:

		
				
				how multimodal elements can be seen to contribute to the literariness of texts by foregrounding certain aspects through deviation and defamiliarisation;

			

				
				the application of the theory of semiotics as conceived by Saussure and developed by Peirce (see Reading A by Bignell), and how the interpretation of signs and codes depends upon the social and cultural knowledge of individual readers;

			

				
				the use of visual images with verbal texts in the creation of fictional reality in both children’s and adult narratives. (Note that the term ‘high modality’ in this context refers to the feeling of truth and reality conveyed and should not be confused with ‘modes’ of communication or ‘multimodality’);

			

				
				the way words and images are used in some children’s picturebooks to
create ‘hybrid’ texts that challenge and subvert established ideological notions of history. In Reading B, Bradford analyses two children’s texts to show how they ideologically disrupt dominant postcolonial perceptions;

			

				
				how children’s picturebooks may combine words and images in distinctly postmodern ways to create strange and uncertain meanings. See Lewis’ discussion of the features of postmodernity in Reading C, and the analysis of examples in his reading and in the main chapter;

			

				
				arguments about how and why we make aesthetic judgements about multimodal texts especially in relation to their material form and context.

			

		

		The use of different forms of communication in a single text is often known as multimodality. I am primarily concerned here with texts utilising image and words, from the genres of poetry and narrative. Texts from other genres, such as advertisements, and texts using other modes of communication, such as movement, are also included where they seem particularly salient and can be seen as literary, in the Formalist sense. It is important to look both at how individual modes can communicate meaning, and at their interaction in the text – how they can be combined to open up new possibilities for interpretation. Such combinations and juxtapositions of modes can be seen to enhance, reinforce or contradict each other, making meaning unstable and challenging the reader's attempts to make sense of the text.

		Multimodality is researched in a range of academic disciplines, among them linguistics, art history, information technology, sociology, cultural studies and media studies. Multimodal texts tell us something about linguistic and artistic creativity, but also about the social and cultural spheres in which we live, and about ourselves as producers and consumers of texts. Close analysis opens up questions about how we make judgements about visual texts, about how we value or downplay their status. Creative multimodality also tells us something about how language works – it may force us to focus on a metaphor or a pun, for example. Or it may reveal something about how relationships between people and institutions are represented, or just cause us to reflect on something we had forgotten to notice for a while.

		New technology has brought about a surge in multimodal creativity, as anyone with a reasonably up-to-date computer can now produce texts filled with images, sound and movement. But texts using visuals to make meaning are far from new.

		
			
				
					Activity 1: The Mouse's Tale

				

			

			
				10 minutes

			Start by considering the well-known example of ‘The Mouse's Tale’ from Lewis Carroll's Alice's Adventures in Wonderland (1865), shown in Figure 1. First, what is this? A poem, a narrative, a picture?

			
				[image:]
			

			
				
					Figure 1: ‘The Mouse's Tale’ (Lewis Carroll, 1865, p. 38).
			

			Think about how the physical shape of the printed text influences your interpretation. It might be helpful to imagine it laid out differently. If the text were set out in the usual, left-aligned layout of prose or some other poems, would you ‘read’ it differently? Why?

			
				
					Show
 answer
				

			

		

		Multimodality forces us as readers to focus on ‘the message for its own sake’ (Jakobson, 1960, p. 356) and pay fresh attention to departures from routinised conventions of literature or poetry. Victor Shklovsky believed that the purpose of art was exactly this – to counter our habitualised perceptions, to force us to notice:

		
			Habitualisation devours works, clothes, furniture, one's wife, and the fear of war. ‘If the whole complex lives of many people go on unconsciously, then such lives are as if they had never been.’ And art exists that one may recover the sensation of life; it exists to make one feel things, to make the stone stony.

			(Shklovsky, 1965, p. 12)

		

		In an analogous way, then, Carroll's poem can be seen as poetic because it makes the mouse mousy. I will revisit ‘The Mouse's Tale’ later in the unit and consider its value as a poem, as well as looking at other creative texts to draw out their multimodal nature. First however, it's important to set out a definition of ‘text’ that is broad enough for the purposes of this unit.

		
			A note about text

			It will already be clear that to accept non-linguistic textual elements – such as layout and shape in ‘The Mouse's Tale’ – as meaningful and communicative, we will need to work with a definition of ‘text’ which will admit these as a valid focus for analysis. A simple and useful definition of ‘text’ for this purpose is the one provided by August Rubrecht:

			
				A text is …

				
						
						any artifact
						

					

						
						
							produced or modified
						

					

						
						to communicate meaning.

					

				

				(Rubrecht, 2001)

			

			This definition allows us to consider how meaning can be conveyed via a range of textual elements, as long as these elements are meaningful. It is important to differentiate things we perceive or see, from things we take meaning from:

			
				A piece of driftwood on the beach is not an artifact, just a random object shaped and placed by natural forces. If a beachcomber takes it home, paints a face on it, and hangs it on a wall, it turns into a text communicating the beachcomber's ideas about what is interesting and beautiful. […] A text is purposeful. A line of footprints taking the left fork at a junction on a snowy trail is not a text. An arrow drawn in the snow and pointing left is.

				A beautiful sunset is not a text. A painting or photograph of one is.

				(Rubrecht, 2001)

			

		

		Later in the unit I will return to problematise this definition of text, as not all texts which make a claim to be meaningful, or ‘art’, are necessarily interpreted as such. But I turn now to the field of semiotics and consider what it can offer us when we start to analyse multimodal texts.

	
		2 Semiotics

		2.1 Some semiotic concepts

		The first Reading in this unit outlines some useful terms from semiotics, which will occur throughout this unit. Semiotics is a well-established approach to the study of language and other forms of communication which are socially and culturally meaningful. Its fundamental premise is that we use signs – words (both spoken and written), images, clothing, gesture – to communicate meaning. Much of semiotics has its roots in Formalism, developed in the early twentieth century, which saw language not just in terms of its constituent parts but in terms of how its individual elements are related. Formalism focused on the form and structure of language, the message for its own sake, and evolved into structuralism in the 1920s and 1930s. A semiotic framework is applicable to language, images, photographs, diagrams – any aspect of the text which can be seen to carry meaning. Semiotics also helps to account for meaning created by letterforms, typeface and page layout – often highly creative elements of the text which lie outside what linguists often admit as ‘language’.

		
			
				
					Activity 2: Some semiotic concepts (Reading A)

				

			

			Click on 'View document' to read ‘Signs and myths’ by Jonathan Bignell, which first outlines some basic concepts in semiotics: Ferdinand de Saussure's theory of semiology, and Charles Peirce's theory of semiotics (both theories are now usually conflated as ‘semiotics’). Bignell then explains some of the main concepts you will need for the rest of this unit

			
				
					View
 document
				

			

			
				
					Show
 answer
				

			

		

		
			
				
					Activity 3: Signs in an advertisement

				

			

			
				20 minutes

			Take a look at the image shown in Figure 2, ‘Baby McFry’. What signs seem meaningful to you, and how do you interpret the image?

			
				[image:]
			

			
				Figure 2: Baby McFry (Adbusters)
			

			
				
					Show
 answer
				

			

		

		I now turn to some ways in which semiotic analysis can illuminate the creative nature of visual elements of literature and poetry. The remainder of this section looks firstly at visual aspects such as letterforms, punctuation and layout, and secondly at concrete poetry. Section 3 broadens out to consider literary works of fiction which use illustrations and images to convey meaning, although there will be some overlap between the two sections.

		2.2 Semiotics and paralanguage in literature

		Linguists generally define paralanguage as features of language (particularly of speech) which are combined with words to create additional meaning, such as intonation, pitch, tempo and tone. In face-to-face conversation, or in a stage production, visual non-linguistic features such as gesture, facial expression or movement may also be included in paralanguage.

		It might be assumed that paralinguistic features do not occur in written texts. But literature and poetry are in fact perfectly capable of utilising paralinguistic signs, and semiotics gives us a way of analysing these. Some authors play very creatively with letterforms, layout of words on the page, and different typefaces to creative effect, and such play can be highly motivated and meaningful.

		
			
				
					Activity 4: Poetry and paralanguage

				

			

			
				30 minutes

			Read the poem below, by e e cummings, about the experience of driving a new car, and think about:

			
					
					how spatial layout is used as a semiotic device;

				

					
					how punctuation and case (lower case versus capital letters) are used to create meaning (as signs);

				

					
					how deviations from convention are used creatively.

				

			

			Do you see any difference between what appears to be denoted, and connotations that are perhaps not immediately obvious?

			she being Brand

			-new;and you

			know consequently a

			little stiff i was

			careful of her and(having

			thoroughly oiled the universal

			joint tested my gas felt of

			her radiator made sure her springs were O.

			K.)i went right to it flooded-the-carburetor cranked her

			up,slipped the

			clutch(and then somehow got into reverse she

			kicked what

			the hell)next

			minute i was back in neutral tried and

			again slo-wly;bare,ly nudg. ing (my

			lev-er Right-

			oh and her gears being in

			A 1 shape passed

			from low through

			second-in-to-high like

			greasedlightning)just as we turned the corner of Divinity

			avenue i touched the accelerator and give

			her the juice,good

			 (it

			was the first ride and believe i we was

			happy to see how nice she acted right up to

			the last minute coming back down by the Public

			Gardens i slammed on

			the

			internalexpanding

			&

			externalcontracting

			brakes Bothatonce and

			brought allof her tremB

			-ling

			to a:dead.

			stand;-

			;Still)

			(cummings, 1960, p. 15–16)

			
				
					Show
 answer
				

			

		

		No two people are likely to have interpreted every element of the poem by cummings in exactly the same way, nor will everyone reading this unit agree with my points above. I have already stated that meanings taken from a text vary culturally as well as individually. This points to a drawback of semiotic analysis, which is a risk when looking at verbal language but even more salient in the visual. The connotations of a sign are often multiple and unstable – as Cook puts it:

		
			Paramount among the techniques for extending denotational meaning is the exploitation of connotation – the vague association which a word may have for a whole speech community or for groups or individuals within it. Connotations are both variable and imprecise. The connotations of ‘dog’ might include such different qualities as loyalty, dirtiness, inferiority, sexual promiscuity, friendliness; of ‘stallion’ such qualities as sexual potency, freedom, nobility.

			(Cook, 2001, p. 105)

		

		Semiotics is always influenced by subjective interpretation, so it must be remembered that like any analytical approach, it cannot provide answers to everything. Nor can semiotics escape the critique that it is impressionistic and non-verifiable. But it does give us a useful ‘way in’ to multimodal texts.

		Playfulness with the visual possibilities of letters and words is not a new phenomenon, of course. I can [image: no alternative text], [image: no alternative text], or [image: no alternative text], even in this very straightforward (semiotically speaking) paragraph. These conventions – as well as innumerable icons and graphic devices for linking visual and verbal text – are widely exploited in cartoons and comic strips (Goodman, 1996) and logos and advertisements (Cook, 2001, van Leeuwen, 2005). They are also detectable in older forms of play with words and letterforms, such as the rebus – a visual/verbal word game traditionally written on paper, in which images are combined with words or morphemes, leaving the reader the task of deciphering the meaning.

		In Figure 3, ‘mother’ is realised as a drawing of a moth, alongside the suffix – er. It is an example from an eighteenth-century historical document. These days we would be more likely to encounter the rebus in books of word games or on puzzle websites (Figure 4).

		
			[image:]
		

		
			
				Figure 3: Rebus in a letter from ‘Brittania to her “daughter” America’ (Darly, 1778).
		

		
			[image:]
		

		
			
				Figure 4: Rebus examples from puzzle websites.
		

		The rebus frequently relies for its effect on a pun across modes. The visuals have to be read literally and the result transposed into words for the reader to make any sense of it. We can see a ‘return to the rebus’ evidenced in text messages on mobile phones, too, as in ‘CUL8R’ for ‘see you later’.

		2.3 Concrete poetry

		We looked at ‘The Mouse's Tale’ in the first section of this unit. Concrete poetry (also called ‘pattern poetry’) – where the lines are arranged in a specific shape on the page in a meaningful way – has been around for centuries. Mosaics are amongst the earliest examples of it (see Danet, 2001, pp. 197–202, for some of the history, and examples of poems). The cummings poem could be considered concrete, as the spatial layout is significant. The term ‘concrete poetry’ is usually used, however, for poems where the visual shape is paramount, ‘so that they visually reinforce, or act as a counterpoint to, the verbal meaning’ (Crystal, 1987, p. 75). The French poet Guillaume Apollinaire (1880–1918) is probably the most widely known producer of these artforms, which he entitled Calligrammes. The English poet George Herbert (1593–1633) also wrote concrete poetry, the best known of which is ‘Easter Wings’, published posthumously in 1633.

		Concrete poetry is still very much alive as a literary artform. Figure 5 shows a poem from a more recent source, the NASA website. Start reading at the bottom left of the poem, as the aeroplane is taking off:

		
			[image:]
		

		
			
				Figure 5: Untitled poem (NASA Quest 2005).
		

		The verses of this poem follow that of the aeroplane, upwards and rightwards as it lifts into the sky. As well as the iconic shape of the four text-aeroplanes, the semiotic mode of movement, following the left-to-right reading path of the English language, is implied.

		The NASA poem is fairly traditional in its form, and works just as well on paper as it does on a computer screen. The advent of computers, however, has revitalised the form by adding new modes, particularly sound, colour and movement. An example using movement is shown in Figure 6, in the series of stills from a visual poetry website. Dan Waber's ‘argument’ shows a rope moving from side to side forming the words yes and no, using movement to realise the visual metaphor of a tug-of-war. At the time of writing, this poem is available on the internet (at http://www.vispo.com/guests/DanWaber/argument.html), or you may be able to find it via a search engine.

		There are many virtual art galleries displaying poems that make use of sound, image and text: an internet search of ‘concrete poetry’ should produce many examples of multimodal artwork on the web.

		We have seen in this section how letterforms, punctuation, and their playful spatial arrangement can be seen as artful. The semiotic concepts introduced so far will be revisited, as I now turn to some multimodal works of fiction which employ these features and more.

		
			[image:]
		

		
			
				Figure 6: ‘argument’ (Dan Waber, 1999).
		

		2.4 Visual Effects in Poetry

		Featuring: Mark Lawson (presenter), Peter Porter, Tom Paulin, Ian Macmillan.

		In this item from BBC Radio's 4's arts programme Front Row, broadcast on 28 April 2005, the presenter Mark Lawson talks to three poets and critics about poetry in which the visual effects on the page are as important as the sounds and meanings of the words.

		
			
				Activity

			

			
				15 minutes

			Click below to Listen to audio clip ‘Visual Effects in Poetry’ and consider what devices are used by the poets mentioned and what effects they achieve. How does this discussion relate to what you have read in this chapter?

			
				
					Play
 audio
				
			

			
				
					View
 document
				

			

			Answer

			The poetry of e e cummings has to be seen on the page to be fully appreciated. His poetry uses punctuation quite extensively but in a way that is meaningful visually rather than aurally. This links to the earlier discussion of paralanguage in poetry and the analysis of cummings' poem ‘she being Brand’ in the Section 2.2. You may like to look at that poem again to remind yourself of how it achieves its effects.

			Emily Dickinson was another poet who used punctuation unconventionally. Tom Paulin points out that her use of dashes was not due to laziness but because she saw punctuation as a manifestation of the dominant male culture that she was determined to resist. We have attached the three examples of Emily Dickinson’s poem ‘Dreams’, for you to compare. The first is a facsimile of the original manuscript that Dickinson herself wrote. The second is the version published by Dickinson's niece, Martha Dickinson Bianchi, in 1935. The final example is the one published by Thomas H. Johnson in 1955, and shows Johnson's attempt to reinstate Dickinson’s original punctuation. In comparing the punctuation and the ‘look’ of these versions of the same poem, we can seeTom Paulin's point more clearly.

			Click below to view Emily Dickinsons "Dreams".

			
				
					View
 document
				

			

			What is called ‘concrete poetry’ goes much fur ther than merely using punctuation for visual effects; it actually creates shapes and pictures from the layout of the verse. You may wish to look again at the example of Lewis Carroll's ‘The Mouse's Tale’ in Section 1. The Dadaists used poetry in this way but you can find examples as far back as the seventeenth century, such as George Herbert’s poem ‘Easter Wings’.

			Click below to view George Herbert's poem "Easter Wings".

			
				
					View
 document
				

			

			End of answer

		

		2.5 She being Brand

		This is a recording, by the actor John Sterland, of e e cummings' poem which you studied in Section 2.2.

		
			
				Activity

			

			
				30 minutes

			Click below to Listen to the reading of this poem and note the tension between the way it is read and the way it is laid out and punctuated on the page. Does listening to the reading while you look at the poem enhance your appreciation of the artistic effects?

			
				
					Play
 audio
				
			

			
				
					View
 document
				

			

			
				
					Show
 answer
				

			

		

	
		3 Word and image in fiction

		3.1 How visual elements function alongside text

		The rebus is created and enjoyed by both adults and children, but it is a common assumption in some cultures that while literature designed for children contains pictures, adult fiction does (or should) not. This view is not, of course, universal: there is a strong tradition in France, for example, of the bande dessinée, a comic-style format for fiction aimed at an adult readership. Here I consider fictional texts for both child and adult readerships which use images alongside words. The particular focus will be the creative juxtaposition of word and image, as this is often crucial to how readers interpret the text as a whole.

		Books for both adults and children have been illustrated (and re-illustrated for different editions and audiences) for centuries, and there is a vast literature on the work of illustrators. Some of the examples in this section are fairly traditional literary works in which images are used to illustrate the story being told in words (with illustrations often separated in some way from the verbal text, printed above or below it, or even as separate plates). In such texts, the narrative is conveyed in words while the illustrations have a supporting role, reinforcing the narrative or perhaps illuminating a salient detail. Others, often more modern texts, employ paralanguage, images and words – in some cases blurring the boundaries between them to such an extent as to make the distinctions unidentifiable. These kinds of texts are the subject of an increasing academic interest in how words and pictures are used in books, particularly those for children (Nodelman, 1988; Unsworth and Wheeler, 2002; Watson and Styles, 1996; Arizpe and Styles, 2003; Nikolajeva and Scott, 2000; Wyile, 2001). In what follows I show you a small selection, to demonstrate how visual elements function in the text – what they do and how they might be seen to ‘mean’.

		3.2 Locating the reader in the fictional world

		When we read a narrative, we create a ‘text world’ – described by Semino (1997, p. 1) as ‘the context, scenario or type of reality that is evoked in our minds during reading and that (we conclude) is referred to by the text’. Werth (1999) states that this mental space, drawn for us by the author, is one which we usually willingly enter into. When
					reading, we piece together a mental map from the description of a location and the way elements are described in relation to each other. Sometimes, authors draw actual maps for us. Maps help us to ‘find our feet’ by physically locating the narrative in an imaginary space; they are a fairly common strategy in literary texts. The degree to which maps insist to us that ‘this is where it all happened’ can vary: some maps are very detailed and complex (and can be vital to the reader in navigating the narrative); others are more lighthearted, such as that of the Hundred Acre Wood in A.A. Milne's Winnie the Pooh (Figure 7).

		
			[image:]
		

		
			
				Figure 7: ‘Map of 100 Aker Wood’ from Winnie The Pooh (A.A. Milne, 1989; illustrator E.H. Shepard).
		

		This map is poetic, in Formalist terms, for several reasons. There is deviation from standard English spelling (piknicks, 100 Aker Wood, drawn by Me and Mr Shepard helpd) and an absence of apostrophes. Other renderings of childlike speech and writing are found in floody place, sandy pit where Roo plays and, of course, heffalumps. The map also includes an unusual version of the compass. You may be able to think of other examples of maps in fiction, such as Tolkien's Lord of the Rings, Swift's Gulliver's Travels, C.S. Lewis' ’Narnia’ books and Lewis Grassic Gibbon's Sunset Song.

		Sometimes the illustrations in older books seem to be less concerned with explanation or elucidation, than with with providing visual support for the narrative, or perhaps with making a claim to authenticity. Thomas Hughes’ Tom Brown's Schooldays (1949) uses illustrations in this way. Figure 8 shows an image entitled ‘A few parting words’ – a phrase that occurs in the verbal text on the previous page.

		
			[image:]
		

		
			
				Figure 8: ‘A few parting words’ (Thomas Hughes, 1949, p. 62–3; illustrator S. Van Abbé).
		

		The function of this illustration is not to tell us anything new or explain something unclear from the verbal narrative, but appears to signify ‘this is what happened, and this is exactly how it happened’. By showing us, rather than telling us, the author is appealing to what some see as our inherent trust of the visual (that ‘seeing is believing’). The book is also filled with images of parts of the British public school, Rugby, which the author attended and where the story is set (see Figure 9).

		
			[image:]
		

		
			
				Figure 9: Detail of object from a page of Tom Brown's Schooldays (Thomas Hughes, 1949, p. 188).
		

		One rationale for this use of an image is that the author supposes readers might be interested to visit the school, which still exists, and see the artefacts for themselves. But images can also make a claim to truthfulness or reality for the story: if the places and artefacts are real, then it might be easier to see the story in the same way. In linguistics this kind of claim to truthfulness would be termed ‘high modality’ – events or things are represented as if they were true and real. In semiotic terms, this image denotes a real-life artefact, but it also connotes ‘truth’, ‘reality’, perhaps ‘honesty’ – it asks us to accept its authenticity. We could therefore interpret such images as telling us something about the reliability of the narrator, or the judgement of a character, depending on what other information we have to hand as readers.

		3.3 Conveying emotion

		Other uses of images in fiction seem to function at the level of connotation rather than denotation: they add affective meaning but don't seem to have an explicitly narrative function. The Coma, by Alex Garland (2004), tells the story of a man who is beaten unconscious on a late-night train, and is hospitalised as a result. As he describes waking up from his comatose state in the hospital, talking to the doctors and returning home, it gradually becomes apparent that he has not recovered at all, but is ‘dreaming’, or at least only semi-conscious. He remembers very little about himself, and events are described in a disconnected, ‘other-worldly’ way. The Coma contains a series of woodcuts (see Figure 10) produced by the author's father, Nicholas Garland (a political cartoonist for the British newspaper, The Daily Telegraph).

		
			[image:]
		

		
			
				Figure 10: Woodcut from The Coma (Garland, 2004).
		

		The woodcuts in this unit are instrumental in conveying a sense of the threatening, alienating world that the narrator inhabits. All the monochrome images are dark (in every sense); the large black shapes of the policemen and doctors loom over the man in hospital, but we never see their faces and nor does the comatose man. The result is a distancing, an ability only to see outlines and shadows, which take on the character of vague, unspecified threats. This is reflected in the story where we learn something of what is going on inside the man's head. He cannot grasp what has happened to him, nor whether he is dead or alive, asleep or awake. In an interview in the British newspaper the Observer, the author Alex Garland commented on the links between the images and writing in this book:

		
			I think the way [my father] does woodcuts and linocuts very much influenced the way I write prose. I mean the heavy emphasis on craft with the aim of making things simple, hopefully deceptively so.

			(Adams, 2004)

		

		The connotations of such images affect us as readers and influence our reading experience. Their significance can sometimes be better understood by imagining the image differently: a different kind of image, perhaps also literally showing a different visual viewpoint, would produce a different meaning entirely.

		3.4 Characterisation and narrative

		Many literary works use images as clues to characterisation. A good example is found in Mark Haddon's The Curious Incident of the Dog in the Night-Time (2003), a book widely read by both adults and children. Christopher, the central protagonist and narrator, is fifteen years old and has Asperger's syndrome. He has trouble understanding what people mean if they depart from the strictly literal – in particular he finds gestures, facial expressions and metaphors incomprehensible. In other words, he cannot read the semiotic codes on the connotative level:

		
			I find people confusing. This is for two main reasons.

			The first main reason is that people do a lot of talking without using any words. Siobhan says that if you raise one eyebrow it can mean lots of different things. It can mean ‘I want to do sex with you’ and it can also mean ‘I think that what you just said was very stupid.’

			[…]

			The second main reason is that people often talk using metaphors. These are examples of metaphors:

			
				I laughed my socks off.
			

			
				He was the apple of her eye.
			

			
				They had a skeleton in the cupboard.
			

			
				We had a real pig of a day.
			

			
				The dog was stone dead.
			

			The word metaphor means carrying something from one place to another, and it comes from the Greek words [image: no alternative text] (which means from one place to another) and [image: no alternative text] (which means to carry) and it is when you describe something by using a word for something that it isn't. This means that the word metaphor is a metaphor.

			I think it should be called a lie because a pig is not like a day and people do not have skeletons in their cupboards. And when I try and make a picture of the phrase in my head it just confuses me because imagining an apple in someone's eye doesn't have anything to do with liking someone a lot and it makes you forget what the person was talking about.

			(Haddon, 2003, pp. 19–20)

		

		Highly intelligent and logical, Christopher documents these complexities throughout the book and details his rationale for telling his story in his own way (for example, by using prime numbers for the chapters of his story, complete with diagrams showing how prime numbers are identified). As you can see in Figure 11 below, he illustrates his writing when he feels the need to explain detail which to most people would seem superfluous, but which to Christopher is crucial.

		
			[image:]
		

		
			
				Figure 11: Christopher's narrative style (Haddon, 2003, pp. 46–7).
		

		In this book, many aspects of Christopher's character are accessible to the reader through the writing itself, but his somewhat obsessive attention to detail evidenced by the images sends the reader a strong message about how he thinks and how he sees the world. It is possible to see the visuals in The Curious Incident as ‘closing down’ the range of interpretations potentially available to the reader, although you may not agree with this. I will return to this point in Section 5. I now move on to look at texts in which the images almost assume the role of the narrator.

		3.5 Picturebooks and multimodality

		There are many modern picturebooks where the images assume a central role in telling the story and creating the central meaning(s) of the narrative. This is achieved in a variety of ways. Images are often wholly integrated with the words, and layout, image and typography are inextricably intertwined. An example of this is shown in Figure 12, taken from a children's story by Sarah Fanelli, about a butterfly who lacks the confidence to fly. She travels around asking the world's flying experts for help – in the extract, she has partial success in Italy, before leaving for Paris. Among the many meaningful visual and verbal elements here, you could consider the following. On the first page:

		
				
				the signs which connote Italy and ‘Italianness’: Italian words (via aerea, farfalla – on Butterfly's purple wing); the buff-coloured wings with geometric drawings, reminiscent of Leonardo da Vinci's diagrams;

			

				
				the layout showing Butterfly taking off towards the right (like the NASA aeroplane poem, in Figure 5).

			

		

		On the second page:

		
				
				the signs connoting ‘Frenchness’: the red, white and blue of the French flag; the French words; the Eiffel Tower;

			

				
				the layout of the words, reflecting Butterfly's descent to the ground in Paris.

			

		

		On both pages, note that Butterfly's body is constructed of letterforms. A variety of backgrounds are used, most notably the ‘graph paper’ done in blue, perhaps connoting ‘design’ or ‘technology’ to echo the design of her mechanical wings by Leonardo in Italy.

		
			[image:]
		

		
			Figure 12: First Flight, Sarah Faneli
		

		Another visual device for narration is the cartoon format. Usually, cartoons use the left-to-right reading path of English prose (although this directionality can be violated to particular effect).

		
			
				
					Activity 5: The cartoon format as narrative device

				

			

			
				30 minutes

			
				[image:]
			

			
				Figure 13: Ethel and Ernest, Raymond Briggs
			

			Look at the double page spread taken from Raymond Briggs' story of the life of his parents, Ethel and Ernest (Figure 14). The book – written primarily for an adult audience due to its subject matter – is an affectionate narration of the lives of the author's parents, from their early adulthood in the late 1920s when they met, through the birth of their son, the trials of living through the Second World War and their later life. The book ends with their deaths, within a year of one another, in the early 1970s. As you read, consider the following questions:

			
					
					Why do you think the author chose the cartoon format for his story?

				

					
					What elements of the visual and verbal text seem to you significant, and why? In other words, what are the signs and what do they connote?

				

			

			
				
					Show
 answer
				

			

		

		3.6 Image, words: which mode for which job?

		I've already mentioned the use of maps in books to help the reader ‘see’ where the action ‘happened’ in order to fully enter into the narrative and take part in it. It can be worthwhile looking at which semiotic mode is used for which parts of a narrative, and why this might be the case.

		Nikolajeva and Scott (2000) describe a variety of ways in which words and pictures can be combined:

		
			[I]n symmetrical interaction, words and pictures tell the same story, essentially repeating information in different forms of communication. In enhancing interaction, pictures amplify more fully the meaning of the words, or the words expand the picture so that different information in the two modes of communication produces a more complex dynamic. When enhancing interaction becomes very significant, the dynamic becomes truly complementary. Dependent on the degree of different information presented, a counterpointing dynamic may develop where words and images collaborate to communicate meanings beyond the scope of either one alone. An extreme form of counterpointing is contradictory interaction, where words and pictures seem to be in opposition to one another. This ambiguity challenges the reader to mediate between the words and pictures to establish a true understanding of what is being depicted.

			(Nikolajeva and Scott, 2000, pp. 225–6)

		

		The next Reading, by Clare Bradford, looks at combinations of word and image in postcolonial literature. Bradford is a researcher in children's literature at Deakin University, Australia. She is concerned here with representations, both linguistic and visual, of racial politics in children's books, and in this Reading shows how these social tensions surface in texts from New Zealand and Canada. She shows how the images, as well as the verbal text, creatively disrupt expectations, taking traditional narratives and playing around with them.

		In the first part of this Reading, Bradford looks at Gavin Bishop's reworking of a traditional rhyme, ‘The House that Jack Built’. In case you are not familiar with the rhyme he uses, it makes extensive use of parallelism, and goes like this:

		This is the house that Jack built.

		This is the malt

		That lay in the house that Jack built.

		This is the rat

		That ate the malt

		That lay in the house that Jack built.

		And so on. The last stanza is:

		This is the farmer sowing the corn,

		That kept the cock that crowed in the morn,

		That waked the priest all shaven and shorn,

		That married the man all tattered and torn,

		That kissed the maiden all forlorn,

		That milked the cow with the crumpled horn,

		That tossed the dog,

		That worried the cat,

		That killed the rat,

		That ate the malt

		That lay in the house that Jack built.

		Bradford then moves on to another text, A Coyote Columbus Story. Coyote is a mystical creature, part-human, part-canine, who occurs in many oral folktales around the world, but is particularly associated with indigenous North American Indians. Coyote is a devious trickster, not unlike Anansi from African folk tales.

		
			
				
					Activity 6: Picturebook politics (Reading B)

				

			

			Click on 'View document' to read Clare Bradford's discussion of postcolonial politics in children's picturebooks, in Reading B.

			
				
					View
 document
				

			

			As you read, look out for:

			
					
					what Bradford points to as evidence of the instability of signs;

				

					
					how the interaction of words and images invites you to interpret these stories;

				

					
					the different connotations of visual signs when stories are re-told in new contexts for new audiences.

				

			

			
				
					Show
 answer
				

			

		

		‘The House that Jack Built’ and A Coyote Columbus Story are examples of texts in which the images carried a large part of the meaning, and introduced an ideological/politicised spin to the story represented in words. In Nikolajeva and Scott's terms then, we could see these texts as examples of a counterpointing dynamic, where additional meanings are generated by the interaction of words and images. Further along this cline is their contradictory interaction, an example of which is shown in Figure 14. It is taken from Satoshi Kitamura's Lily Takes a Walk (1987), widely cited in the literature on picturebooks (e.g. Arizpe and Styles, 2003; Watson and Styles, 1996; Bromley, 2001). Here words and images struggle hard against each other in the text as they tell their contradictory stories.

		
			[image:]
		

		
			Figure 14: Lily takes a walk, Satoshi Kitamura
		

		
			Lily Takes a Walk tells the story of a little girl, Lily, who takes her dog Nicky for a walk. The words tell the story from Lily's point of view and describe where she goes and what she sees on her very pleasant walk. Nicky's experience is entirely different: he sees monsters around every corner and threatening faces in the forms of lamp posts, pillar boxes, and so on. The catalogue of horrors he experiences is represented entirely in the visual mode. Lily, whose experience is represented verbally, is oblivious.

		
			Lily Takes a Walk is not, of course, an ‘ideological’ text in the way that those shown in Reading B were, although it could be interpreted as rejecting any notion that allowing a young child to walk the city streets unaccompanied by an adult is potentially dangerous. Crucial to a semiotic reading of any text is an understanding of the culture, context and prevailing concerns of the society in which it was produced, and the purpose and significance of the text. The importance of this knowledge for interpretation has been demonstrated in the examples so far in this unit, but I want to outline the concept of semiotic domains (Gee, 2003). It provides a useful broadening of semiotics, describing the kinds of knowledge that readers need to have in order to engage in all sorts of social practices, including reading. Gee's work has, generally, an educational focus, but his recognition of the importance of being able to ‘read’ further than the literal meaning of words on a page is what makes it useful here.

		
			Semiotic domains

			By a semiotic domain I mean any set of practices that recruits one or more modalities (e.g. oral or written language, images, equations, symbols, sounds, gestures, graphs, artifacts, etc.) to communicate distinctive types of meanings. Here are some examples of semiotic domains: cellular biology, postmodern literary criticism, first-person-shooter video games, high-fashion advertisements, Roman Catholic theology, modernist painting, midwifery, rap music, wine connoisseurship. […]

			[Take a sentence] about basketball – “The guard dribbled down court, held up two fingers, and passed to the open man” – is a sentence from the semiotic domain of basketball. It might seem odd to call basketball a semiotic domain. However, in basketball, particular words, actions, objects, and images take on distinctive meanings. In basketball, ‘dribble’ does not mean drool; a pick (an action where an offensive player positions him or herself so as to block a defensive player guarding one of his or her teammates) means that some defensive player must quickly switch to guard the now-unguarded offensive player; and the wide circle on each end of the court means that players who shoot from beyond it get three points instead of two if they score a basket.

			If you don't know these meanings – cannot read these signs – then you can't ‘read’ (understand) basketball. The matter seems fairly inconsequential when we are talking about basketball. However, it quickly seems more consequential when we are talking about the semiotic domain of some type of science being studied in school. […]

			In the modern world, print literacy is not enough. People need to be literate in a great variety of different semiotic domains. If these domains involve print, people often need the print bits, of course. However, the vast majority of domains involve semiotic (symbolic, representational) resources besides print and some don't involve print as a resource at all.

			(Gee, 2003, pp. 18–19)

		

		As readers or viewers, our recognition of semiotic domains will vary according to our social and cultural background. In Reading B we could, for example, identify the semiotic domains of colonial history and postcolonial resistance to that history, as well as canonical English children's literature and nursery rhymes. These domains are particularly salient in the visual mode.

		The next section in this unit continues the focus on sociocultural aspects of multimodality, and contains the final Reading (Reading C), on the subject of postmodern literature. I look at some possibilities for analysing multimodal texts in terms of the wider literary and social trend of postmodernism, seeing if and how multimodal texts can be seen to fit within this trend.

	
		4 Postmodern multimodal literature

		In the next Reading, Lewis starts by outlining some key features of postmodernity.

		Postmodernity and postmodernism are notoriously difficult to define, but for our purposes here it is enough to understand postmodernity as a cultural condition (‘the state we find ourselves in’), of living in an increasingly technologically orientated society, with lower levels of trust in authority and ‘truth’ than previously, where the meaning of things is unstable and open to interpretation. Postmodernism, as it relates to literature, can be understood to refer to texts that can be seen to represent such instability and unreliability. A key feature of postmodern texts is the intrusion of the author. Postmodern texts are often playful, opening up alternative interpretations for the reader in a variety of creative ways:

		
			Postmodern literature and art often challenge conventions of representation, particularly any straightforward notions of unity of meaning, emphasising instead the possibility of consciously playing with meaning in any text or art form.

			(Swann, et al., 2004, p. 246) The next Reading is about postmodernism in children's literature.

		

		
			
				
					Activity 7: Postmodernism in fiction (Reading C)

				

			

			Click on 'View document' to read Reading C, ‘Postmodernism and the picturebook’, by David Lewis.

			
				
					View
 document
				

			

			
				
					Show
 answer
				

			

		

		
			
				
					Activity 8: Postmodern picturebooks

				

			

			
				30 minutes

			Look at Figures 15 and 16. They are examples of what could be termed postmodern picturebooks (Child, 2003; Scieszka and Smith, 1993). What evidence can you find of the ‘markers’ of postmodernism that Lewis outlines?

			
				[image:]
			

			
				Figure 15: Who's afraid of the big bad book?, Lauren Child
			

			
				[image:]
			

			
				Figure 16: Endpaper from The Stinky Cheeseman and Other Fairly Stupid Tales, Jon Scieszka and Lane Smith
			

			
				
					Show
 answer
				

			

		

		These are just a few preliminary reflections linking the examples to the points in Lewis’ Reading – you will probably think of many more questions yourself and link them to issues he raises. The example in Figure 17 serves to illustrate that adult fiction can also be playful, and creatively disrespectful of boundaries and conventions. The endpaper from Dave Eggers’ A Heartbreaking Work of Staggering Genius (2000) shows the author intervening in the space conventionally reserved for legal and copyright information. There's a good chance that most readers would merely glance at this. Unless you were a writer intending to cite from the book, or had a pressing need for the address of the publisher, you would normally have no reason to look at an endpaper.

		
			[image:]
		

		
			
				Figure 17: A Heartbreaking Work of Staggering Genius (Dave Eggers, 2000).
		

		There is a kind of comedy double act going on here, this time with the visual layout playing the ‘straight man’. The combination of conventional print size, shape, location and general appearance of the endpapers – and, of course, the reader's expectations – makes this look conventional and unexceptional. The joke – the creative intervention into both the text and our expectations – takes place in the verbal mode.

		More visible traces of postmodernism in adult literature are the creative uses of typography and layout to signify different voices in the text. There are many examples of these: one is Mark Danielewski's House of Leaves (2000), which has a different typeface for each ‘voice’, and different characters intruding on each other's prose, inserting footnotes, poems, citations, contradictions and corrections, musical notation and images.

		In Reading C, Lewis referred to the ‘flattening out of differences between high and low’, and postmodernism's tendency towards hybridisation of styles. This ‘mixing and matching’ can be seen in many of the texts discussed in this unit: rules and conventions are cheerfully disregarded, the narrator interrupts the reader, and grammatical rules are violated to creative effect.

		I now return briefly to an issue raised in the introduction to this unit, which is how we decide which multimodal texts are creative, and also how we decide which have ‘literary value’.

	
		5 Valuing multimodal texts

		In this unit I have explored a number of ways of looking at and analysing multimodal texts. The examples shown can be said to display creativity or ‘artistry’ in some way, but not all multimodal texts are necessarily creative, even some of those which can be analysed as ‘literary’ via Formalism. There are dangers in assigning the ‘creative’ label to any text purely on the basis of its visual nature. Multimodal texts are ubiquitous in everyday life (shop and traffic signs, labels and packaging, telephone directories). But although these are often analysable in terms of poetic structures such as deviation or parallelism, some, like dead metaphors, are now so routinised that they deliver little by way of illumination of creativity, even if they might be interesting for other reasons. Not everything that is created is creative, perhaps – some texts and artefacts are simply ‘made’ or ‘produced’ (Pope, 2005).

		So on what basis do we as readers judge multimodal literature as ‘good’ or ‘bad? These are necessarily subjective judgements. Perhaps we learn to ascribe value to multimodal literary texts depending on the same (albeit even less specific) notions of ‘good’ and ‘bad’, or ‘high’ and ‘low’. In a sense, then, our aesthetic judgements depend at least in part on what we have learned to value in our society and culture. Tenniel's illustrations in Alice's Adventures in Wonderland, or E.H. Shepard's in Winnie the Pooh, tend be accorded high value, but it is very difficult to disentangle them from the value accorded to the whole text, both being widely accepted as part of the canon of English literature. Viewed in isolation, for example, The Mouse's Tale’ could be said to be quite superficial in terms of the range of interpretations and layers of meaning it potentially offers to the reader. It is a successful, quick pun between visual and verbal modes, but there is no real complexity in the poem in terms of the relationship between the actual words used, the overall shape it takes, and the meanings. Richard Bradford argued that ‘good literature’ is distinguished from ‘bad literature’ by the extent to which form and meaning are held in balance – a complex interplay that allows a poem to resist closure. ‘The Mouse's Tale’ is fun, but it seems to me that here meaning is rather unrelated to form, apart from the tale/tail pun. The poem ‘she being Brand’, on the other hand, by e e cummings, can be seen as having a clearer relationship between typographical form, and at least two possible interpretations of the meaning of the poem – a drive in a new car, or a sexual experience. Re-readings of this poem can easily trigger new associations and semantic connections: it resists closure, leaving us slightly unsure as to what is its central topic.

		The context in which we encounter a text can also influence the value we ascribe to it. ‘The Unknown’ is an example of a ‘poem’ constructed – by setting it out in a ‘poem-like’ way – from a political speech by Donald Rumsfeld, at a US Department of Defense news briefing in February 2002. It has been taken from the mode of speech into the mode of writing, and laid out on the page in a way which suggests (visually) ‘this is poetry’. We can of course analyse it as a poem, even without knowing its provenance, and find that it ‘counts’ as poetry because of its textual features. But one of the main signifiers in Hart Seely's reappropriation of the words as a poem is the visual layout. The change from oral to visual mode enacts a re-evaluation of the text – Seely decided that it ‘counted’ as poetry, set it out as such, and in doing so asks us to accept his claim.

		But the visual appearance of a poem can also lead us to devalue its worth. Figure 18 is an example that, for me at least, does not ‘count’ as poetry.

		This ‘found poem’ is part of a collection of texts encountered at random by Kenneth Goldsmith, posted up on billboards or taped onto lamp posts in New York City. There are at least 75 ‘found’ texts on the UbuWeb website, all varying considerably in their style and purpose. Some are home-made adverts, some are appeals for information about lost dogs, and so on, and some, like this one, claim to be poetry. In some respects it succeeds, for me, in its claim to be a poem – a Formalist analysis would find that it rhymes, it scans, it has repetition and parallelism. But despite the claim to be accepted as a poem evidenced in its title (‘Poems For All’), I find it particularly hard to divorce the words of the poem itself from the look of it and the fact that it was found in the street. I find this poem interesting because of its scrawled, handwritten letters (and the erratic mix of lower and upper case), the underlining, and the tatty paper it is written on.

		
			[image:]
		

		
			
				Figure 18: Poem collected from a public space in New York City (Kenneth Goldsmith).
		

		Materials are imbued with semiotic significance – a hasty, handwritten note pinned to an office door has a different meaning to an engraved plaque, even if the words themselves are identical. We take meaning from texts depending on what they are made of (pen on notepaper, graffiti on a wall) and on where we encounter them. ‘The Mouse's Tale’ could mean differently if it were subway graffiti, or scrawled on a torn piece of notepaper like ‘Poems For All’. ‘Materiality’ – the stuff that texts are made of – can be seen as significant in terms of literary value.

		
			
				
					Activity 9: Context, material and value

				

			

			
				10 minutes

			
								Figure 19 shows a poem carved along the length of an underpass wall at Waterloo station in London. The two photographs are of the same poem – it starts at the underpass entrance as shown in the first, then continues down the pedestrian walkway as shown in the second. Do you accept it as poetry? Would you change your mind if you found it spray-painted rather than carved, or printed in a book rather than created on a wall?

			
				[image:]
			

			
				
					Figure 19: Verses from ‘Eurydice’ (Sue Hubbard).
			

			
				
					Show
 answer
				

			

		

	
		6 Conclusion

		This unit has shown some of the many ways in which authors and illustrators can use visual communication in their work. There is a huge range of possible signifiers, from non-standard punctuation (as in the cummings poem), to concrete poetry, to whole multimodal books where an understanding of the visual meaning is just as important, if not more so, than the words.

		I have introduced different ways of approaching multimodal literature, from the Formalist or inherency-based to the more sociocultural. Inevitably, we tend to use a combination of approaches when faced with a multimodal text, as they provide us with different tools. Semiotics, for example, relies on an understanding of social and cultural connotations to find the meaning of the linguistic or visual sign in the text. Similarly, as Clare Bradford showed in Reading B, the meanings of individual signs in the text and their shifting meanings in different cultures are crucial to understanding the oppositional narrative presented by writers in postcolonial contexts.

		What such texts mean to us as readers is due in no small part to our previous experience of literary texts and our culture, and to what we have been taught to value. As with language, visual elements of a text are often intertextual. These may be allusions to other visual texts, or deliberate connections made across semiotic modes such as in punning. In terms of Russian Formalism, writers and illustrators can be seen as creating and re-creating poetic structures, making the textual world strange and forcing us to consider it afresh.

		I have looked in this unit at some texts that use (or ask the reader to infer) a further semiotic mode – movement.

	
		References

		Adams, T. (2004) ‘Coma chameleon’, Observer, 27 June, [online],
http://observer.guardian.co.uk/review/story/0,6903,1248127,00.html

		Arizpe, E. and Styles, M. (2003) Children Reading Pictures: interpreting
visual texts, London, Routledge.

		Asian Dub Foundation (2000) Community Music, London Records.

		Bignell, J. (2002) Media Semiotics: An Introduction, Manchester, Manchester
University Press.

		Bradford, C. (2001) Reading Race: Aboriginality in Australian children’s
literature, Victoria, Melbourne University Press.

		Briggs, R. (1998) Ethel and Ernest, London, Jonathan Cape.

		Bromley, H. (2001) ‘A question of talk: young children reading pictures’,
Reading, 35(2), pp. 62–6.

		Carroll, L. ([1865]1929) Alice’s Adventures in Wonderland, Everyman’s
Library Children’s Classics, London, David Campbell.

		Child, L. (2002) Who’s Afraid of the Big Bad Book?, London, Hodder.

		Cook, G. (2001) The Discourse of Advertising, 2nd edn, London, Routledge.

		Crystal, D. (1987) The Cambridge Encyclopedia of Language, Cambridge,
Cambridge University Press.

		cummings, e e (1960) Selected poems 1923–1958, London, Faber and Faber.

		Danet, B. (2001) Cyberpl@y: communicating online, Oxford, Berg.
References 465.

		Danielewski, M. (2000) House of Leaves, London, Anchor.

		Eggers, D. (2000) A Heartbreaking Work of Staggering Genius, London,
Picador.

		Fanelli, S. (2002) First Flight, London, Jonathan Cape.

		Garland, A. (2004) The Coma, London, Faber and Faber.
466 The Art of English: Literary Creativity

		Gee, J.P. (2003) What Video Games Have to Teach Us about Learning and
Literacy, New York, Palgrave Macmillan.

		Goldsmith, K. ‘Poems for all’, found poem, UbuWeb, [online]
http://www.ubu.com/outsiders/ass.html
.

		Goodman, S. (1996) ‘Visual English’, in S. Goodman and D. Graddol (eds.)
Redesigning Texts: New Texts, New Identities, London, Routledge.

		Haddon, M. (2003) The Curious Incident of the Dog in the Night-Time,
London, Jonathan Cape.

		Hughes, T. ([1857]1949) Tom Brown’s Schooldays, London, Dent and Sons.

		Jakobson, R. (1960) ‘Closing statement, linguistics and poetics’, in T. Sebeok
(ed.) Style in Language, Cambridge MA, MIT Press.

		
Jakobson, R. (1968) ‘Poetry of grammar and grammar of poetry’, Lingua, 21,
pp. 597–609.

		Lewis, D. (2001) Reading Contemporary Picturebooks: Picturing Text,
London, Routledge.

		Milne, A.A. ([1926]1989) The Complete Winnie-the-Pooh, London, Chancellor
Press/Methuen.

		NASA Quest (2005) Untitled poem, Writing Experience: writing concrete
poetry, [online] http://quest.arc.nasa.gov/aero/events/regimes/poet.html.

		Nikolajeva, M. and Scott, C. (2000) ‘The dynamics of picturebook
communication’, Children’s Literature in Education, 31(4), pp. 225–39.
470 The Art of English: Literary Creativity

		Nodelman, P. (1988) Words about Pictures: The Narrative Art of Children’s
Picture Books, Athens, GA, University of Georgia Press.

		Pope, R. (2005) Creativity: Theory, History, Practice, London, Routledge.

		Rubrecht, A. (2001) ‘What is a text?’, Rubrecht on Texts [online]
http://www.uwec.edu/english/FacProjects/Rubrecht/rubrecht_projects.htm.

		Rumsfeld, D. (2002) US Department of Defense News Briefing [online]
http://www.defenselink.mil/transcripts/2002/t02122002_t212sdv2.html.

		Scieszka, J. and Smith, L. (1992) The Stinky Cheeseman and Other Fairly
Stupid Tales, London, Penguin Books.

		Shklovsky, V. (1965) ‘Art as technique’, in L.T. Lemon and M.J. Reis (eds)
Russian Formalist Criticism: Four Essays, Lincoln, NB, University
of Nebraska Press.

		Shklovsky, V. (1965) ‘Art as technique’, in L.T. Lemon and M.J. Reis (eds)
Russian Formalist Criticism: Four Essays, Lincoln, NB, University
of Nebraska Press.

		Smith, Z. (2000) White Teeth, London, Hamish Hamilton.

		Swann, J., Deumert, A., Lillis, T. and Mesthrie, R. (2004) A Dictionary of
Sociolinguistics, Edinburgh, Edinburgh University Press.
References 473

		Unsworth, L. and Wheeler, J. (2002) ‘Re-valuing the role of images in
reviewing picture books’, Reading: Literacy and Language,
			36(2),
pp. 68–74.

		van Leeuwen, T. (2005) Introducing Social Semiotics, London, Routledge.

		
Waber, D. (1999) ‘argument’, strings, a Flash project, [online] http://www.vispo.com/guests/DanWaber/argument.html.

		Watson, V. and Styles, M. (eds) (1996) Talking Pictures: Pictorial Texts and
Young Readers, London, Hodder and Stoughton.

		Werth, P. (1999) Text Worlds: Representing Conceptual Space in Discourse,
London, Longman.

		Wyile, A.S. (2001) ‘First-person engaging narration in the picture book: verbal
and pictorial variations’, Children’s Literature in Education, 32(3),
pp. 191–202.

		Acknowledgements

		The content acknowledged below is Proprietary (see terms and conditions).

		E301_1 Chapter 6 from Word and Image in Goodman, S. and O'Halloran, K. (2006) The Art of English: Literary Creativity, Palgave Macmillan Copyright © The Open University.

		The material in this Unit must be kept integrated and not used out of context or sequence in order to benefit from the critical analysis provided by the authors.

		The third party material contained in this Unit is credited to the following rightsowners and sources:

		Text

		
			
				Activity 4
			: ‘she being Brand’ is reprinted from Complete Poems 1904–1962, by EE Cummings Trust and George James Firmage;

		
			
				Figure 5
			: James, D., ‘Writing Experience: Writing Concrete Poetry’, Nasa Quest;

		
			
				Figure 6
			: © Copyright Dan Waber;

		
			
				Page 11
			: from the Curious Incident of the Dog in the Night-time by Mark Haddon, Copyright © 2003 Mark Haddon.

		
			
				Figure 17
			: Eggers, D. (2001) Verso Page, A Heartbreading Work of a Staggering Genius, Macmillan UK Ltd, Sanford J, Greenburger, Inc. and Simon and Schuster Int Group, Inc;

		
			
				Reading A
			: Bignell, J. (1997) ‘Signs and myths’ Media Semiotics – An Introduction, Manchester University Press, 2002. Copyright © Jonathan Bignell, 1997, 2002;

		
			
				Reading B
			: Bradford, C. (2001) ‘Narratives of Identify and History in Settler Colony Texts’, in Reading Race,: Aboriginality in Australian Children’s Literature, pp.232-262, Melboune University Publishing Ltd;

		
			
				Reading C
			: Lewis, D. (2001). ‘Postmodernism and the picturebook’, Reading Contemporary Picturebooks, pp.87-100, Routledge, Taylor and Francis Bookds Ltd, tandf.co.uk and eBookstore.tandf.co.uk.

		
			
				
			
		

		Illustrations

		
			
				Figure 2
			: www.adbusters.org;

		
			
				Figure 3
			: excerpt from personal letter M. Darly to her daughter, 1778, from the James Ford Bell Library, Minnesota;

		
			
				Figure 4 (bottom)
			: from yourpage.org;

		
			
				Figure 7
			: line illustration copyright E.H. Shepard, colouring © 1970, 1973 by E H Shepard and Egmont Books Ltd;

		
			
				Figure 10
			: Garland, A. (2004) The Coma. Text © Alex Garland 2004. Images © Nicholas Garland 2004. Faber and Faber Ltd 2004;

		
			
				Figure 12
			: extracts from First Flight by Sarah Fanelli, published Jonathan Cape, The Random House Group Limited;

		
			
				Figure 13
			: extracts from Ethel and Ernest by Raymond Briggs, published by Jonathan Cape. The Random House Group Limited;

		
			
				Figure 14
			: Lily Takes a Walk by Satoshi Kitamura (Blackie, 1990) Copyright © Satoshi Kitamura, 1987. Published by Penguin Group (UK);

		
			
				Figure 15
			: Child, L. (2002) Who’s Afraid of the Big Bad Book, Hodder and Stoughton Publishers, David Higham Associates and Hyperion Books for Children;

		
			
				Figure 16
			: Scieszka, J. and Smith, L. (1993) The Stinky Cheeseman and Other Fairly Stupid Tales, Penguin Group UK. Text copyright © Jon Scieszka, 1992. Illustrations copyright © Lane Smith, 1992;

		
			
				Figure 19
			: Andrew Rix;

		Reading B

		
			
				Figure 1
			: Bishop, G. The House That Jack Built,Scholastic, 1999;

		
			
				Figures 4 & 5
			: King, Thomas, and Monkman, William Kent, A Coyote Columbus Story, Douglas and McIntyre, Toronto, 1992, Access Copyright.

	
		Version

		 ID: E301
			
 Build: 1.3.0
			
Stamp: 2010-10-26T01:32:13+01:00
		

		Copyright © 2010 The Open University

	OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/cover.html

		
			[image: cover image]
		

	

OEBPS/titlepage.html
Word and image

	The Open University

OEBPS/images/e301_1_i003i.jpg
prelend to e a. friemnd

OEBPS/media/e301_1_002s.pdf
Media Kit Transcript

she being Brand, by ee cummings

(Read by John Sterland)
she being Brand

-new;and you

know consequently a
little stiff i was

careful of her and(having

thoroughly oiled the universal

joint tested my gas felt of

her radiator made sure her springs were O.

K.)i went right to it flooded-the-carburetor cranked her

up,slipped the

clutch(and then somehow got into reverse she
kicked what

the hell)next

minute i was back in neutral tried and

again slo-wly;bare,ly nudg. ing(my

lev-er Right-

oh and her gears being in
A 1 shape passed

from low through
second-in-to-high like

greasedlightning)just as we turned the corner of Divinity

avenue i touched the accelerator and give

her the juice,good

(it

was the first ride and believe i we was

happy to see how nice she acted right up to

the last minute coming back down by the Public
Gardens i slammed on

the

internalexpanding

&

externalcontracting
brakes Bothatonce and

brought allof her tremB

file://E:\AV\brand_new.htm

Page 1 of 2

25/04/2007

Media Kit Transcript Page 2 of 2

-ling
to a:dead.

stand-
;Sill)

file://E:\AV\brand_new.htm 25/04/2007

OEBPS/answer06.html

		
			

			
Answer

		
			

Your reaction will, of course, be personal to you. For me, hearing the poem read aloud whilst trying to follow it on the page was quite a shock. It certainly underlined the way the layout and punctuation makes the poem ‘strange’ in Formalist terms. It made me think more carefully about the way the language works and the effect on the meaning of the punctuation and line breaks.

		

	

OEBPS/answer04.html

		
			

			
Answer

		
			

There are no right or wrong responses to this activity. You may have perceived some of the following.

			Firstly the overall layout of the poem seems to be highly connotative. It conveys through its iconic shape the juddering first minutes of a man trying out his new car The lines are arranged in short stanzas (apart from the stanza starting it was the first ride, which I took to be an indication that the car is actually running smoothly here, just before the brakes are slammed on). Words are split across both lines and stanzas, which disrupts a smooth reading and conveys the jerkiness of the driving experience.

			The punctuation is, of course, highly non-standard and forces us to notice it, as it deviates from conventional grammatical functions. Punctuation here functions to slow us down and speed us up, interrupting us and jolting us about as we read. In that sense it puts us in the car to experience the jerky ride for ourselves. Words in this poem are also compressed into single units by the removal of spaces, to convey speed and abruptness (such as Bothatonce). In this way, the poem manages to simulate a third semiotic mode, movement.

			A complete analysis would require an understanding of the contribution to the text's meaning(s) of the visual elements. Linguistically, we could note the instances of creative rule-breaking on the grammatical level (believe i we was) and the deliberate flouting of the rules of English capitalisation and punctuation, for example. The pronouns (i for the driver, she for the car), as well as the lexis, also hint at another possible interpretation of this poem – the driver's fumbling attempts at the seduction of a lover.

		

	

OEBPS/media/e301_1_001s.pdf
Media Kit Transcript Page 1 of 3

Visual effects in poetry

Mark Lawson: [00:00] It's commonly said that the best way to appreciate poetry
Is to hear it read aloud. But that certainly isn't true of this:

Reader: [00:06] Im, cat, mobile, fall, leaps, float, tumblish, drift, whirl, fully

Mark Lawson: [00:12] A poem by the American writer e e cummings who,
breaking one of the first rules that all school children learn, never used capital
letters for either his initials or his surname. But big first letters were not the only
grammatical convention that cummings regarded as a capital offence. The poem
you just heard sounded relatively conventional on radio but this is how you would
have to read it if dictating to a typist or printer:

Reader: [00:35]

(im)c-a-t(mo)
b,i;l.e

FallleA
ps!fl
Oattumbll

sh?dr
IftwhirlF

un(y)
&&&

Mark Lawson: [01:08] The cummings poem read to convey look as well as
sound. The publication of a new biography of that anti-grammatical poet who
lived from 1894 to 1962 encouraged us to look back at the poets who have
played games on the page with typography and punctuation.

Peter Porter: [01:23] | think to be fair to cummings the style, the peculiarities of
the presentation of the poems is also | think a proper representation of his
personality. Basically what he wanted people to do | think was to be struck by his
poems as not looking like the kind of poems you're going to see every time you
open the pages of a magazine. So it was an attempt | think not just to get rid of
punctuation but to present punctuation as a stylistic device of appearance rather
than a stylistic device of sound or meaning.

Reader: [01:53]

swim so now million many worlds in each
least less than particle of perfect dark---

Peter Porter: [02:06] They dispense of capital letters, they dispense often of
regular punctuation but there was always some kind of punctuation. After all,

file://E:\AV\cummings.htm 25/04/2007

Media Kit Transcript Page 2 of 3

Lord Byron, who was supposed to be a regular poet, punctuated all the time with
dashes because he was too idle to put in the proper punctuation and | think in
fact you could pretty well say that the same thing is true of cummings.

Mark Lawson: [02:23] The allegation that unconventional punctuation in poetry
usually represents laziness rather than inspiration is satirised in Wendy Cope's
poem about an American writer who liked to let her verse get out of line:

Reader: [02:35]

Higgledy-piggledy
Emily Dickinson
Liked to use dashes
Instead of full stops.

Nowadays, faced with such
Idiosyncrasy,

Critics and editors

Send for the cops.

Mark Lawson: [02:44] Dickinson's main punctuation device was the dash. But,
says the poet and critic Tom Paulin this was not because she was dashing off
her thoughts.

Tom Paulin: [02:53] What you get in Dickinson is the extraordinary puritan
vernacular speaking voice, great intensity, and | think for her punctuation was a
symbol of a kind of patriarchal culture which she spent her life resisting.

Mark Lawson: [03:12] For a long, long time, it was common for publishers and
editors to punctuate conventionally.

Tom Paulin: [03:18] That's true. | mean there was the big Johnson edition in
1955, which went back to the manuscripts and stripped away all the punctuation
that had been imposed on her poems. The same thing happened to John Clare
and then over the last twenty or thirty years all his poems have been published in
a huge Oxford edition as they were in manuscript. He hated punctuation. He said
it was like tyranny in government.

Mark Lawson: [03:45] Punctuation is one way of shaping a poem so that it
interests the eye as well as the ear. But the so-called "concrete" poets went far
beyond free grammar and used the shape of a verse to create what were literally
word pictures. The poet lan Macmillan:

lan Macmillan: [04:00] The Dadaists | believe were big on concrete poetry so
you could have the word "bird" and the word would fly up the page so it would be
the shape of a bird.

Peter Porter: [04:09] If you go back as far as George Herbert in the seventeenth
century, he deliberately wrote poems where there was a witty, metaphorical

file://E:\AV\cummings.htm 25/04/2007

Media Kit Transcript Page 3 0f 3

concept. If he wrote a poem about Easter Wings then his poems would have
extensions like wings.

lan Macmillan: [04:23] When | was first reading poetry, | picked up this
anthology from a press called "Second Aeon Press" and it was called Typewriter
Poems and there were poems created on a typewriter and the main man in
typewriter poetry, it seemed to me, was a fellow that | thought was called "Dsh"
because he always signed himself "D S H" and he was actually a monk from
Prinknash Abbey called Dom Sylvester Houédard and his things were amazing
because what he mainly made these poems out of was the dashes and the
slashes. And so it became a visual event. And you'd sit looking at this thing
thinking "I'm astonishingly excited by this but what is it? How do | read it?"

Mark Lawson: [04:59] From e e cummings to the concrete poets these

experiments in presentation reflect the view that people who are writing a book
should remember that it is also possible to write a look.

file://E:\AV\cummings.htm 25/04/2007

OEBPS/images/e301_1_003i.jpg
RMS
_ Cyou are up in arms over it)
IT

(http://www fun-with-words.conyrebus_puzzles_23 himl [accessed 6.1.06])

TRAVEL
cceeccecc

(travel over C's = travel overseas)

(htp://www fun-with-words.com/rebus_puzzles_12.html [accessed 6.1.06)

Pl A ’ b s

(wwwyourpage.org/planttree-rebushtml [accessed 6.1.06])

OEBPS/images/audiobook-cover.png

OEBPS/media/e301_1_002s.mp3
68.85916

OEBPS/js/jquery.tablesorter.js
/*
 *
 * TableSorter 2.0 - Client-side table sorting with ease!
 * Version 2.0.3
 * @requires jQuery v1.2.3
 *
 * Copyright (c) 2007 Christian Bach
 * Examples and docs at: http://tablesorter.com
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */
/**
 *
 * @description Create a sortable table with multi-column sorting capabilitys
 *
 * @example $('table').tablesorter();
 * @desc Create a simple tablesorter interface.
 *
 * @example $('table').tablesorter({ sortList:[[0,0],[1,0]] });
 * @desc Create a tablesorter interface and sort on the first and secound column in ascending order.
 *
 * @example $('table').tablesorter({ headers: { 0: { sorter: false}, 1: {sorter: false} } });
 * @desc Create a tablesorter interface and disableing the first and secound column headers.
 *
 * @example $('table').tablesorter({ 0: {sorter:"integer"}, 1: {sorter:"currency"} });
 * @desc Create a tablesorter interface and set a column parser for the first and secound column.
 *
 *
 * @param Object settings An object literal containing key/value pairs to provide optional settings.
 *
 * @option String cssHeader (optional) 			A string of the class name to be appended to sortable tr elements in the thead of the table.
 * 												Default value: "header"
 *
 * @option String cssAsc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a ascending sort.
 * 												Default value: "headerSortUp"
 *
 * @option String cssDesc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a descending sort.
 * 												Default value: "headerSortDown"
 *
 * @option String sortInitialOrder (optional) 	A string of the inital sorting order can be asc or desc.
 * 												Default value: "asc"
 *
 * @option String sortMultisortKey (optional) 	A string of the multi-column sort key.
 * 												Default value: "shiftKey"
 *
 * @option String textExtraction (optional) 	A string of the text-extraction method to use.
 * 												For complex html structures inside td cell set this option to "complex",
 * 												on large tables the complex option can be slow.
 * 												Default value: "simple"
 *
 * @option Object headers (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortList (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortForce (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is prepended to user-selected rules.
 * 												Default value: null
 *
 * @option Array sortAppend (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is appended to user-selected rules.
 * 												Default value: null
 *
 * @option Boolean widthFixed (optional) 		Boolean flag indicating if tablesorter should apply fixed widths to the table columns.
 * 												This is usefull when using the pager companion plugin.
 * 												This options requires the dimension jquery plugin.
 * 												Default value: false
 *
 * @option Boolean cancelSelection (optional) 	Boolean flag indicating if tablesorter should cancel selection of the table headers text.
 * 												Default value: true
 *
 * @option Boolean debug (optional) 			Boolean flag indicating if tablesorter should display debuging information usefull for development.
 *
 * @type jQuery
 *
 * @name tablesorter
 *
 * @cat Plugins/Tablesorter
 *
 * @author Christian Bach/christian.bach@polyester.se
 */

(function($) {
	$.extend({
		tablesorter: new function() {
			
			var parsers = [], widgets = [];
			
			this.defaults = {
				cssHeader: "header",
				cssAsc: "headerSortUp",
				cssDesc: "headerSortDown",
				sortInitialOrder: "asc",
				sortMultiSortKey: "shiftKey",
				sortForce: null,
				sortAppend: null,
				textExtraction: "simple",
				parsers: {},
				widgets: [],		
				widgetZebra: {css: ["even","odd"]},
				headers: {},
				widthFixed: false,
				cancelSelection: true,
				sortList: [],
				headerList: [],
				dateFormat: "us",
				decimal: '.',
				debug: false
			};
			
			/* debuging utils */
			function benchmark(s,d) {
				log(s + "," + (new Date().getTime() - d.getTime()) + "ms");
			}
			
			this.benchmark = benchmark;
			
			function log(s) {
				if (typeof console != "undefined" && typeof console.debug != "undefined") {
					console.log(s);
				} else {
					alert(s);
				}
			}
						
			/* parsers utils */
			function buildParserCache(table,$headers) {
				
				if(table.config.debug) { var parsersDebug = ""; }
				
				var rows = table.tBodies[0].rows;
				
				if(table.tBodies[0].rows[0]) {

					var list = [], cells = rows[0].cells, l = cells.length;
					
					for (var i=0;i < l; i++) {
						var p = false;
						
						if($.metadata && ($($headers[i]).metadata() && $($headers[i]).metadata().sorter)) {
						
							p = getParserById($($headers[i]).metadata().sorter);	
						
						} else if((table.config.headers[i] && table.config.headers[i].sorter)) {
	
							p = getParserById(table.config.headers[i].sorter);
						}
						if(!p) {
							p = detectParserForColumn(table,cells[i]);
						}
	
						if(table.config.debug) { parsersDebug += "column:" + i + " parser:" +p.id + "\n"; }
	
						list.push(p);
					}
				}
				
				if(table.config.debug) { log(parsersDebug); }

				return list;
			};
			
			function detectParserForColumn(table,node) {
				var l = parsers.length;
				for(var i=1; i < l; i++) {
					if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)) {
						return parsers[i];
					}
				}
				// 0 is always the generic parser (text)
				return parsers[0];
			}
			
			function getParserById(name) {
				var l = parsers.length;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == name.toLowerCase()) {	
						return parsers[i];
					}
				}
				return false;
			}
			
			/* utils */
			function buildCache(table) {
				
				if(table.config.debug) { var cacheTime = new Date(); }
				
				
				var totalRows = (table.tBodies[0] && table.tBodies[0].rows.length) || 0,
					totalCells = (table.tBodies[0].rows[0] && table.tBodies[0].rows[0].cells.length) || 0,
					parsers = table.config.parsers,
					cache = {row: [], normalized: []};
				
					for (var i=0;i < totalRows; ++i) {
					
						/** Add the table data to main data array */
						var c = table.tBodies[0].rows[i], cols = [];
					
						cache.row.push($(c));
						
						for(var j=0; j < totalCells; ++j) {
							cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));	
						}
												
						cols.push(i); // add position for rowCache
						cache.normalized.push(cols);
						cols = null;
					};
				
				if(table.config.debug) { benchmark("Building cache for " + totalRows + " rows:", cacheTime); }
				
				return cache;
			};
			
			function getElementText(config,node) {
				
				if(!node) return "";
								
				var t = "";
				
				if(config.textExtraction == "simple") {
					if(node.childNodes[0] && node.childNodes[0].hasChildNodes()) {
						t = node.childNodes[0].innerHTML;
					} else {
						t = node.innerHTML;
					}
				} else {
					if(typeof(config.textExtraction) == "function") {
						t = config.textExtraction(node);
					} else {
						t = $(node).text();
					}	
				}
				return t;
			}
			
			function appendToTable(table,cache) {
				
				if(table.config.debug) {var appendTime = new Date()}
				
				var c = cache,
					r = c.row,
					n= c.normalized,
					totalRows = n.length,
					checkCell = (n[0].length-1),
					tableBody = $(table.tBodies[0]),
					rows = [];
				
				for (var i=0;i < totalRows; i++) {
					rows.push(r[n[i][checkCell]]);	
					if(!table.config.appender) {
						
						var o = r[n[i][checkCell]];
						var l = o.length;
						for(var j=0; j < l; j++) {
							
							tableBody[0].appendChild(o[j]);
						
						}
						
						//tableBody.append(r[n[i][checkCell]]);
					}
				}	
				
				if(table.config.appender) {
				
					table.config.appender(table,rows);	
				}
				
				rows = null;
				
				if(table.config.debug) { benchmark("Rebuilt table:", appendTime); }
								
				//apply table widgets
				applyWidget(table);
				
				// trigger sortend
				setTimeout(function() {
					$(table).trigger("sortEnd");	
				},0);
				
			};
			
			function buildHeaders(table) {
				
				if(table.config.debug) { var time = new Date(); }
				
				var meta = ($.metadata) ? true : false, tableHeadersRows = [];
			
				for(var i = 0; i < table.tHead.rows.length; i++) { tableHeadersRows[i]=0; };
				
				$tableHeaders = $("thead th",table);
		
				$tableHeaders.each(function(index) {
							
					this.count = 0;
					this.column = index;
					this.order = formatSortingOrder(table.config.sortInitialOrder);
					
					if(checkHeaderMetadata(this) || checkHeaderOptions(table,index)) this.sortDisabled = true;
					
					if(!this.sortDisabled) {
						$(this).addClass(table.config.cssHeader);
					}
					
					// add cell to headerList
					table.config.headerList[index]= this;
				});
				
				if(table.config.debug) { benchmark("Built headers:", time); log($tableHeaders); }
				
				return $tableHeaders;
				
			};
						
		 	function checkCellColSpan(table, rows, row) {
 var arr = [], r = table.tHead.rows, c = r[row].cells;
				
				for(var i=0; i < c.length; i++) {
					var cell = c[i];
					
					if (cell.colSpan > 1) {
						arr = arr.concat(checkCellColSpan(table, headerArr,row++));
					} else {
						if(table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row+1])) {
							arr.push(cell);
						}
						//headerArr[row] = (i+row);
					}
				}
				return arr;
			};
			
			function checkHeaderMetadata(cell) {
				if(($.metadata) && ($(cell).metadata().sorter === false)) { return true; };
				return false;
			}
			
			function checkHeaderOptions(table,i) {	
				if((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { return true; };
				return false;
			}
			
			function applyWidget(table) {
				var c = table.config.widgets;
				var l = c.length;
				for(var i=0; i < l; i++) {
					
					getWidgetById(c[i]).format(table);
				}
				
			}
			
			function getWidgetById(name) {
				var l = widgets.length;
				for(var i=0; i < l; i++) {
					if(widgets[i].id.toLowerCase() == name.toLowerCase()) {
						return widgets[i];
					}
				}
			};
			
			function formatSortingOrder(v) {
				
				if(typeof(v) != "Number") {
					i = (v.toLowerCase() == "desc") ? 1 : 0;
				} else {
					i = (v == (0 || 1)) ? v : 0;
				}
				return i;
			}
			
			function isValueInArray(v, a) {
				var l = a.length;
				for(var i=0; i < l; i++) {
					if(a[i][0] == v) {
						return true;	
					}
				}
				return false;
			}
				
			function setHeadersCss(table,$headers, list, css) {
				// remove all header information
				$headers.removeClass(css[0]).removeClass(css[1]);
				
				var h = [];
				$headers.each(function(offset) {
						if(!this.sortDisabled) {
							h[this.column] = $(this);					
						}
				});
				
				var l = list.length;
				for(var i=0; i < l; i++) {
					h[list[i][0]].addClass(css[list[i][1]]);
				}
			}
			
			function fixColumnWidth(table,$headers) {
				var c = table.config;
				if(c.widthFixed) {
					var colgroup = $('<colgroup>');
					$("tr:first td",table.tBodies[0]).each(function() {
						colgroup.append($('<col>').css('width',$(this).width()));
					});
					$(table).prepend(colgroup);
				};
			}
			
			function updateHeaderSortCount(table,sortList) {
				var c = table.config, l = sortList.length;
				for(var i=0; i < l; i++) {
					var s = sortList[i], o = c.headerList[s[0]];
					o.count = s[1];
					o.count++;
				}
			}
			
			/* sorting methods */
			function multisort(table,sortList,cache) {
				
				if(table.config.debug) { var sortTime = new Date(); }
				
				var dynamicExp = "var sortWrapper = function(a,b) {", l = sortList.length;
					
				for(var i=0; i < l; i++) {
					
					var c = sortList[i][0];
					var order = sortList[i][1];
					var s = (getCachedSortType(table.config.parsers,c) == "text") ? ((order == 0) ? "sortText" : "sortTextDesc") : ((order == 0) ? "sortNumeric" : "sortNumericDesc");
					
					var e = "e" + i;
					
					dynamicExp += "var " + e + " = " + s + "(a[" + c + "],b[" + c + "]); ";
					dynamicExp += "if(" + e + ") { return " + e + "; } ";
					dynamicExp += "else { ";
				}
				
				// if value is the same keep orignal order	
				var orgOrderCol = cache.normalized[0].length - 1;
				dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];";
						
				for(var i=0; i < l; i++) {
					dynamicExp += "}; ";
				}
				
				dynamicExp += "return 0; ";	
				dynamicExp += "}; ";	
				
				eval(dynamicExp);
				
				cache.normalized.sort(sortWrapper);
				
				if(table.config.debug) { benchmark("Sorting on " + sortList.toString() + " and dir " + order+ " time:", sortTime); }
				
				return cache;
			};
			
			function sortText(a,b) {
				return ((a < b) ? -1 : ((a > b) ? 1 : 0));
			};
			
			function sortTextDesc(a,b) {
				return ((b < a) ? -1 : ((b > a) ? 1 : 0));
			};	
			
	 		function sortNumeric(a,b) {
				return a-b;
			};
			
			function sortNumericDesc(a,b) {
				return b-a;
			};
			
			function getCachedSortType(parsers,i) {
				return parsers[i].type;
			};
			
			/* public methods */
			this.construct = function(settings) {

				return this.each(function() {
					
					if(!this.tHead || !this.tBodies) return;
					
					var $this, $document,$headers, cache, config, shiftDown = 0, sortOrder;
					
					this.config = {};
					
					config = $.extend(this.config, $.tablesorter.defaults, settings);
					
					// store common expression for speed					
					$this = $(this);
					
					// build headers
					$headers = buildHeaders(this);
					
					// try to auto detect column type, and store in tables config
					this.config.parsers = buildParserCache(this,$headers);
					
					
					// build the cache for the tbody cells
					cache = buildCache(this);
					
					// get the css class names, could be done else where.
					var sortCSS = [config.cssDesc,config.cssAsc];
					
					// fixate columns if the users supplies the fixedWidth option
					fixColumnWidth(this);
					
					// apply event handling to headers
					// this is to big, perhaps break it out?
					$headers.click(function(e) {
						
						$this.trigger("sortStart");
						
						var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0;
						
						if(!this.sortDisabled && totalRows > 0) {
							
							
							// store exp, for speed
							var $cell = $(this);
	
							// get current column index
							var i = this.column;
							
							// get current column sort order
							this.order = this.count++ % 2;
							
							// user only whants to sort on one column
							if(!e[config.sortMultiSortKey]) {
								
								// flush the sort list
								config.sortList = [];
								
								if(config.sortForce != null) {
									var a = config.sortForce;
									for(var j=0; j < a.length; j++) {
										if(a[j][0] != i) {
											config.sortList.push(a[j]);
										}
									}
								}
								
								// add column to sort list
								config.sortList.push([i,this.order]);
							
							// multi column sorting
							} else {
								// the user has clicked on an all ready sortet column.
								if(isValueInArray(i,config.sortList)) {	
									
									// revers the sorting direction for all tables.
									for(var j=0; j < config.sortList.length; j++) {
										var s = config.sortList[j], o = config.headerList[s[0]];
										if(s[0] == i) {
											o.count = s[1];
											o.count++;
											s[1] = o.count % 2;
										}
									}	
								} else {
									// add column to sort list array
									config.sortList.push([i,this.order]);
								}
							};
							setTimeout(function() {
								//set css for headers
								setHeadersCss($this[0],$headers,config.sortList,sortCSS);
								appendToTable($this[0],multisort($this[0],config.sortList,cache));
							},1);
							// stop normal event by returning false
							return false;
						}
					// cancel selection	
					}).mousedown(function() {
						if(config.cancelSelection) {
							this.onselectstart = function() {return false};
							return false;
						}
					});
					
					// apply easy methods that trigger binded events
					$this.bind("update",function() {
						
						// rebuild parsers.
						this.config.parsers = buildParserCache(this,$headers);
						
						// rebuild the cache map
						cache = buildCache(this);
						
					}).bind("sorton",function(e,list) {
						
						$(this).trigger("sortStart");
						
						config.sortList = list;
						
						// update and store the sortlist
						var sortList = config.sortList;
						
						// update header count index
						updateHeaderSortCount(this,sortList);
						
						//set css for headers
						setHeadersCss(this,$headers,sortList,sortCSS);
						
						
						// sort the table and append it to the dom
						appendToTable(this,multisort(this,sortList,cache));

					}).bind("appendCache",function() {
						
						appendToTable(this,cache);
					
					}).bind("applyWidgetId",function(e,id) {
						
						getWidgetById(id).format(this);
						
					}).bind("applyWidgets",function() {
						// apply widgets
						applyWidget(this);
					});
					
					if($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) {
						config.sortList = $(this).metadata().sortlist;
					}
					// if user has supplied a sort list to constructor.
					if(config.sortList.length > 0) {
						$this.trigger("sorton",[config.sortList]);	
					}
					
					// apply widgets
					applyWidget(this);
				});
			};
			
			this.addParser = function(parser) {
				var l = parsers.length, a = true;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == parser.id.toLowerCase()) {
						a = false;
					}
				}
				if(a) { parsers.push(parser); };
			};
			
			this.addWidget = function(widget) {
				widgets.push(widget);
			};
			
			this.formatFloat = function(s) {
				var i = parseFloat(s);
				return (isNaN(i)) ? 0 : i;
			};
			this.formatInt = function(s) {
				var i = parseInt(s);
				return (isNaN(i)) ? 0 : i;
			};
			
			this.isDigit = function(s,config) {
				var DECIMAL = '\\' + config.decimal;
				var exp = '/(^[+]?0(' + DECIMAL +'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)' + DECIMAL +'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*' + DECIMAL +'0+$)/';
				return RegExp(exp).test($.trim(s));
			};
			
			this.clearTableBody = function(table) {
				if($.browser.msie) {
					function empty() {
						while (this.firstChild) this.removeChild(this.firstChild);
					}
					empty.apply(table.tBodies[0]);
				} else {
					table.tBodies[0].innerHTML = "";
				}
			};
		}
	});
	
	// extend plugin scope
	$.fn.extend({
 tablesorter: $.tablesorter.construct
	});
	
	var ts = $.tablesorter;
	
	// add default parsers
	ts.addParser({
		id: "text",
		is: function(s) {
			return true;
		},
		format: function(s) {
			return $.trim(s.toLowerCase());
		},
		type: "text"
	});
	
	ts.addParser({
		id: "digit",
		is: function(s,table) {
			var c = table.config;
			return $.tablesorter.isDigit(s,c);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "currency",
		is: function(s) {
			return /^[Â£$â�¬?.]/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "ipAddress",
		is: function(s) {
			return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);
		},
		format: function(s) {
			var a = s.split("."), r = "", l = a.length;
			for(var i = 0; i < l; i++) {
				var item = a[i];
			 	if(item.length == 2) {
					r += "0" + item;
			 	} else {
					r += item;
			 	}
			}
			return $.tablesorter.formatFloat(r);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "url",
		is: function(s) {
			return /^(https?|ftp|file):\/\/$/.test(s);
		},
		format: function(s) {
			return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));
		},
		type: "text"
	});
	
	ts.addParser({
		id: "isoDate",
		is: function(s) {
			return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat((s != "") ? new Date(s.replace(new RegExp(/-/g),"/")).getTime() : "0");
		},
		type: "numeric"
	});
		
	ts.addParser({
		id: "percent",
		is: function(s) {
			return /\%$/.test($.trim(s));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));
		},
		type: "numeric"
	});

	ts.addParser({
		id: "usLongDate",
		is: function(s) {
			return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
		id: "shortDate",
		is: function(s) {
			return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);
		},
		format: function(s,table) {
			var c = table.config;
			s = s.replace(/\-/g,"/");
			if(c.dateFormat == "us") {
				// reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2");
			} else if(c.dateFormat == "uk") {
				//reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1");
			} else if(c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") {
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3");	
			}
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
	 id: "time",
	 is: function(s) {
	 return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);
	 },
	 format: function(s) {
	 return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime());
	 },
	 type: "numeric"
	});
	
	
	ts.addParser({
	 id: "metadata",
	 is: function(s) {
	 return false;
	 },
	 format: function(s,table,cell) {
			var c = table.config, p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName;
	 return $(cell).metadata()[p];
	 },
	 type: "numeric"
	});
	
	// add default widgets
	ts.addWidget({
		id: "zebra",
		format: function(table) {
			if(table.config.debug) { var time = new Date(); }
			$("tr:visible",table.tBodies[0])
	 .filter(':even')
	 .removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0])
	 .end().filter(':odd')
	 .removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);
			if(table.config.debug) { $.tablesorter.benchmark("Applying Zebra widget", time); }
		}
	});	
})(jQuery);

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/images/e301_1_002i.jpg

OEBPS/js/jquery.cookie.js
/**
 * Cookie plugin
 *
 * Copyright (c) 2006 Klaus Hartl (stilbuero.de)
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */

/**
 * Create a cookie with the given name and value and other optional parameters.
 *
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Set the value of a cookie.
 * @example $.cookie('the_cookie', 'the_value', { expires: 7, path: '/', domain: 'jquery.com', secure: true });
 * @desc Create a cookie with all available options.
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Create a session cookie.
 * @example $.cookie('the_cookie', null);
 * @desc Delete a cookie by passing null as value. Keep in mind that you have to use the same path and domain
 * used when the cookie was set.
 *
 * @param String name The name of the cookie.
 * @param String value The value of the cookie.
 * @param Object options An object literal containing key/value pairs to provide optional cookie attributes.
 * @option Number|Date expires Either an integer specifying the expiration date from now on in days or a Date object.
 * If a negative value is specified (e.g. a date in the past), the cookie will be deleted.
 * If set to null or omitted, the cookie will be a session cookie and will not be retained
 * when the the browser exits.
 * @option String path The value of the path atribute of the cookie (default: path of page that created the cookie).
 * @option String domain The value of the domain attribute of the cookie (default: domain of page that created the cookie).
 * @option Boolean secure If true, the secure attribute of the cookie will be set and the cookie transmission will
 * require a secure protocol (like HTTPS).
 * @type undefined
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */

/**
 * Get the value of a cookie with the given name.
 *
 * @example $.cookie('the_cookie');
 * @desc Get the value of a cookie.
 *
 * @param String name The name of the cookie.
 * @return The value of the cookie.
 * @type String
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */
jQuery.cookie = function(name, value, options) {
 if (typeof value != 'undefined') { // name and value given, set cookie
 options = options || {};
 if (value === null) {
 value = '';
 options.expires = -1;
 }
 var expires = '';
 if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) {
 var date;
 if (typeof options.expires == 'number') {
 date = new Date();
 date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000));
 } else {
 date = options.expires;
 }
 expires = '; expires=' + date.toUTCString(); // use expires attribute, max-age is not supported by IE
 }
 // CAUTION: Needed to parenthesize options.path and options.domain
 // in the following expressions, otherwise they evaluate to undefined
 // in the packed version for some reason...
 var path = options.path ? '; path=' + (options.path) : '';
 var domain = options.domain ? '; domain=' + (options.domain) : '';
 var secure = options.secure ? '; secure' : '';
 document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join('');
 } else { // only name given, get cookie
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }
};

OEBPS/answer02.html

		
			

			
Answer

		
			

In semiotics, the basic unit of communication is the sign, which for Saussure is made up of a signifier (for our purposes here, the linguistic or visual representation) and a signified (the concept it represents). Signs are always culturally situated – they mean to members of a language community or wider society – which is why Saussure calls them ‘arbitrary’. For Peirce, the sign also comprises signifier and signified, but he divides signs themselves into three types. Symbolic signs are those where the signifier does not resemble the signified – meaning is arbitrary and culturally learnt and understood (such as the use of the colour red for a Stop sign, or a linguistic sign – the word ‘cat’ for the animal). Iconic signs are those where a resemblance can be perceived, such as a portrait of someone. Indexical signs often have some kind of causal relationship between signifier and signified: smoke is an index of fire.

			In a moment I will move on to look at how these concepts and others from Bignell, such as denotation and connotation, may be applied to word and image in literature, but first we take a look at how these semiotic ‘nuts and bolts’ can be applied to an advertisement.

		

	

OEBPS/images/e301_1_008i.jpg
188 TOM BROWN'S SCHOOLDAYS

pleased them so much that they spent all their spare time|
there, scratching and cutting their names on the top of every
tower; and at last, having exhausted all other places,
finished up with inscribing H. East, T. Brows on thel
‘minute-hand of the geeat clock. ~In the doing of which they

Draing of the old minste hand of the great clock, Rugty
(i case i she Temple Rading Room)

held the minute-hand, and disturbed the clock's economy
So next morning, when masters and boys came trooping
down to prayers, and entered the quadsangle, the injured
minute-hand was indicating three minutes fo_the hour.

OEBPS/images/e301_1_c003i.jpg

OEBPS/images/cover.png
>
£~

OpenLearn O)
== 4

The Open
iversi

=
=1

Word and image
R,

Arts and Humanities

OEBPS/images/e301_1_c004i.jpg

OEBPS/images/e301_1_006i.jpg

OEBPS/images/e301_1_009i.jpg

OEBPS/images/e301_1_ie001i.jpg
LLETL

OEBPS/images/e301_1_c002i.jpg

OEBPS/images/e301_1_ie002i.jpg
PeEPELY

OEBPS/media/e301_1reading_b.pdf
282

THE ART OF ENGLISH: LITERARY CREATIVITY

READING B: Extract from ‘Narratives of identity
and history in settler colony texts’

Clare Bradford

I [consider here] picture books which engage in the postcolonial strategy of
revisioning history, representing colonial events from the point of view of
indigenous peoples: [...] a New Zealand text, Gavin Bishop’s The House that
Jack Built (1999), and a Canadian text, Thomas King’s A Coyote Columbus
Story (1992), with illustrations by William Kent Monkman. Bishop is a Maori
author-illustrator; King is a Native author of Cherokee descent; and Kent
Monkman belongs to the Swampy Kree band [a group of native communities
in Canada]. [...]

The House that Jack Built

Gavin Bishop’s The House that Jack Built concerns itself with colonial history
and its effect upon the land and its indigenous people. The narrative is
focused through the story of Jack Bull, who departs London in 1798 and
whose progress from trader to wealthy merchant is ended in the Land Wars
of the 1860s. Bishop draws upon three quite distinct sets of visual imagery:
Western styles of representational art; folk art characterised by stylised figures
and forms; and symbols from Maori mythology. These three strands comment
ironically on one another as well as producing a composite portrait of a
nation where British and Maori traditions and ideologies jostle and struggle
for ascendancy. [...]

The nursery rhyme that comprises the book’s verbal text is, like Jack Bull,
of British stock, and is imbued with signifiers (cow, dog, cat, rat, malt, priest,
soldier)' which, in the new country, no longer bear stable relations to
systems of meaning. Such instability is crucial to Bishop’s postcolonial
strategy of defamiliarising aspects of European culture by representing them
through Maori perspectives, an effective example of which occurs in the
double-spread in which a Maori man encounters the ‘cow with the crumpled
horn’, depicted following its act of tossing the dog that worried the cat
[see Figure 1].

The elaborate borders on the spread enclose a narrative about the
taniwha, a shape-changing trickster who ‘could look like a log floating in the
water or he could look like an eel’. The Maori is a man of status — he wears
a nephrite ear-pendant and ornamental feathers in his hair, bears the moko
(tattoo) of a warrior and holds a wooden club with a carved edge. He does
not, however, wear a traditional cloak made of flax fibre, but a length of
red flannel from Jack Bull’s store, which in itself is suggestive of a shift in
signification: a length of cloth within British culture comprises the raw
materials for a garment, whereas for this Maori warrior it functions as a cloak.
However, as is clear from the folds at his neck and the necessity of holding
the fabric with one hand, it departs from traditions of Maori garment-making,

CHAPTER 6 WORD AND IMAGE 283

Figure 1 Gavin Bishop, The House that Jack Built, pp. 8-9.

which through complex techniques of weaving produced cloaks designed to
fit the body, and which were finished with ties, borders and sometimes
collars (Pendergrast, 1996, pp. 126—43). Throughout Polynesia the colour red
was ‘the colour of rank and sacred value’ (Neich, 1996, pp. 74-5), worn only
by those of the highest status, whereas Jack Bull’s red flannel allows anyone
to appropriate such a position. The length of red cloth worn by the warrior is
therefore a sign of indeterminacy — neither British nor Maori in its form and
function, and metonymic of the shifting meanings of colonialism and its
destabilisation of traditional life.

Bishop’s strategy of placing this moment of encounter within a frame
alluding to Maori traditions filters figures and events through a perspective
that accepts the existence of a host of supernatural beings, deities, spirits and
ancestors intimately involved in the lives of humans (Te Awekotuku, 1996,
pp. 26-30). The spirals incorporated into the frame, and the face with
protruding tongue and rolling eyes seen at top left, encode this supernatural
world, while in the background beyond the cow and the man, the eyes of
the gods can be seen. These eyes, staring out of the page and ungrounded in
bodily forms, position readers to imagine a watching presence, just as the
wary, knowing eyes of the cat at the bottom right of the picture seem to
observe and judge from the perspective of a creature introduced to the land.
The encounter between the cow and the warrior, which on the face of it has
a ludic quality, in fact conveys a much more serious interplay between
cultures with opposing and incompatible epistemologies and systems of
valuing and belief.

The book’s visual narrative represents colonisation as a process in which
Maori people experience alienation and degradation: Jack Bull cuts down
trees to build his house without appeasing Tane, the god of the forests; Maori
use shellfish to barter for goods instead of as food for their people; and rifles,

284

THE ART OF ENGLISH: LITERARY CREATIVITY

alcohol and tobacco become the principal objects of trade. Along with this
narrative goes another, which involves the courtship of ‘the man all tattered
and torn’ and ‘the maiden all forlorn’. The man in question is European and
the maiden Maori, and their interracial relationship is blessed by ‘the priest all
shaven and shorn’ who stands before the pair at their wedding [see Figure 2].

WYY WYY Yy iy s
:,"j il -r".f_'.l._:L_'l'_'l'_l'J;‘_- r.-.

Thmm malay 16§ ¢ W WE Py e Sk

el ey il i s
| PRy r— .
fEL¢ oty S iy
Fliot iy o ey om0 i &

ﬂff . i :
el FtL L LE Sl £

Figure 2 Gavin Bishop, The House that Jack Built, pp. 21-2.

The woman wears a nephrite fiki, which is traditionally associated with
fruitfulness, while the man smiles out of the page, his pohutukawa
buttonhole echoing the flowers with which the woman is adorned. Behind
the pair the eyes of the gods observe, while in the facing page a complex set
of signifiers appears. The copybook page which serves as background
encodes the imposition of English upon indigenous people and the
ascendancy of literacy over orality, while the framed, folk-art picture beneath
the rhyme identifies colonisation with Christianity and Maori culture with
devil worship. These signifiers of constraint and prohibition are taken up in
the carving that ushers in the scene of the wedding. and relate specifically to
sexuality, for the genitalia of the two ancestor figures are covered by the
Christian symbol of the cross. Bishop’s representation of the happy couple
and the possibility of interracial harmony, read in the light of these images, is
thus loaded with doubt and premonition.

From this point, the narrative tends towards conflict as the land is
engulfed by buildings; the native birds are driven out by the ‘cock that
crowed in the morn’; and the farmer sows his corn on land formerly covered
by trees. The poem’s reference to the ‘soldier all weary and worn’ leads to a
page whose border describes how Tumatauenga, the war god, ‘called to the
people of the land. “E Tu!” he cried “Stand up! Protect the earth mother! Rise
up! Fight for the spirit of Papatuanuku.” The people took up their weapons
and the terrible dance of war was heard over the land.’* Bishop’s note,
‘About this book’; also appears on this spread, explaining that ‘on the last

CHAPTER 6 WORD AND IMAGE

285

pages the conflict is recorded for future generations on the wall of a meeting
house in a folk-art style blending traditional Maori and European artforms.
Both cultures are now intertwined in the rich history of Aotearoa.” But the
impact of the book’s endpapers ironises Bishop’s explanation, especially his
final sentence concerning racial harmony. For these tukutuku panels’®
comprise three images: te pakeha, the Pakeha; Tumatauenga, the god of war;
and te tangata whenua, the people of the land [see Figure 3].

Figure 3 Gavin Bishop, The House that Jack Built, endpapers.

Not only are Maori and Pakeha separated by Tumatauenga, so interrogating
the notion that the two cultures are ‘now intertwined’, but the nature of the
images — the static, warlike poses — fixes them in a state of conflict. The
central image of Tumatauenga, which adheres to the stylised figure of the
manaia,* has a forcefulness which makes it the focus of the panel, producing
the inference that conflict is inevitably present in interactions between
Pakeha and Maori.

A Coyote Columbus Story

Thomas King and William Kent Monkman’s A Coyote Columbus Story
deploys a different strategy for rereading colonialism, one involving the
parodic undermining of the high seriousness with which stories of colonial
exploration have traditionally been told, and of the trope of explorer as hero.
The trickster figure of Coyote (represented in Kent Monkman’s illustrations
dressed in shorts, shocking pink tanktop and sneakers) creates turtles,
beavers, moose and turtles expressly to join in the game of ball which she
desires above everything else. When these creatures evince little enthusiasm
for the game, she ‘sings her song and dances her dance and thinks so hard
her nose falls off’, and so creates Native people, who enjoy playing ball until

286

THE ART OF ENGLISH: LITERARY CREATIVITY

they grow weary of Coyote’s propensity for changing the rules in order to
win. It is at this point, when Coyote is bored, that she makes a foolish
mistake — she ‘doesn’t watch what she is making up out of her head’, and
Christopher Columbus and his men arrive:

Hello, says one of the men in silly clothes with red hair all over his head.
I am Christopher Columbus. I am sailing the ocean blue looking for India.
Have you seen it?

Forget India, says Coyote. Let’s play ball.

In a playful mix of periods and cultures, verbal and visual texts interrogate
colonial discourses. Columbus is a cartoon figure, using words from a
playground chant (‘sailing the ocean blue’) to describe his mission.
Represented as a visual cliché, he is surrounded by characters who include
an Elvis look-alike wearing red stilettos and carrying a bundle of firearms
[see Figure 4]. With their golf clubs and suitcases, the explorers look like

Figure 4 Thomas King and William Kent Monkman, A Coyote Columbus Story, p. |5.

CHAPTER 6 WORD AND IMAGE 287

shady entrepreneurs and they prove themselves to be concerned solely with
material gain as they search the New World for gold, chocolate cake,
computer games and music videos. Within this scheme, native animals are no
more than commodities:

I see a four-dollar beaver, says one.

I see a fifteen-dollar moose, says another.

I see a two-dollar turtle, says a third.

Those things aren’t worth poop, says Christopher Columbus.
We can’t sell those things in Spain. Look harder.

When Columbus conceives the idea of transporting Indians to sell in
Europe, Coyote laughs: “Who would buy human beings, she says’. The
frame of this coyote story does not allow for explicit moral commentary,
since Coyote’s concern is with the balance of humans with the natural
environment, and not with individual humans. Rather, it is Kent Monkman’s
illustration that uncovers colonial meanings, showing ‘a big bunch of men
and women and children’, tied together like so many pieces of firewood,
transported from the shore to the Spanish frigates [see Figure 5].

Figure 5 Thomas King and William Kent Monkman, p. 23.

Readers are positioned to look from Columbus’s gleeful smile as he stands
at the foreground of the frame, to the Spanish sailor who gives him a
thumbs-up sign; and from the sailor to the Native people as they stand in

288

THE ART OF ENGLISH: LITERARY CREATIVITY

the dinghy, bound together. These are stereotypes of Indians — the
unemotionality projected onto them within colonial discourses constructs
them as Other, as impervious to the ‘normal’ range of emotions and as
somewhat less than ‘us’.

King’s strategy of collapsing historical periods allows for a connection
between colonial and neo-colonial practices: when Columbus returns to
Spain, he sells the Indians to ‘rich people like baseball players and dentists
and babysitters and parents’, figures representative of those who benefit from
the labour migrations that feed the accelerating demands of contemporary
capitalism. Meanwhile, emerging from their hiding places, the remaining
Native people challenge Coyote: ‘you better watch out or this world is going
to get bent’. The narrative concludes with another wave of colonisers when
Jacques Cartier reaches the New World. As the beavers, moose, turtles and
human beings ‘catch the first train to Penticton’, Coyote continues to hope for
another chance to play ball; however, the untrustworthy smiles of the
colonisers, and their accoutrements of golfclubs and cameras, promise only
the continuation of colonialism under a new guise.

The [two] picture books I have discussed are alike in their refusal of
consolatory closures: [...] The House that Jack Buill projects a future of
cultural conflict; and A Coyote Columbus Story builds into its ending the
expectation of new waves and forms of colonial subjection. These texts thus
refuse to induct readers into the fantasy that colonialism is finished, its effects
blunted and ameliorated by time. Rather, their revisionings of stories of
colonial engagement insist on how the past is present to indigenous peoples
and national cultures and remind readers to read against the grain of colonial
and neo-colonial narratives.

Notes

1 Polynesian dogs (kuri) came to New Zealand with the ancestors of the
Maori, but with the advent of European breeds of dog, the kuri was bred
out. A species of small rat was also introduced by the Maori immigrants.
Papatuanuku is the earth goddess.

Tututuku are knotted latticework panels which feature in meeting houses.
They are often used for narrative purposes.

4 Manaia are highly significant figures normally shown in profile and
characterised by avian and reptilian features such as forked tongues and
lizard-like feet; in ancient carvings, a hand with three fingers is common.

References
BISHOP, G. (1999) The House that Jack Built, Auckland and Sydney,
Scholastic.

KING, T. and MONKMAN, W.K. (1992) A Coyote Columbus Story, Toronto,
Douglas and Mclntyre.

CHAPTER 6 WORD AND IMAGE

289

NEICH, R. (1996) ‘Wood carving’ in D.C. STARZECKA (ed.) Maori Art and
Culture, pp. 69-113, London, British Museum Press.

PENDERGRAST, M. (1996) ‘The Fibre Arts’ in D.C. STARZECKA (ed.) Maori Art
and Culture, London, British Museum Press.

TE AWEKOTUKU, N. (1996) ‘Maori: People and Culture’ in D.C. STARZECKA (ed.)
Maori Art and Culture, pp. 114—46, London, British Museum Press.

Source: Adapted from BRADFORD, C. (2001), Reading Race:
Aboriginality in Australian Children’s Literature, Chapter 8,
Melbourne University Press.

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/answer10.html

		
			

			
Answer

		
			

In Figure 15, Who's Afraid of the Big Bad Book? by Lauren Child, the main character, Herb, has found himself inadvertently in somebody else's story. The ‘story’, or what we initially assume to be the narrator's voice, is on the left (Herb woke with a start …). You may like to think about the significance of this position on the page, and whether or not this part of text is on a wall, a blackboard, a separate book? The girl's speech is printed in capitals and gets progressively bigger (suggestive of rising tone and volume?). It emerges at an angle from her mouth, and appears to be so forceful as to buffet the curtains at the window. Other visual and typographical pointers are the depiction of Herb's stammering, the girl's aggressive facial expression and the use of the (similarly aggressive?) angle of the girl's speech to draw us on to the next page.

			The reader is obliged to interpret the words and pictures as a whole in this text – indeed it is arguable here whether the words are not actually more meaningful if interpreted as images. Even the boxed text on the left carries potential meanings unrelated to the words themselves, due to its positioning, its difference to the rest of the page, and its plain background, set apart from the other elements. In postmodern terms, the text is unstable and hybrid, positioning the reader uncomfortably. The text is polysemous – that is, open to multiple interpretations. We are left unsure of the identity of the narrator, our relationship with the shrieking girl, and even which (whose) story we are reading. It posits a complex reading position where we have to accept instability and uncertain meanings as part of the experience.

			The second example, Figure 16, is similarly unsettling and equally fun.
							
Here the narrator explicitly breaks into the story being told by the Little Red Hen and starts arguing about the proper place in the book for its non-narrative elements (endpapers, title pages and so on). This intrusion forces the reader back to reality: we are pulled back with a jolt from ‘storyland’ into the real world. We are ‘knowing’ in all sorts of ways: we know that books are produced as commercial and cultural artefacts; we also know that to read a book is to enter an imaginary world. Here our expectations are undermined and we have no choice but to play along with this fragmentation of identity and roles. (Who is the narrator? Jack? The Little Red Hen? The authors? The reader? All of us?) Texts such as these make demands on the reader, who is forced to construct some kind of narrative sense out of a multitude of possibilities.

		

	

OEBPS/answer07.html

		
			

			
Answer

		
			

The multiple signs – and therefore the possible range of interpretations – are complex. The text uses a fairly conventional cartoon format in some ways – scenes are depicted in a series of frames which are read from left to right, speech bubbles are connected graphically to the speaker or laid out in columns, so that the reader can attribute one part of the conversation to the man and the other to the woman. Emphasis and intonation are conveyed through large, bold type and capitalisation (and of course exclamation marks and ‘spiky’ speech bubbles). The fact that this cartoon is so carefully hand-drawn made me wonder if this has semiotic significance – the care and attention to detail evident in its production seem to add to the overall meaning of the book, as a ‘homage’ to the author's parents. The writing, too, seems genuinely handwritten rather than produced with a computer-generated cursive font. You may well, in your reading, have found other details more salient, such as the use of colour, perspective, and the details of the couple's clothing and car.

		

	

OEBPS/images/e301_1_007i.jpg

OEBPS/answer08.html

		
			

			
Answer

		
			

Bradford uses terms from semiotics in this Reading, although her work is probably better located within a literary criticism approach rather than a semiotic or linguistic one. And although she picks out for analysis many semiotic signs in the texts, her focus is not strictly a Formalist one. For Bradford, the sociocultural significance of what she sees in these stories is at least as important as the textual elements themselves.

			Bradford shows how analysis of visual representation illuminates the meanings in what appear at first to be simple narratives for children. The texts encode, through their words and pictures, conflicting messages and symbolism which convey hybrid, ambiguous or overtly political messages. Oppositional meanings are implied in both modes which destabilise the interpretation of the whole. Such texts are powerful as they call into question cultural narratives – stories we tell ourselves and each other about who we are – and can create unease. There are links here with the notion of ‘hybridity’ (exemplified in relation to Asian Dub Foundation's rap music and Zadie Smith's novel White Teeth, in Alistair Pennycook's Reading). Maybin and Pearce point to new, creative, hybrid cultural practices emerging from migration and the resulting mixing of traditions. Clare Bradford's texts provide further evidence of such texts emerging from postcolonial contexts.

			In ‘The House that Jack Built’, signifiers are interpreted by Bradford as having different connotations in New Zealand than they did in the original British rhyme. How convincing did you find her interpretations? Did you agree, for example, that the copybook page in Figure 2 of the Reader represented the imposition of English on the Maori people and the ascendancy of literacy over orality?

			The example from Canada, A Coyote Columbus Story, demonstrates how mockery and cartoon-like parody can be used to undermine established narratives of colonial heroism. Although the language clearly pokes fun at Christopher Columbus, it is in the visuals that the real story takes place and readers are invited to take up a questioning and oppositional viewpoint to the verbal narrative.

		

	

OEBPS/images/e301_1_010i.jpg
restaurant or on a beach you coukdn't understand what amyone.
was sy which was fightenng

Ikes e along e o get used 0 people ot know For
exampe, whenthre . e mmberof i at schooi ootk
10 them forweeks and weeks. st wach hem unt | know that
ey are safe Then 1 ask hem questions about themsehes, ke
whethr they have pets 3nd what s ther Froute colour and what
0 they know about the Apolo space msors and | ge them t0
raw 3 pan of the house and | ask them what kind of c they
ve, 0190t know them. The | dot mind 1 in the same
o0m 35 them and don't v t0 wach them e .

50 13king 10 the oerpeosle i our sreet was brae. Bt
You e 0ing 0 6o detectve workyou have o be brae, 501 had
nochoe,

Festof all | mace 3 pln of our pr of the steet whih s
caled Randoiph Svee, ke this

SES

2

“Then | made sure | had my Swiss Amy Knife in my packet
and 1wt ot and 1 knacke on the oo of number 40 which
is oppasite Mrs Sheas”house which means 1hat they were most
Tkl 1 haveseen something The pecple who e a1 number 40
e caled Thompion,

e Thompon answeed the door. e was weing a Fahit
whih ssid

Beer.
Helping ugly people:
have sexfor
2000 years.

M Thompson . Con | helpyour”

1586, Do you know who kiled Welngton?

16 not ook a1 s face. | do no ke looking a people’s
faces, especial i thy e srangers, He 6 notsay anythog fora
fewsecands

Then hesid, Who areyour

159, Tm Chisopher Boone from rumber 36 and | know
You You'te M Thomgson

He sid, Tm M Thampson's brothee”

1554, Do you know wh Kiled Welngton?”

He sid, Who th fuck s Wellngton?”

15, Mirs Shers dog. Mrs Shors s from umber 41

He sid, Someone kited hr dog?”

153, With a ok

OEBPS/js/jquery.columnmanager.js
/*

 * jQuery columnManager plugin

 * Version: 0.2.5

 *

 * Copyright (c) 2007 Roman Weich

 * http://p.sohei.org

 *

 * Dual licensed under the MIT and GPL licenses

 * (This means that you can choose the license that best suits your project, and use it accordingly):

 * http://www.opensource.org/licenses/mit-license.php

 * http://www.gnu.org/licenses/gpl.html

 *

 * Changelog:

 * v 0.2.5 - 2008-01-17

 *	-change: added options "show" and "hide". with these functions the user can control the way to show or hide the cells

 *	-change: added $.fn.showColumns() and $.fn.hideColumns which allows to explicitely show or hide any given number of columns

 * v 0.2.4 - 2007-12-02

 *	-fix: a problem with the on/off css classes when manually toggling columns which were not in the column header list

 *	-fix: an error in the createColumnHeaderList function incorectly resetting the visibility state of the columns

 *	-change: restructured some of the code

 * v 0.2.3 - 2007-12-02

 *	-change: when a column header has no text but some html markup as content, the markup is used in the column header list instead of "undefined"

 * v 0.2.2 - 2007-11-27

 *	-change: added the ablity to change the on and off CSS classes in the column header list through $().toggleColumns()

 *	-change: to avoid conflicts with other plugins, the table-referencing data in the column header list is now stored as an expando and not in the class name as before

 * v 0.2.1 - 2007-08-14

 *	-fix: handling of colspans didn't work properly for the very first spanning column

 *	-change: altered the cookie handling routines for easier management

 * v 0.2.0 - 2007-04-14

 *	-change: supports tables with colspanned and rowspanned cells now

 * v 0.1.4 - 2007-04-11

 *	-change: added onToggle option to specify a custom callback function for the toggling over the column header list

 * v 0.1.3 - 2007-04-05

 *	-fix: bug when saving the value in a cookie

 *	-change: toggleColumns takes a number or an array of numbers as argument now

 * v 0.1.2 - 2007-04-02

 * 	-change: added jsDoc style documentation and examples

 * 	-change: the column index passed to toggleColumns() starts at 1 now (conforming to the values passed in the hideInList and colsHidden options)

 * v 0.1.1 - 2007-03-30

 * 	-change: changed hideInList and colsHidden options to hold integer values for the column indexes to be affected

 *	-change: made the toggleColumns function accessible through the jquery object, to toggle the state without the need for the column header list

 *	-fix: error when not finding the passed listTargetID in the dom

 * v 0.1.0 - 2007-03-27

 */

(function($)

{

	var defaults = {

		listTargetID : null,

		onClass : '',

		offClass : '',

		hideInList: [],

		colsHidden: [],

		saveState: false,

		onToggle: null,

		show: function(cell){

			showCell(cell);

		},

		hide: function(cell){

			hideCell(cell);

		}

	};

	

	var idCount = 0;

	var cookieName = 'columnManagerC';

	/**

	 * Saves the current state for the table in a cookie.

	 * @param {element} table	The table for which to save the current state.

	 */

	var saveCurrentValue = function(table)

	{

		var val = '', i = 0, colsVisible = table.cMColsVisible;

		if (table.cMSaveState && table.id && colsVisible && $.cookie)

		{

			for (; i < colsVisible.length; i++)

			{

				val += (colsVisible[i] == false) ? 0 : 1;

			}

			$.cookie(cookieName + table.id, val, {expires: 9999});

		}

	};

	

	/**

	 * Hides a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to hide.

	 */

	var hideCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(hideCell = function(c)

			{

				c.style.setAttribute('display', 'none');

			})(cell);

		}

		else

		{

			(hideCell = function(c)

			{

				c.style.display = 'none';

			})(cell);

		}

	};

	/**

	 * Makes a cell visible again.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to show.

	 */

	var showCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(showCell = function(c)

			{

				c.style.setAttribute('display', 'block');

			})(cell);

		}

		else

		{

			(showCell = function(c)

			{

				c.style.display = 'table-cell';

			})(cell);

		}

	};

	/**

	 * Returns the visible state of a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to test.

	 */

	var cellVisible = function(cell)

	{

		if (jQuery.browser.msie)

		{

			return (cellVisible = function(c)

			{

				return c.style.getAttribute('display') != 'none';

			})(cell);

		}

		else

		{

			return (cellVisible = function(c)

			{

				return c.style.display != 'none';

			})(cell);

		}

	};

	/**

	 * Returns the cell element which has the passed column index value.

	 * @param {element} table	The table element.

	 * @param {array} cells		The cells to loop through.

	 * @param {integer} col	The column index to look for.

	 */

	var getCell = function(table, cells, col)

	{

		for (var i = 0; i < cells.length; i++)

		{

			if (cells[i].realIndex === undefined) //the test is here, because rows/cells could get added after the first run

			{

				fixCellIndexes(table);

			}

			if (cells[i].realIndex == col)

			{

				return cells[i];

			}

		}

		return null;

	};

	/**

	 * Calculates the actual cellIndex value of all cells in the table and stores it in the realCell property of each cell.

	 * Thats done because the cellIndex value isn't correct when colspans or rowspans are used.

	 * Originally created by Matt Kruse for his table library - Big Thanks! (see http://www.javascripttoolbox.com/)

	 * @param {element} table	The table element.

	 */

	var fixCellIndexes = function(table)

	{

		var rows = table.rows;

		var len = rows.length;

		var matrix = [];

		for (var i = 0; i < len; i++)

		{

			var cells = rows[i].cells;

			var clen = cells.length;

			for (var j = 0; j < clen; j++)

			{

				var c = cells[j];

				var rowSpan = c.rowSpan || 1;

				var colSpan = c.colSpan || 1;

				var firstAvailCol = -1;

				if (!matrix[i])

				{

					matrix[i] = [];

				}

				var m = matrix[i];

				// Find first available column in the first row

				while (m[++firstAvailCol]) {}

				c.realIndex = firstAvailCol;

				for (var k = i; k < i + rowSpan; k++)

				{

					if (!matrix[k])

					{

						matrix[k] = [];

					}

					var matrixrow = matrix[k];

					for (var l = firstAvailCol; l < firstAvailCol + colSpan; l++)

					{

						matrixrow[l] = 1;

					}

				}

			}

		}

	};

	

	/**

	 * Manages the column display state for a table.

	 *

	 * Features:

	 * Saves the state and recreates it on the next visit of the site (requires cookie-plugin).

	 * Extracts all headers and builds an unordered() list out of them, where clicking an list element will show/hide the matching column.

	 *

	 * @param {map} options		An object for optional settings (options described below).

	 *

	 * @option {string} listTargetID	The ID attribute of the element the column header list will be added to.

	 *						Default value: null

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {array} hideInList	An array of numbers. Each column with the matching column index won't be displayed in the column header list.

	 *						Index starting at 1!

	 *						Default value: [] (all columns will be included in the list)

	 * @option {array} colsHidden	An array of numbers. Each column with the matching column index will get hidden by default.

	 *						The value is overwritten when saveState is true and a cookie is set for this table.

	 *						Index starting at 1!

	 *						Default value: []

	 * @option {boolean} saveState	Save a cookie with the sate information of each column.

	 *						Requires jQuery cookie plugin.

	 *						Default value: false

	 * @option {function} onToggle	Callback function which is triggered when the visibility state of a column was toggled through the column header list.

	 *						The passed parameters are: the column index(integer) and the visibility state(boolean).

	 *						Default value: null

	 *

	 * @option {function} show		Function which is called to show a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to block (visible)

	 *

	 * @option {function} hide		Function which is called to hide a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to none (invisible)

	 *

	 * @example $('#table').columnManager([listTargetID: "target", onClass: "on", offClass: "off"]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and sets the CSS classes for the visible("on") and hidden("off") states.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", hideInList: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" but without the first and fourth column.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", colsHidden: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and hides the first and fourth column by default.

	 *

	 * @example $('#table').columnManager([saveState: true]);

	 * @desc Enables the saving of visibility informations for the columns. Does not create a column header list! Toggle the columns visiblity through $('selector').toggleColumns().

	 *

	 * @type jQuery

	 *

	 * @name columnManager

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.columnManager = function(options)

	{

		var settings = $.extend({}, defaults, options);

		/**

		 * Creates the column header list.

		 * @param {element} table	The table element for which to create the list.

		 */

		var createColumnHeaderList = function(table)

		{

			if (!settings.listTargetID)

			{

				return;

			}

			var $target = $('#' + settings.listTargetID);

			if (!$target.length)

			{

				return;

			}

			//select headrow - when there is no thead-element, use the first row in the table

			var headRow = null;

			if (table.tHead && table.tHead.length)

			{

				headRow = table.tHead.rows[0];

			}

			else if (table.rows.length)

			{

				headRow = table.rows[0];

			}

			else

			{

				return; //no header - nothing to do

			}

			var cells = headRow.cells;

			if (!cells.length)

			{

				return; //no header - nothing to do

			}

			//create list in target element

			var $list = null;

			if ($target.get(0).nodeName.toUpperCase() == 'UL')

			{

				$list = $target;

			}

			else

			{

				$list = $('');

				$target.append($list);

			}

			var colsVisible = table.cMColsVisible;

			//create list elements from headers

			for (var i = 0; i < cells.length; i++)

			{

				if ($.inArray(i + 1, settings.hideInList) >= 0)

				{

					continue;

				}

				colsVisible[i] = (colsVisible[i] !== undefined) ? colsVisible[i] : true;

				var text = $(cells[i]).text(),

					addClass;

				if (!text.length)

				{

					text = $(cells[i]).html();

					if (!text.length) //still nothing?

					{

						text = 'No label'; // GNS - was: 'undefined'

					}

				}

				if (colsVisible[i] && settings.onClass)

				{

					addClass = settings.onClass;

				}

				else if (!colsVisible[i] && settings.offClass)

				{

					addClass = settings.offClass;

				}

				var $li = $('<li class="' + addClass + '">' + text + '').click(toggleClick);

				$li[0].cmData = {id: table.id, col: i};

				$list.append($li);

			}

			table.cMColsVisible = colsVisible;

		};

		/**

		 * called when an item in the column header list is clicked

		 */

		var toggleClick = function()

		{

			//get table id and column name

			var data = this.cmData;

			if (data && data.id && data.col >= 0)

			{

				var colNum = data.col,

					$table = $('#' + data.id);

				if ($table.length)

				{

					$table.toggleColumns([colNum + 1], settings);

					//set the appropriate classes to the column header list

					var colsVisible = $table.get(0).cMColsVisible;

					if (settings.onToggle)

					{

						settings.onToggle.apply($table.get(0), [colNum + 1, colsVisible[colNum]]);

					}

				}

			}

		};

		/**

		 * Reads the saved state from the cookie.

		 * @param {string} tableID	The ID attribute from the table.

		 */

		var getSavedValue = function(tableID)

		{

			var val = $.cookie(cookieName + tableID);

			if (val)

			{

				var ar = val.split('');

				for (var i = 0; i < ar.length; i++)

				{

					ar[i] &= 1;

				}

				return ar;

			}

			return false;

		};

 return this.each(function()

 {

			this.id = this.id || 'jQcM0O' + idCount++; //we need an id for the column header list stuff

			var i,

				colsHide = [],

				colsVisible = [];

			//fix cellIndex values

			fixCellIndexes(this);

			//some columns hidden by default?

			if (settings.colsHidden.length)

			{

				for (i = 0; i < settings.colsHidden.length; i++)

				{

					colsVisible[settings.colsHidden[i] - 1] = true;

					colsHide[settings.colsHidden[i] - 1] = true;

				}

			}

			//get saved state - and overwrite defaults

			if (settings.saveState)

			{

				var colsSaved = getSavedValue(this.id);

				if (colsSaved && colsSaved.length)

				{

					for (i = 0; i < colsSaved.length; i++)

					{

						colsVisible[i] = true;

						colsHide[i] = !colsSaved[i];

					}

				}

				this.cMSaveState = true;

			}

			//assign initial colsVisible var to the table (needed for toggling and saving the state)

			this.cMColsVisible = colsVisible;

			//something to hide already?

			if (colsHide.length)

			{

				var a = [];

				for (i = 0; i < colsHide.length; i++)

				{

					if (colsHide[i])

					{

						a[a.length] = i + 1;

					}

				}

				if (a.length)

				{

					$(this).toggleColumns(a);

				}

			}

			//create column header list

			createColumnHeaderList(this);

 });

	};

	/**

	 * Shows or hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. The display state(visible/hidden) for each column with the matching column index will get toggled.

	 *							Column index starts at 1! (see the example)

	 *

	 * @param {map} options		An object for optional settings to handle the on and off CSS classes in the column header list (options described below).

	 * @option {string} listTargetID	The ID attribute of the element with the column header.

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 * @option {function} show		Function which is called to show a table cell.

	 * @option {function} hide		Function which is called to hide a table cell.

	 *

	 * @example $('#table').toggleColumns([2, 4], {hide: function(cell) { $(cell).fadeOut("slow"); }});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for the columns "two" and "four". Use custom function to fade the cell out when hiding it.

	 *

	 * @example $('#table').toggleColumns(3, {listTargetID: 'theID', onClass: 'vis'});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for column "three" and sets or removes the CSS class 'vis' to the appropriate column header according to the visibility of the column.

	 *

	 * @type jQuery

	 *

	 * @name toggleColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.toggleColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i, toggle, di,

				rows = this.rows,

				colsVisible = this.cMColsVisible;

			if (!columns)

				return;

			if (columns.constructor == Number)

				columns = [columns];

			if (!colsVisible)

				colsVisible = this.cMColsVisible = [];

			//go through all rows in the table and hide the cells

			for (i = 0; i < rows.length; i++)

			{

				var cells = rows[i].cells;

				for (var k = 0; k < columns.length; k++)

				{

					var col = columns[k] - 1;

					if (col >= 0)

					{

						//find the cell with the correct index

						var c = getCell(this, cells, col);

						//cell not found - maybe a previous one has a colspan? - search it!

						if (!c)

						{

							var cco = col;

							while (cco > 0 && !(c = getCell(this, cells, --cco))) {} //find the previous cell

							if (!c)

							{

								continue;

							}

						}

						//set toggle direction

						if (colsVisible[col] == undefined)//not initialized yet

						{

							colsVisible[col] = true;

						}

						if (colsVisible[col])

						{

							toggle = cmo && cmo.hide ? cmo.hide : hideCell;

							di = -1;

						}

						else

						{

							toggle = cmo && cmo.show ? cmo.show : showCell;

							di = 1;

						}

						if (!c.chSpan)

						{

							c.chSpan = 0;

						}

						//the cell has a colspan - so dont show/hide - just change the colspan

						if (c.colSpan > 1 || (di == 1 && c.chSpan && cellVisible(c)))

						{

							//is the colspan even reaching this cell? if not we have a rowspan -> nothing to do

							if (c.realIndex + c.colSpan + c.chSpan - 1 < col)

							{

								continue;

							}

							c.colSpan += di;

							c.chSpan += di * -1;

						}

						else if (c.realIndex + c.chSpan < col)//a previous cell was found, but doesn't affect this one (rowspan)

						{

							continue;

						}

						else //toggle cell

						{

							toggle(c);

						}

					}

				}

			}

			//set the colsVisible var

			for (i = 0; i < columns.length; i++)

			{

				this.cMColsVisible[columns[i] - 1] = !colsVisible[columns[i] - 1];

				//set the appropriate classes to the column header list, if the options have been passed

				if (cmo && cmo.listTargetID && (cmo.onClass || cmo.offClass))

				{

					var onC = cmo.onClass, offC = cmo.offClass, $li;

					if (colsVisible[columns[i] - 1])

					{

						onC = offC;

						offC = cmo.onClass;

					}

					$li = $("#" + cmo.listTargetID + " li").filter(function(){return this.cmData && this.cmData.col == columns[i] - 1;});

					if (onC)

					{

						$li.removeClass(onC);

					}

					if (offC)

					{

						$li.addClass(offC);

					}

				}

			}

			saveCurrentValue(this);

		});

	};

	/**

	 * Shows all table columns.

	 * When columns are passed through the parameter only the passed ones become visible.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will become visible.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').showColumns();

	 * @desc Sets the visibility state of all hidden columns to visible.

	 *

	 * @example $('#table').showColumns(3);

	 * @desc Show column number three.

	 *

	 * @type jQuery

	 *

	 * @name showColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.showColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = [],

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns && columns.constructor == Number)

					columns = [columns];

				for (i = 0; i < cV.length; i++)

				{

					//if there were no columns passed, show all - or else show only the columns the user wants to see

					if (!cV[i] && (!columns || $.inArray(i + 1, columns) > -1))

						cols.push(i + 1);

				}

				

				$(this).toggleColumns(cols, cmo);

			}

		});

	};

	/**

	 * Hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will get hidden.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').hideColumns(3);

	 * @desc Hide column number three.

	 *

	 * @type jQuery

	 *

	 * @name hideColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.hideColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = columns,

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns.constructor == Number)

					columns = [columns];

				cols = [];

				for (i = 0; i < columns.length; i++)

				{

					if (cV[columns[i] - 1] || cV[columns[i] - 1] == undefined)

						cols.push(columns[i]);

				}

				

			}

			$(this).toggleColumns(cols, cmo);

		});

	};

})(jQuery);

OEBPS/images/e301_1_c006i.jpg
“1 have found a kernel of wheat,” i
e Linke e Hen“Now who will help me (]
t this wheat? Where is that lazy
? Where is that lazy cat? Where is
that lazy mouse?
Vit mit. 1l vy, You ot el o sy
v, This b e oo Te bk b v

iy
“Who are you? Will you help me plant
the wheat?”
kel mliredy a e

B e i F e e
et she e you
“But who will help me tell

¢ 8
pi (for The Stinky

Cheese Man & Other
Fairly Stupid Tales)

OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/media/e301_1reading_c.pdf
CHAPTER 6 WORD AND IMAGE 289

NEICH, R. (1996) ‘Wood carving’ in D.C. STARZECKA (ed.) Maori Art and
Culture, pp. 69-113, London, British Museum Press.

PENDERGRAST, M. (1996) ‘The Fibre Arts’ in D.C. STARZECKA (ed.) Maori Art
and Culture, London, British Museum Press.

TE AWEKOTUKU, N. (1996) ‘Maori: People and Culture’ in D.C. STARZECKA (ed.)
Maori Art and Culture, pp. 114-46, London, British Museum Press.

Source: Adapted from BRADFORD, C. (2001), Reading Race:
Aboriginality in Australian Children’s Literature, Chapter 8,
Melbourne University Press.

READING C: Extracts from ‘Postmodernism and
the picturebook’

David Lewis

WARNING: This book appears to contain a number of stories that do not
necessarily occur at the same time. Then again, it may contain only one
story. In any event, careful inspection of both words and pictures is
recommended.

(from Black and White by David Macaulay)

Introduction

Although young readers of picturebooks might be said to be relatively
unsophisticated and unworldly, the same could hardly be said of their writers
and illustrators. Those who write, illustrate, design and publish picturebooks
live and have their being in the complex contemporary world that we all
share; it has been suggested that the makers of picturebooks [...] are doing no
more than responding to the tenor of the times and either consciously or
unconsciously importing the approaches, techniques and sensibilities of
postmodernism into their work." This shift from playfulness to postmodernism
is important for a number of reasons. It not only introduces a technical
vocabulary into the discussion but explicitly connects picturebooks with
larger social and cultural developments. However, despite the fact that the
influence of postmodernism on the picturebook is a phenomenon that has
been observed and commented upon a number of times in recent years, I
believe it remains poorly understood. [...] In what follows, therefore, T
describe some of postmodernity’s defining features and provide some
examples of how these features have influenced writing for adults before
returning us to the children’s picturebook with an account of the ways in
which some picturebooks might be considered to qualify as postmodern. [...]

290

THE ART OF ENGLISH: LITERARY CREATIVITY

The key features of postmodernity

Indeterminacy

In the postmodern world we are a lot less sure about the nature of objective
reality, our own selves and the products of our hands and minds than we
used to be. The more we know about the world the less stable and certain it
seems. Instead of our knowledge and understanding growing steadily in a
cumulative way, science and philosophy, along with many other disciplines,
seem to be telling us that we will never be able to be sure of anything, once
and for all, ever again. [...] The human universe too has become a far less
stable place. The more we know about other societies and cultures, the more
we become attuned to difference and the less confident we become in our
judgements of what constitutes normal human behaviour. Literature has
responded to such developments by placing an increased emphasis upon
undecideable outcomes and irresolvable dilemmas. In place of the obscurities
of the modernist text — the difficulties of Joyce, Eliot and Pound — we now
have the indeterminacies of the postmodern text. As we shall see, it is not
uncommon for readers of the postmodern to be left not knowing which way
to turn.

Fragmentation

Postmodernism suspects totalization, attempts to unify and synthesize being
considered the imposition of an ideological, and thus spurious, order.
According to Thab Hassan, postmoderns prefer the ‘openness of brokenness,
unjustified margins’ (Hassan, 1986, p. 505) to the tendentious unity brought
about by the various forms of artistic closure. The metaphor of ‘unjustified
margins’ is a useful one for it suggests graphically the refusal to tidy up loose
ends. Rather than attempt to pull everything into shape at the last minute, and
thus create an illusion of order where none in fact exists, the postmodern
artist or writer is likely to let the ends remain loose and visible: indeed they
may well be moved to the foreground to emphasize the fact that wholeness
and completeness are not honestly achievable. Collage, with its juxtaposition
of disparate elements, is thus a favourite postmodern method.

Decanonization

Perhaps the most widely disseminated tenet of postmodernism is that the
governing narratives of our culture — les grands récits — have broken down
(Lyotard, 1984). We are less likely now to trust blindly in authority than were
the citizens of previous ages. Fewer and fewer people believe wholeheartedly
the overarching stories we tell ourselves about ultimate values, truth, progress
and reason because the authorities that underwrote such stories — the church,
rationality, science — are no longer viable. Jean-Franois Lyotard, in his seminal
work The Postmodern Condition, defined postmodernism, loosely, as, ‘...
incredulity towards metanarratives’. The very fact that it is possible to speak

CHAPTER 6 WORD AND IMAGE

291

of the most fundamental belief as ‘stories’ suggests the extent to which the
unquestioning acceptance of them as revealed truths has atrophied. [...] With
the grand narratives in ruins at our feet all we have left are les petits recits,
stories that do not aspire to global significance, but operate at the level of
discrete language games. Such stories work insofar as we can invest in them
and turn them to our ends but there is little left now in which the
postmodernist can put absolute trust.

A further effect of decanonization is the ironing out of differences in
value between cultural artefacts and images. The more our lives are invaded
by relativism, the harder it becomes to feel confident about absolute
standards in art and life and the boundaries separating pop and high culture
become blurred. [...]

Irony

Indeterminacy, fragmentation and decanonization inevitably lead to irony.
Whether we like it or not, modern life and culture is massively ‘double-
coded’, images and ideas coming to us ready equipped with an ironic spin
that tells us not only what we are looking at but also how to look at it. High
Street and television advertisements are today so much more ‘knowing’ than
they were and the consumer at whom they are aimed is expected to
understand the allusions and get the jokes in the act of reading the text. [...]

Hybridization

The dissolving of boundaries, the fragmentation of wholes, the flattening out
of differences between high and low are all held to be characteristic of our
postmodern condition, and they have all contributed to the rise of bizarre
hybrid genres and artefacts. Skyscrapers capped with motifs borrowed from
Chippendale furniture are now possible, the non-fiction novel emerges
from the blending of journalism and imaginative literature and on television
docu-soaps import the conventions and expectations of cheap, serial
melodrama into the real lives of hospital or airport staff. Nothing is sacred
any more for the canons have faded that told us of the great and the good
and that kept high culture and low in separate compartments. [...]

Performance and participation

The more that authorities dissolve and the more authors and artists abrogate
responsibility for leading readers and viewers towards sense and meaning,
then the more readers have to write the text they read. Much art is now
conceived in terms of performance and participation, the role of the onlooker
or participant in the process being deemed as important as any product.

In such a climate the craft element in art, the idea that the artist possesses
superior manipulative and creative abilities, has withered away [...].

292

THE ART OF ENGLISH: LITERARY CREATIVITY

Postmodernism in literature

How, then, have these trends within the larger culture affected the writing of
fiction? The main influence has been upon the structures and conventions
that have traditionally been shared between writer and reader. We expect a
well-constructed, well-told story to have — to put it crudely — a beginning,

a middle and an end. We expect to find more or less convincing characters
interacting in an imaginary world according to the dictates of a plot which
the author usually takes the trouble to resolve in some more or less satisfying
way. Stories seem to follow rules and although the rules might differ for
different kinds of stories — fairy tales, school stories, thrillers, romances, etc. —
we do not usually expect the rules to be broken or abandoned. We expect
something like a decorum, a sense of fittingness, to prevail within the fictions
that we read and we very soon notice when incongruities intrude.

For example, we would not normally expect an author to step out onto
the stage of his ongoing fiction to inform the reader about exactly what it is he
is up to, but such interruptions are commonplace in postmodern writing. Take
for example the following passage from the novel How Far Can You Go? by
David Lodge (Lodge, 1980). Lodge would not consider himself to be a
postmodern writer, but his academic interest in the subject has prompted him
time and again to employ postmodern devices within his otherwise realistic
novels. Here, a group of old friends who have not met for some time raise the
subject of the accidental death of the daughter of some other, absent friends.

‘Yes,” said Edward, shaking his head, and looking at his toecaps, ‘that was
too bad.’

Adrian and Dorothy had not followed this and had to have it explained to
them, as you will, gentle reader. Two years after Nicole was born, Dennis
and Angela’s next youngest child, Anne, was knocked down by a van
outside their house and died in hospital a few hours later. I have avoided
a direct presentation of this incident because frankly I find it too painful
to contemplate. Of course, Dennis and Angela and Anne are fictional
characters, they cannot bleed or weep, but they stand here for all the real
people to whom such disasters happen with no apparent reason or
justice. One does not kill off characters lightly, I assure you, even ones
like Anne, evoked solely for that purpose.

‘Of course, they blame themselves for the accident, one always does,’
said Miriam ...

(Lodge, 1980, p. 125)

The kind of intrusion of the author’s voice into the fictional conversation of
the characters is rather different from the traditional author strategy of
appealing to the ‘gentle reader’, despite the fact that Lodge makes such an
appeal at the beginning of the passage. What we experience here is a
deliberate interruption of the drama that throws the fictional nature of that

CHAPTER 6 WORD AND IMAGE 293

drama into high relief. We are suddenly aware that the story is precisely that,
a story.

Consider a further, related example. In a short story by the Latin
American author Julio Cortazar entitled ‘Continuity of Parks’, a man is
described as reading a novel in a high-backed, green velvet armchair in his
study. The novel he is reading tells of a desperate but resolute murderer who
follows an avenue of trees that leads to a house; he climbs the stairs and
locates the study, ‘... and then, the knife in hand, the light from the great
windows, the high back of an armchair covered in green velvet, the head of
the man in the chair reading a novel.” Thus is someone murdered by a
character in the story that he is reading (Cortazar, 1968).

What is it that these two examples have in common? In one the author
steps out from behind the curtain to address his audience, his readers, and in
the other an ‘unreal’, fictional character is made to commit a ‘real’ murder. In
both examples, figures involved in the creation of a fiction or belonging to
the fiction refuse to stay in their assigned places and, like Anthony Browne’s
little bear in Bear Hunt, cross boundaries to take upon themselves roles they
would not normally occupy. The effect is to disturb the expectations of the
reader and once again to push into the foreground the fictional nature of the
story. [...]

Postmodernism and metafiction

Postmodern fictions are usually unsettling, sometimes very funny and
occasionally completely bewildering, but what is the justification for
considering them to be specifically postmodern? How do these fictions
display postmodernity? The most obvious connection between these
examples and the list of characteristics discussed above lies in their authors’
unwillingness to permit the reader to enjoy an uninterrupted illusion of a
secondary world. Amongst other things they are concerned to remind the
reader that literary fiction is not a window onto, or a mirror of, the real world
but a fabrication that temporarily deludes us into believing that ‘real’ people
are engaged in ‘real’ events. Furthermore, such stories often imply that the
everyday-life-world itself will not withstand too much scrutiny, and that our
own lives, with all their randomness and chaos, are only endowed with sense
and meaning through out persistent liking for and belief in stories. [...]

The postmodern picturebook

The claim that certain picturebooks may be considered to be postmodern
rests largely upon some very compelling parallels between the picturebooks
in question and the kinds of prose fiction for adults discussed above. [...]

As picturebooks possess some features that prose fictions do not, rather than
attempt to squeeze my examples into a typology derived from novels and
short stories, I have grouped them into five rather loose categories of my own
devising into which both prose and picturebooks can fit.

294

THE ART OF ENGLISH: LITERARY CREATIVITY

Boundary breaking

Boundary breaking occurs when characters within a story are allowed by
their author to wander beyond the narrative level to which they properly
belong. [...]

In The Story of a Little Mouse Trapped in a Book by Monique Felix
a mouse appears to be confined within the page upon which she is
represented. She pushes at the sides in her attempts to get free, then nibbles
around the edges to cut out a square of paper from the page, folds the square
into an aeroplane and flies down to safety ‘out’ of the book and into the
‘real world” depicted beyond the ragged edges that are left. Simon’s Book
(Henrik Drescher), Benjamin’s Book (Alan Baker), and The Book Mice (Tony
Knowles) all rely upon similar effects. Benjamin, for example, is a rather
clumsy hamster who gets into scrapes through such tricks as walking across
the page upon which he is represented leaving a trail of muddy paw prints
behind him. In attempting to wipe the page clean he only makes matters
worse. John Burningham’s Where’s Julius? manages the curious feat of having
one character trespass upon the inner fantasies of another.

Excess

Excess [...] may take the form of any kind of gigantism that upsets our
expectations. Interestingly, picturebooks often have an ‘over the top’ quality.
They frequently involve a stretching and testing of norms — linguistic, literary,
social, conceptual and ethical as well as narrative. [...] The unthinkable or the
unmentionable appears with startling regularity in picturebooks. Alarming,
disturbing or exciting possibilities are put to the test in Would You Rather ...
by John Burningham. In this book narrative is abandoned altogether and the
reader is invited to choose between extraordinary, exciting or disgusting
possibilities. Many of the options on display are grotesquely humorous in the
manner familiar from children’s comics and cartoon strips while others put
social norms to the test. Indeed, the book can cause embarrassment in
children as they recognize the enormity of some of Burningham’s
suggestions.

Angry Arthur by Hiawyn Oram and Satoshi Kitamura takes a different
form of excess as its theme: the extravagant results of a temper tantrum. Once
again there is an accumulation that goes well beyond the bounds of realism,
but in this instance there is a clear metaphorical purpose to the depicted
events. The eponymous anti-hero is so angry at being prevented from
watching late night TV that his rage brings on typhoons and earthquakes. In
the real world the actual results of bad temper are rather more localized
but the images of chaos in the book serve as the perfect objective correlate
for the sense of boundless outrage experienced by angry infants. The
dissolution of one’s personality in blind rage is well portrayed in the loss of
a universe.

CHAPTER 6 WORD AND IMAGE 295

Indeterminacy

Indeterminacy is the opposite of excess. In the latter case readers are offered
an accumulation of one sort or another way beyond the normal for realistic
stories; in the former, they are left with very little information. The contrast
between these two extremes reminds us of the fact that a sense of the real in
stories depends upon what Susan Stewart calls ‘an economy of significance’
that is governed by generic conventions (Stewart, 1984): writers (or in the
case of picturebooks, writers and illustrators) must neither say too much nor
too little or they risk losing the reader.

All stories are built upon gaps — writers and picturebook makers cannot
describe, explain or show everything — but some picturebooks expose those
gaps for us and thus reveal the comic absurdity of the situation we are left in
when textual props are missing. For example, How Tom Beat Captain
Najork and His Hired Sportsmen by Russell Hoban and Quentin Blake has at
its heart a series of three testing games that are simultaneously present and
absent. Womble, Muck and Sneedball are named and (partially) illustrated but
we are never allowed to learn their precise nature. Blake’s illustrations hint at
their complexity, and Hoban offers one or two clues about scoring and
procedures, but the three games remain a pungent lack throughout the story.

Time to Get Out of the Bath, Shirley also relies upon an absence, but
here it takes the form of a withholding of information about how two
sequences of images are related. The pictures and words on the left-hand
pages clearly relate to the images on the right but we are left to make up our
own minds about the precise nature of the relationship. [...]

Another book that leaves relationships and outcomes obscure is Black
and White by David Macaulay. The four stories told in the four quarters of
each page-opening are depicted in four separate styles, one of them entirely
wordless, another packed with the kinds of visual puns that some picturebook
illustrators delight in. There are hints and suggestions embedded in the picture
that the four stories might be connected but Macaulay makes no efforts to
explain how, or indeed if, this is so. In fact, he prints a warning label on the
title page: ‘This book appears to contain a number of stories that do not
necessarily occur at the same time. Then again, it may contain only one story.
In any event, careful inspection of both words and pictures is recommended.’

Parody

Parody is inherently metafictive as it involves a refusal to accept as natural
and given that which is culturally determined and conventional. As a literary
device it is usually associated with satire and ridicule and may thus seem an
unlikely trait to find in children’s picturebooks, but in fact picturebook
makers often lean towards this particular mode. The aim of parody in the
picturebook, however, is not to ridicule any particular author or style but to
poke fun at the conventions, manners and affectations of a particular genre.

296

THE ART OF ENGLISH: LITERARY CREATIVITY

The Worm Book by Janet and Allan Ahlberg is an excellent example of how
a relatively rigid form — the child’s ‘information book’ — can be undone by
placing straight-faced captions beneath silly pictures: ‘All good worms have
a beginning, a middle and an end ... Worms with two beginnings, a middle
and no end are apt to injure themselves ... Worms with two ends, a middle
and no beginning get bored.’

A more sophisticated parody of a non-fiction, information text can be
found in How Dogs Really Work by Alan Snow. This book comes complete
with table of contents, index, cut-away pictures with keys, labels with arrows,
inset diagrams and so on. The target of the parody is clearly the glamorous
books that have proliferated in recent years showing the insides of everything
from skyscrapers to ocean liners. Snow’s book, however, shows caricature
dogs opened up to reveal pulleys, levers and valves and the text purports to
explain how doggy behaviour can be explained in terms of the rudimentary,
Heath Robinson-like machinery shown in the pictures. Thus, in the section
headed, ‘Legs and Getting About” we read:

Legs are organs of support and locomotion in animals (and humans).

In dogs, the legs are fixed at the four corners of the main body, (see
diagram 1). Nearly all dogs have four legs, even the short funny ones that
sometimes look like they may not, (see diagram 2). Legs are powered by
energy generated from the food the dog eats.

As befits this kind of manual everything is shown in the greatest possible
detail, and there are lots of handy hints for the prospective dog owner (‘Make
sure you are running your dog on the right fuel. If you are not it may affect
the dog’s performance.) [...]

Performance

Many picturebooks are constructed to be deliberately interactive and
participatory. Picturebooks with tabs to pull, flaps to lift, wheels to rotate,
pages to unfold, holes to peep through and, most recently, buttons to push
and sounds to listen to, are now quite commonplace. Notable examples
include: the popular Spot books; the elaborately engineered works by
Jan Pienkowski such as Haunted House and Robot, the books of Eric Carle
and Ron Maris with their cut and shaped pages; much of the work of the
Ahlbergs, in particular Peepo, The Jolly Postman, Yum Yum and Playmates. | ...]
Books such as these are not particularly concerned with undermining, or
resisting the creation of, a secondary fictive world through manipulation of
the text. Instead they foreground the nature of the book as an object, an
artefact to be handled and manipulated as well as read. They are thus
metafictive to the extent that they tempt readers to withdraw attention from
the story (which, it must be said, is often pretty slender) in order to look at,
play with and admire the paper engineering. One of the characteristics of a
well-told tale is that as we read it our awareness of the book in which it is

CHAPTER 6 WORD AND IMAGE

297

written tends to fade away, but when the material fabric of the book has
been doctored in such a way as to draw attention to itself, it is less easy to
withdraw into that fictive, secondary world.

Pop-ups and movables tend to produce a degree of unease amongst
children’s book critics and scholars for they often do not seem to offer much
in the way of a reading experience at all. For this reason they are sometimes
considered to be more like toys than books, objects to play with rather than
to read. There is some justice in this view, but it is far too simplistic for it
tidies up too neatly something that, if we are honest, rather resists
pigeonholing. We might better understand the movable if we view it as a
hybrid, a merging of two, otherwise incompatible artefacts: the toy and the
picturebook. Under this description, movables are both books that can be
played with and toys that can be read.

Picturebooks: postmodern or playful?

Boundary breaking, excess, indeterminacy, parody and performance are all
strategies or devices that authors and illustrators can use to push what can be
done with the picturebook to its limits, but they are also frequently used by
writers of fiction for adults to unsettle readerly expectations. The view that
some picturebooks can be considered to be postmodern arises out of this
parallel between the picturebooks in question and certain kinds of novels
and stories for adults. [...]

The question of why many picturebook makers feel free to abandon
settled modes of storytelling may best be answered by taking a good close
look at the nature of the form within which they are working and the
audience to whom that work is addressed.

Notes

1 My own first attempt to write about this subject was published in Signal
as ‘The constructedness of texts: picture books and the metafictive’ (also
collected in Egoft, Stubbs, Ashley and Sutton 1996). Other relevant texts
include: Moss, G. (1992) ‘“My Teddy Bear Can Fly”: postmodernizing the
picture book’; Styles, M. (1996) ‘Inside the tunnel: a radical kind of
reading — picture books, pupils and postmodernism’.

References

CORTAZAR, J. (1968) End of the Game and Other Stories, trans. P. BLACKBURN,
London, Collins and Harvill Press.

HASSAN, 1. (1986) ‘Pluralism in postmodern perspective’, Critical Inquiry,
12(3), pp. 503-20.

LODGE, D. (1980) How Far Can You Go?, Harmondsworth, Penguin.

298

THE ART OF ENGLISH: LITERARY CREATIVITY

LYOTARD, J. (1984) The Postmodern Condition: A Report on Knowledge, trans.
G. BENNINGTON and B. MASSUMI, Manchester, Manchester University Press.

STEWART, S. (1984) On Longing: Narratives of the Miniature, the Gigantic, the
Souvenir, the Collection, Baltimore, Johns Hopkins University Press.

Source: LEWIS, D. (2001) Reading Contemporary Picturebooks:
Picturing Text, Chapter 6, London, RoutledgeFalmer.

OEBPS/images/e301_1_011i.jpg
2a

Firse published 2000 by Simon & Schusicr, New York, division of s larger and
more powerful company called Viacom Inc which is wealthi and more populous than
eighteen of the fifystates of Americ,allof Cental Americ, and al ofthe former Soviet Republics
combined and tipled. Tha sid no matcr how big such companicsae,and how mary things hey
v, o how much money they have o make o contrl, thei influcnce over the dily lives and beares
ofndividuals,an thus, ik ninty-nine peccent of wht is done by fical people n ciies ke
‘Washingon,or Moscow, r Sio Paulo of Auckland, chei ¢fict on th shor,fraugh livesof
haman beings who limp round and slecp nd drcsm of ying theough blosdscrcams, who
v the smel f rubbercement and think of sace tcavl while aving ineccourse,
s very vy smalland 0 ardly woreh woreyig about.

This edicion published 2000 by Picador
an imprin of Macrillan Publishers Lid
25 Becleston Place, London SW1W ONF.
Basingstoke and Oxford
Asocied companischroughat he word
wwmacmilan.cou

ISBN 0330 484540

Copyright © David (‘Dave’) Eggers 2000
Heighe: 5'L1° Weight: 170; Eyes: blue; Haie:brown; Hands:chubbier than
ne would expect; Alesgies: only to dander; Place on th sexual-orientation sale,

‘with 1 being perfectly suaight, and 10 being pecfectly gay:

“The right of Dave Egers to be idenified s the
authorofthis work has been asscrted by him in accordance.
‘with he Copyright, Desigas and Pacents Act 1988,

Al ighes reserved, Nopare of this publication may be reproduced,seoeed in o introduced
incoa reieval system, o traasmitted, n any form, o by any means (clectronic, mechanica,
photocopyiag, recording or orherwise)without the prios wrtten pecmission of the publisher
Ay person who does any unsuthorized act i relation to this publication may be lisble
o criminal prosecution snd civil claims for damags.

A porcion f this book sppesd in Tiv New Yorkr in s somesehat diffrent form,

ot This s a woek of fction, only i that n many cases, the suthr could ot remermber
the exace words said by cercain people, and exace descripeions of ceesin things, o had ol in
gaps as best e could. Otherwise, all characters and incidents and dialogue are rel, ae ot products
ofthe auchor' imagination, ecause a th time of this writing,the author had o imagination
‘whatsoever for thos sots ofthings, nd could nox conceve of mabing 4 a stoy o characcers—it
elcike driving a carin clown suic-—especially when there was 50 much €0 say sbout his own, true,
sorry,and inspiracional sory,che actual people that h bas known, and o course the many cwists and
curns of his own chiling and complex mind. Any resemblance to persoes living or dead should b
plainly spparent tochem and thse who know then,especially i te authar has bee kind enough to
have provided ther eal names and, i some cass,cheir phone numbers. All events described hetein
actually happened, though on occasion the author has taken certain, very small, iberties with
hronology, because chat is bis right as n American.

798

ACIP catalogue rcord fo this book isavilable from the Bicsh Libracy.

Printed and bound in Great Bricain by Mackays of Chatharm plc, Chatham, Keat

OEBPS/copyright-full.html

		
			

			
Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the “Creative Commons
 Licence”. In short, this allows you to use the ebook throughout the world
 without payment for non-commercial purposes only. Please read the Creative Commons Licence in
 full before making use of the ebook.

		You must however read these rights subject to any restrictions on use applying to the ebook
 or any part of it.

		When using the ebook you must attribute us and any identified author in accordance with the
 terms of the Creative Commons License. Each ebook has an
 “Acknowledgements” section which will identify the author/owner(s) and any
 Special Restriction(s) applying. You must take account of and abide by any restrictions set
 out in this section when using the ebook.

		This ebook also contains proprietary content which is owned by or licensed to us and which is
 not subject to the Creative Commons Licence. This content, which will be identified as
 “PROPRIETARY” include, but are not limited to, our logos and trading
 names, certain photographic and video images and sound recordings. This proprietary content is
 protected by intellectual property rights and should remain in context at all times.
 Unauthorised use of this content may constitute intellectual property infringement.

		Copyright and rights falling outside the terms of the Creative Commons Licence are retained
 or controlled by The Open University.

		Cover photograph © Goldmund Lukic.

	

OEBPS/titlepage.html
Word and image

	The Open University

OEBPS/favicon.ico

OEBPS/images/e301_1_c005i.jpg
AND THIS 1S MY STORY!

OEBPS/js/jquery-latest.js
/*!
 * jQuery JavaScript Library v1.4.2
 * http://jquery.com/
 *
 * Copyright 2010, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2010, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Sat Feb 13 22:33:48 2010 -0500
 */
(function(window, undefined) {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
		// The jQuery object is actually just the init constructor 'enhanced'
		return new jQuery.fn.init(selector, context);
	},

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$,

	// Use the correct document accordingly with window argument (sandbox)
	document = window.document,

	// A central reference to the root jQuery(document)
	rootjQuery,

	// A simple way to check for HTML strings or ID strings
	// (both of which we optimize for)
	quickExpr = /^[^<]*(<[\w\W]+>)[^>]*$|^#([\w-]+)$/,

	// Is it a simple selector
	isSimple = /^.[^:#\[\.,]*$/,

	// Check if a string has a non-whitespace character in it
	rnotwhite = /\S/,

	// Used for trimming whitespace
	rtrim = /^(\s|\u00A0)+|(\s|\u00A0)+$/g,

	// Match a standalone tag
	rsingleTag = /^<(\w+)\s*\/?>(?:<\/\1>)?$/,

	// Keep a UserAgent string for use with jQuery.browser
	userAgent = navigator.userAgent,

	// For matching the engine and version of the browser
	browserMatch,
	
	// Has the ready events already been bound?
	readyBound = false,
	
	// The functions to execute on DOM ready
	readyList = [],

	// The ready event handler
	DOMContentLoaded,

	// Save a reference to some core methods
	toString = Object.prototype.toString,
	hasOwnProperty = Object.prototype.hasOwnProperty,
	push = Array.prototype.push,
	slice = Array.prototype.slice,
	indexOf = Array.prototype.indexOf;

jQuery.fn = jQuery.prototype = {
	init: function(selector, context) {
		var match, elem, ret, doc;

		// Handle $(""), $(null), or $(undefined)
		if (!selector) {
			return this;
		}

		// Handle $(DOMElement)
		if (selector.nodeType) {
			this.context = this[0] = selector;
			this.length = 1;
			return this;
		}
		
		// The body element only exists once, optimize finding it
		if (selector === "body" && !context) {
			this.context = document;
			this[0] = document.body;
			this.selector = "body";
			this.length = 1;
			return this;
		}

		// Handle HTML strings
		if (typeof selector === "string") {
			// Are we dealing with HTML string or an ID?
			match = quickExpr.exec(selector);

			// Verify a match, and that no context was specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					doc = (context ? context.ownerDocument || context : document);

					// If a single string is passed in and it's a single tag
					// just do a createElement and skip the rest
					ret = rsingleTag.exec(selector);

					if (ret) {
						if (jQuery.isPlainObject(context)) {
							selector = [document.createElement(ret[1])];
							jQuery.fn.attr.call(selector, context, true);

						} else {
							selector = [doc.createElement(ret[1])];
						}

					} else {
						ret = buildFragment([match[1]], [doc]);
						selector = (ret.cacheable ? ret.fragment.cloneNode(true) : ret.fragment).childNodes;
					}
					
					return jQuery.merge(this, selector);
					
				// HANDLE: $("#id")
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {
						// Handle the case where IE and Opera return items
						// by name instead of ID
						if (elem.id !== match[2]) {
							return rootjQuery.find(selector);
						}

						// Otherwise, we inject the element directly into the jQuery object
						this.length = 1;
						this[0] = elem;
					}

					this.context = document;
					this.selector = selector;
					return this;
				}

			// HANDLE: $("TAG")
			} else if (!context && /^\w+$/.test(selector)) {
				this.selector = selector;
				this.context = document;
				selector = document.getElementsByTagName(selector);
				return jQuery.merge(this, selector);

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || rootjQuery).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return jQuery(context).find(selector);
			}

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return rootjQuery.ready(selector);
		}

		if (selector.selector !== undefined) {
			this.selector = selector.selector;
			this.context = selector.context;
		}

		return jQuery.makeArray(selector, this);
	},

	// Start with an empty selector
	selector: "",

	// The current version of jQuery being used
	jquery: "1.4.2",

	// The default length of a jQuery object is 0
	length: 0,

	// The number of elements contained in the matched element set
	size: function() {
		return this.length;
	},

	toArray: function() {
		return slice.call(this, 0);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {
		return num == null ?

			// Return a 'clean' array
			this.toArray() :

			// Return just the object
			(num < 0 ? this.slice(num)[0] : this[num]);
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems, name, selector) {
		// Build a new jQuery matched element set
		var ret = jQuery();

		if (jQuery.isArray(elems)) {
			push.apply(ret, elems);
		
		} else {
			jQuery.merge(ret, elems);
		}

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		ret.context = this.context;

		if (name === "find") {
			ret.selector = this.selector + (this.selector ? " " : "") + selector;
		} else if (name) {
			ret.selector = this.selector + "." + name + "(" + selector + ")";
		}

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	// (You can seed the arguments with an array of args, but this is
	// only used internally.)
	each: function(callback, args) {
		return jQuery.each(this, callback, args);
	},
	
	ready: function(fn) {
		// Attach the listeners
		jQuery.bindReady();

		// If the DOM is already ready
		if (jQuery.isReady) {
			// Execute the function immediately
			fn.call(document, jQuery);

		// Otherwise, remember the function for later
		} else if (readyList) {
			// Add the function to the wait list
			readyList.push(fn);
		}

		return this;
	},
	
	eq: function(i) {
		return i === -1 ?
			this.slice(i) :
			this.slice(i, +i + 1);
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments),
			"slice", slice.call(arguments).join(","));
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},
	
	end: function() {
		return this.prevObject || jQuery(null);
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: [].sort,
	splice: [].splice
};

// Give the init function the jQuery prototype for later instantiation
jQuery.fn.init.prototype = jQuery.fn;

jQuery.extend = jQuery.fn.extend = function() {
	// copy reference to target object
	var target = arguments[0] || {}, i = 1, length = arguments.length, deep = false, options, name, src, copy;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;
		target = arguments[1] || {};
		// skip the boolean and the target
		i = 2;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// extend jQuery itself if only one argument is passed
	if (length === i) {
		target = this;
		--i;
	}

	for (; i < length; i++) {
		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {
			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging object literal values or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) || jQuery.isArray(copy))) {
					var clone = src && (jQuery.isPlainObject(src) || jQuery.isArray(src)) ? src
						: jQuery.isArray(copy) ? [] : {};

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({
	noConflict: function(deep) {
		window.$ = _$;

		if (deep) {
			window.jQuery = _jQuery;
		}

		return jQuery;
	},
	
	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,
	
	// Handle when the DOM is ready
	ready: function() {
		// Make sure that the DOM is not already loaded
		if (!jQuery.isReady) {
			// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
			if (!document.body) {
				return setTimeout(jQuery.ready, 13);
			}

			// Remember that the DOM is ready
			jQuery.isReady = true;

			// If there are functions bound, to execute
			if (readyList) {
				// Execute all of them
				var fn, i = 0;
				while ((fn = readyList[i++])) {
					fn.call(document, jQuery);
				}

				// Reset the list of functions
				readyList = null;
			}

			// Trigger any bound ready events
			if (jQuery.fn.triggerHandler) {
				jQuery(document).triggerHandler("ready");
			}
		}
	},
	
	bindReady: function() {
		if (readyBound) {
			return;
		}

		readyBound = true;

		// Catch cases where $(document).ready() is called after the
		// browser event has already occurred.
		if (document.readyState === "complete") {
			return jQuery.ready();
		}

		// Mozilla, Opera and webkit nightlies currently support this event
		if (document.addEventListener) {
			// Use the handy event callback
			document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
			
			// A fallback to window.onload, that will always work
			window.addEventListener("load", jQuery.ready, false);

		// If IE event model is used
		} else if (document.attachEvent) {
			// ensure firing before onload,
			// maybe late but safe also for iframes
			document.attachEvent("onreadystatechange", DOMContentLoaded);
			
			// A fallback to window.onload, that will always work
			window.attachEvent("onload", jQuery.ready);

			// If IE and not a frame
			// continually check to see if the document is ready
			var toplevel = false;

			try {
				toplevel = window.frameElement == null;
			} catch(e) {}

			if (document.documentElement.doScroll && toplevel) {
				doScrollCheck();
			}
		}
	},

	// See test/unit/core.js for details concerning isFunction.
	// Since version 1.3, DOM methods and functions like alert
	// aren't supported. They return false on IE (#2968).
	isFunction: function(obj) {
		return toString.call(obj) === "[object Function]";
	},

	isArray: function(obj) {
		return toString.call(obj) === "[object Array]";
	},

	isPlainObject: function(obj) {
		// Must be an Object.
		// Because of IE, we also have to check the presence of the constructor property.
		// Make sure that DOM nodes and window objects don't pass through, as well
		if (!obj || toString.call(obj) !== "[object Object]" || obj.nodeType || obj.setInterval) {
			return false;
		}
		
		// Not own constructor property must be Object
		if (obj.constructor
			&& !hasOwnProperty.call(obj, "constructor")
			&& !hasOwnProperty.call(obj.constructor.prototype, "isPrototypeOf")) {
			return false;
		}
		
		// Own properties are enumerated firstly, so to speed up,
		// if last one is own, then all properties are own.
	
		var key;
		for (key in obj) {}
		
		return key === undefined || hasOwnProperty.call(obj, key);
	},

	isEmptyObject: function(obj) {
		for (var name in obj) {
			return false;
		}
		return true;
	},
	
	error: function(msg) {
		throw msg;
	},
	
	parseJSON: function(data) {
		if (typeof data !== "string" || !data) {
			return null;
		}

		// Make sure leading/trailing whitespace is removed (IE can't handle it)
		data = jQuery.trim(data);
		
		// Make sure the incoming data is actual JSON
		// Logic borrowed from http://json.org/json2.js
		if (/^[\],:{}\s]*$/.test(data.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, "@")
			.replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, "]")
			.replace(/(?:^|:|,)(?:\s*\[)+/g, ""))) {

			// Try to use the native JSON parser first
			return window.JSON && window.JSON.parse ?
				window.JSON.parse(data) :
				(new Function("return " + data))();

		} else {
			jQuery.error("Invalid JSON: " + data);
		}
	},

	noop: function() {},

	// Evalulates a script in a global context
	globalEval: function(data) {
		if (data && rnotwhite.test(data)) {
			// Inspired by code by Andrea Giammarchi
			// http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
			var head = document.getElementsByTagName("head")[0] || document.documentElement,
				script = document.createElement("script");

			script.type = "text/javascript";

			if (jQuery.support.scriptEval) {
				script.appendChild(document.createTextNode(data));
			} else {
				script.text = data;
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709).
			head.insertBefore(script, head.firstChild);
			head.removeChild(script);
		}
	},

	nodeName: function(elem, name) {
		return elem.nodeName && elem.nodeName.toUpperCase() === name.toUpperCase();
	},

	// args is for internal usage only
	each: function(object, callback, args) {
		var name, i = 0,
			length = object.length,
			isObj = length === undefined || jQuery.isFunction(object);

		if (args) {
			if (isObj) {
				for (name in object) {
					if (callback.apply(object[name], args) === false) {
						break;
					}
				}
			} else {
				for (; i < length;) {
					if (callback.apply(object[i++], args) === false) {
						break;
					}
				}
			}

		// A special, fast, case for the most common use of each
		} else {
			if (isObj) {
				for (name in object) {
					if (callback.call(object[name], name, object[name]) === false) {
						break;
					}
				}
			} else {
				for (var value = object[0];
					i < length && callback.call(value, i, value) !== false; value = object[++i]) {}
			}
		}

		return object;
	},

	trim: function(text) {
		return (text || "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(array, results) {
		var ret = results || [];

		if (array != null) {
			// The window, strings (and functions) also have 'length'
			// The extra typeof function check is to prevent crashes
			// in Safari 2 (See: #3039)
			if (array.length == null || typeof array === "string" || jQuery.isFunction(array) || (typeof array !== "function" && array.setInterval)) {
				push.call(ret, array);
			} else {
				jQuery.merge(ret, array);
			}
		}

		return ret;
	},

	inArray: function(elem, array) {
		if (array.indexOf) {
			return array.indexOf(elem);
		}

		for (var i = 0, length = array.length; i < length; i++) {
			if (array[i] === elem) {
				return i;
			}
		}

		return -1;
	},

	merge: function(first, second) {
		var i = first.length, j = 0;

		if (typeof second.length === "number") {
			for (var l = second.length; j < l; j++) {
				first[i++] = second[j];
			}
		
		} else {
			while (second[j] !== undefined) {
				first[i++] = second[j++];
			}
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, inv) {
		var ret = [];

		// Go through the array, only saving the items
		// that pass the validator function
		for (var i = 0, length = elems.length; i < length; i++) {
			if (!inv !== !callback(elems[i], i)) {
				ret.push(elems[i]);
			}
		}

		return ret;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var ret = [], value;

		// Go through the array, translating each of the items to their
		// new value (or values).
		for (var i = 0, length = elems.length; i < length; i++) {
			value = callback(elems[i], i, arg);

			if (value != null) {
				ret[ret.length] = value;
			}
		}

		return ret.concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	proxy: function(fn, proxy, thisObject) {
		if (arguments.length === 2) {
			if (typeof proxy === "string") {
				thisObject = fn;
				fn = thisObject[proxy];
				proxy = undefined;

			} else if (proxy && !jQuery.isFunction(proxy)) {
				thisObject = proxy;
				proxy = undefined;
			}
		}

		if (!proxy && fn) {
			proxy = function() {
				return fn.apply(thisObject || this, arguments);
			};
		}

		// Set the guid of unique handler to the same of original handler, so it can be removed
		if (fn) {
			proxy.guid = fn.guid = fn.guid || proxy.guid || jQuery.guid++;
		}

		// So proxy can be declared as an argument
		return proxy;
	},

	// Use of jQuery.browser is frowned upon.
	// More details: http://docs.jquery.com/Utilities/jQuery.browser
	uaMatch: function(ua) {
		ua = ua.toLowerCase();

		var match = /(webkit)[\/]([\w.]+)/.exec(ua) ||
			/(opera)(?:.*version)?[\/]([\w.]+)/.exec(ua) ||
			/(msie) ([\w.]+)/.exec(ua) ||
			!/compatible/.test(ua) && /(mozilla)(?:.*? rv:([\w.]+))?/.exec(ua) ||
		 	[];

		return { browser: match[1] || "", version: match[2] || "0" };
	},

	browser: {}
});

browserMatch = jQuery.uaMatch(userAgent);
if (browserMatch.browser) {
	jQuery.browser[browserMatch.browser] = true;
	jQuery.browser.version = browserMatch.version;
}

// Deprecated, use jQuery.browser.webkit instead
if (jQuery.browser.webkit) {
	jQuery.browser.safari = true;
}

if (indexOf) {
	jQuery.inArray = function(elem, array) {
		return indexOf.call(array, elem);
	};
}

// All jQuery objects should point back to these
rootjQuery = jQuery(document);

// Cleanup functions for the document ready method
if (document.addEventListener) {
	DOMContentLoaded = function() {
		document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
		jQuery.ready();
	};

} else if (document.attachEvent) {
	DOMContentLoaded = function() {
		// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
		if (document.readyState === "complete") {
			document.detachEvent("onreadystatechange", DOMContentLoaded);
			jQuery.ready();
		}
	};
}

// The DOM ready check for Internet Explorer
function doScrollCheck() {
	if (jQuery.isReady) {
		return;
	}

	try {
		// If IE is used, use the trick by Diego Perini
		// http://javascript.nwbox.com/IEContentLoaded/
		document.documentElement.doScroll("left");
	} catch(error) {
		setTimeout(doScrollCheck, 1);
		return;
	}

	// and execute any waiting functions
	jQuery.ready();
}

function evalScript(i, elem) {
	if (elem.src) {
		jQuery.ajax({
			url: elem.src,
			async: false,
			dataType: "script"
		});
	} else {
		jQuery.globalEval(elem.text || elem.textContent || elem.innerHTML || "");
	}

	if (elem.parentNode) {
		elem.parentNode.removeChild(elem);
	}
}

// Mutifunctional method to get and set values to a collection
// The value/s can be optionally by executed if its a function
function access(elems, key, value, exec, fn, pass) {
	var length = elems.length;
	
	// Setting many attributes
	if (typeof key === "object") {
		for (var k in key) {
			access(elems, k, key[k], exec, fn, value);
		}
		return elems;
	}
	
	// Setting one attribute
	if (value !== undefined) {
		// Optionally, function values get executed if exec is true
		exec = !pass && exec && jQuery.isFunction(value);
		
		for (var i = 0; i < length; i++) {
			fn(elems[i], key, exec ? value.call(elems[i], i, fn(elems[i], key)) : value, pass);
		}
		
		return elems;
	}
	
	// Getting an attribute
	return length ? fn(elems[0], key) : undefined;
}

function now() {
	return (new Date).getTime();
}
(function() {

	jQuery.support = {};

	var root = document.documentElement,
		script = document.createElement("script"),
		div = document.createElement("div"),
		id = "script" + now();

	div.style.display = "none";
	div.innerHTML = " <link/><table></table>a<input type='checkbox'/>";

	var all = div.getElementsByTagName("*"),
		a = div.getElementsByTagName("a")[0];

	// Can't get basic test support
	if (!all || !all.length || !a) {
		return;
	}

	jQuery.support = {
		// IE strips leading whitespace when .innerHTML is used
		leadingWhitespace: div.firstChild.nodeType === 3,

		// Make sure that tbody elements aren't automatically inserted
		// IE will insert them into empty tables
		tbody: !div.getElementsByTagName("tbody").length,

		// Make sure that link elements get serialized correctly by innerHTML
		// This requires a wrapper element in IE
		htmlSerialize: !!div.getElementsByTagName("link").length,

		// Get the style information from getAttribute
		// (IE uses .cssText insted)
		style: /red/.test(a.getAttribute("style")),

		// Make sure that URLs aren't manipulated
		// (IE normalizes it by default)
		hrefNormalized: a.getAttribute("href") === "/a",

		// Make sure that element opacity exists
		// (IE uses filter instead)
		// Use a regex to work around a WebKit issue. See #5145
		opacity: /^0.55$/.test(a.style.opacity),

		// Verify style float existence
		// (IE uses styleFloat instead of cssFloat)
		cssFloat: !!a.style.cssFloat,

		// Make sure that if no value is specified for a checkbox
		// that it defaults to "on".
		// (WebKit defaults to "" instead)
		checkOn: div.getElementsByTagName("input")[0].value === "on",

		// Make sure that a selected-by-default option has a working selected property.
		// (WebKit defaults to false instead of true, IE too, if it's in an optgroup)
		optSelected: document.createElement("select").appendChild(document.createElement("option")).selected,

		parentNode: div.removeChild(div.appendChild(document.createElement("div"))).parentNode === null,

		// Will be defined later
		deleteExpando: true,
		checkClone: false,
		scriptEval: false,
		noCloneEvent: true,
		boxModel: null
	};

	script.type = "text/javascript";
	try {
		script.appendChild(document.createTextNode("window." + id + "=1;"));
	} catch(e) {}

	root.insertBefore(script, root.firstChild);

	// Make sure that the execution of code works by injecting a script
	// tag with appendChild/createTextNode
	// (IE doesn't support this, fails, and uses .text instead)
	if (window[id]) {
		jQuery.support.scriptEval = true;
		delete window[id];
	}

	// Test to see if it's possible to delete an expando from an element
	// Fails in Internet Explorer
	try {
		delete script.test;
	
	} catch(e) {
		jQuery.support.deleteExpando = false;
	}

	root.removeChild(script);

	if (div.attachEvent && div.fireEvent) {
		div.attachEvent("onclick", function click() {
			// Cloning a node shouldn't copy over any
			// bound event handlers (IE does this)
			jQuery.support.noCloneEvent = false;
			div.detachEvent("onclick", click);
		});
		div.cloneNode(true).fireEvent("onclick");
	}

	div = document.createElement("div");
	div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

	var fragment = document.createDocumentFragment();
	fragment.appendChild(div.firstChild);

	// WebKit doesn't clone checked state correctly in fragments
	jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true).lastChild.checked;

	// Figure out if the W3C box model works as expected
	// document.body must exist before we can do this
	jQuery(function() {
		var div = document.createElement("div");
		div.style.width = div.style.paddingLeft = "1px";

		document.body.appendChild(div);
		jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
		document.body.removeChild(div).style.display = 'none';

		div = null;
	});

	// Technique from Juriy Zaytsev
	// http://thinkweb2.com/projects/prototype/detecting-event-support-without-browser-sniffing/
	var eventSupported = function(eventName) {
		var el = document.createElement("div");
		eventName = "on" + eventName;

		var isSupported = (eventName in el);
		if (!isSupported) {
			el.setAttribute(eventName, "return;");
			isSupported = typeof el[eventName] === "function";
		}
		el = null;

		return isSupported;
	};
	
	jQuery.support.submitBubbles = eventSupported("submit");
	jQuery.support.changeBubbles = eventSupported("change");

	// release memory in IE
	root = script = div = all = a = null;
})();

jQuery.props = {
	"for": "htmlFor",
	"class": "className",
	readonly: "readOnly",
	maxlength: "maxLength",
	cellspacing: "cellSpacing",
	rowspan: "rowSpan",
	colspan: "colSpan",
	tabindex: "tabIndex",
	usemap: "useMap",
	frameborder: "frameBorder"
};
var expando = "jQuery" + now(), uuid = 0, windowData = {};

jQuery.extend({
	cache: {},
	
	expando:expando,

	// The following elements throw uncatchable exceptions if you
	// attempt to add expando properties to them.
	noData: {
		"embed": true,
		"object": true,
		"applet": true
	},

	data: function(elem, name, data) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache;

		if (!id && typeof name === "string" && data === undefined) {
			return null;
		}

		// Compute a unique ID for the element
		if (!id) {
			id = ++uuid;
		}

		// Avoid generating a new cache unless none exists and we
		// want to manipulate it.
		if (typeof name === "object") {
			elem[expando] = id;
			thisCache = cache[id] = jQuery.extend(true, {}, name);

		} else if (!cache[id]) {
			elem[expando] = id;
			cache[id] = {};
		}

		thisCache = cache[id];

		// Prevent overriding the named cache with undefined values
		if (data !== undefined) {
			thisCache[name] = data;
		}

		return typeof name === "string" ? thisCache[name] : thisCache;
	},

	removeData: function(elem, name) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache = cache[id];

		// If we want to remove a specific section of the element's data
		if (name) {
			if (thisCache) {
				// Remove the section of cache data
				delete thisCache[name];

				// If we've removed all the data, remove the element's cache
				if (jQuery.isEmptyObject(thisCache)) {
					jQuery.removeData(elem);
				}
			}

		// Otherwise, we want to remove all of the element's data
		} else {
			if (jQuery.support.deleteExpando) {
				delete elem[jQuery.expando];

			} else if (elem.removeAttribute) {
				elem.removeAttribute(jQuery.expando);
			}

			// Completely remove the data cache
			delete cache[id];
		}
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		if (typeof key === "undefined" && this.length) {
			return jQuery.data(this[0]);

		} else if (typeof key === "object") {
			return this.each(function() {
				jQuery.data(this, key);
			});
		}

		var parts = key.split(".");
		parts[1] = parts[1] ? "." + parts[1] : "";

		if (value === undefined) {
			var data = this.triggerHandler("getData" + parts[1] + "!", [parts[0]]);

			if (data === undefined && this.length) {
				data = jQuery.data(this[0], key);
			}
			return data === undefined && parts[1] ?
				this.data(parts[0]) :
				data;
		} else {
			return this.trigger("setData" + parts[1] + "!", [parts[0], value]).each(function() {
				jQuery.data(this, key, value);
			});
		}
	},

	removeData: function(key) {
		return this.each(function() {
			jQuery.removeData(this, key);
		});
	}
});
jQuery.extend({
	queue: function(elem, type, data) {
		if (!elem) {
			return;
		}

		type = (type || "fx") + "queue";
		var q = jQuery.data(elem, type);

		// Speed up dequeue by getting out quickly if this is just a lookup
		if (!data) {
			return q || [];
		}

		if (!q || jQuery.isArray(data)) {
			q = jQuery.data(elem, type, jQuery.makeArray(data));

		} else {
			q.push(data);
		}

		return q;
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type), fn = queue.shift();

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
		}

		if (fn) {
			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			fn.call(elem, function() {
				jQuery.dequeue(elem, type);
			});
		}
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		if (typeof type !== "string") {
			data = type;
			type = "fx";
		}

		if (data === undefined) {
			return jQuery.queue(this[0], type);
		}
		return this.each(function(i, elem) {
			var queue = jQuery.queue(this, type, data);

			if (type === "fx" && queue[0] !== "inprogress") {
				jQuery.dequeue(this, type);
			}
		});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},

	// Based off of the plugin by Clint Helfers, with permission.
	// http://blindsignals.com/index.php/2009/07/jquery-delay/
	delay: function(time, type) {
		time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
		type = type || "fx";

		return this.queue(type, function() {
			var elem = this;
			setTimeout(function() {
				jQuery.dequeue(elem, type);
			}, time);
		});
	},

	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	}
});
var rclass = /[\n\t]/g,
	rspace = /\s+/,
	rreturn = /\r/g,
	rspecialurl = /href|src|style/,
	rtype = /(button|input)/i,
	rfocusable = /(button|input|object|select|textarea)/i,
	rclickable = /^(a|area)$/i,
	rradiocheck = /radio|checkbox/;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, name, value, true, jQuery.attr);
	},

	removeAttr: function(name, fn) {
		return this.each(function(){
			jQuery.attr(this, name, "");
			if (this.nodeType === 1) {
				this.removeAttribute(name);
			}
		});
	},

	addClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.addClass(value.call(this, i, self.attr("class")));
			});
		}

		if (value && typeof value === "string") {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1) {
					if (!elem.className) {
						elem.className = value;

					} else {
						var className = " " + elem.className + " ", setClass = elem.className;
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							if (className.indexOf(" " + classNames[c] + " ") < 0) {
								setClass += " " + classNames[c];
							}
						}
						elem.className = jQuery.trim(setClass);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.removeClass(value.call(this, i, self.attr("class")));
			});
		}

		if ((value && typeof value === "string") || value === undefined) {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1 && elem.className) {
					if (value) {
						var className = (" " + elem.className + " ").replace(rclass, " ");
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							className = className.replace(" " + classNames[c] + " ", " ");
						}
						elem.className = jQuery.trim(className);

					} else {
						elem.className = "";
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value, isBool = typeof stateVal === "boolean";

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.toggleClass(value.call(this, i, self.attr("class"), stateVal), stateVal);
			});
		}

		return this.each(function() {
			if (type === "string") {
				// toggle individual class names
				var className, i = 0, self = jQuery(this),
					state = stateVal,
					classNames = value.split(rspace);

				while ((className = classNames[i++])) {
					// check each className given, space seperated list
					state = isBool ? state : !self.hasClass(className);
					self[state ? "addClass" : "removeClass"](className);
				}

			} else if (type === "undefined" || type === "boolean") {
				if (this.className) {
					// store className if set
					jQuery.data(this, "__className__", this.className);
				}

				// toggle whole className
				this.className = this.className || value === false ? "" : jQuery.data(this, "__className__") || "";
			}
		});
	},

	hasClass: function(selector) {
		var className = " " + selector + " ";
		for (var i = 0, l = this.length; i < l; i++) {
			if ((" " + this[i].className + " ").replace(rclass, " ").indexOf(className) > -1) {
				return true;
			}
		}

		return false;
	},

	val: function(value) {
		if (value === undefined) {
			var elem = this[0];

			if (elem) {
				if (jQuery.nodeName(elem, "option")) {
					return (elem.attributes.value || {}).specified ? elem.value : elem.text;
				}

				// We need to handle select boxes special
				if (jQuery.nodeName(elem, "select")) {
					var index = elem.selectedIndex,
						values = [],
						options = elem.options,
						one = elem.type === "select-one";

					// Nothing was selected
					if (index < 0) {
						return null;
					}

					// Loop through all the selected options
					for (var i = one ? index : 0, max = one ? index + 1 : options.length; i < max; i++) {
						var option = options[i];

						if (option.selected) {
							// Get the specifc value for the option
							value = jQuery(option).val();

							// We don't need an array for one selects
							if (one) {
								return value;
							}

							// Multi-Selects return an array
							values.push(value);
						}
					}

					return values;
				}

				// Handle the case where in Webkit "" is returned instead of "on" if a value isn't specified
				if (rradiocheck.test(elem.type) && !jQuery.support.checkOn) {
					return elem.getAttribute("value") === null ? "on" : elem.value;
				}
				

				// Everything else, we just grab the value
				return (elem.value || "").replace(rreturn, "");

			}

			return undefined;
		}

		var isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var self = jQuery(this), val = value;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, self.val());
			}

			// Typecast each time if the value is a Function and the appended
			// value is therefore different each time.
			if (typeof val === "number") {
				val += "";
			}

			if (jQuery.isArray(val) && rradiocheck.test(this.type)) {
				this.checked = jQuery.inArray(self.val(), val) >= 0;

			} else if (jQuery.nodeName(this, "select")) {
				var values = jQuery.makeArray(val);

				jQuery("option", this).each(function() {
					this.selected = jQuery.inArray(jQuery(this).val(), values) >= 0;
				});

				if (!values.length) {
					this.selectedIndex = -1;
				}

			} else {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	attrFn: {
		val: true,
		css: true,
		html: true,
		text: true,
		data: true,
		width: true,
		height: true,
		offset: true
	},
		
	attr: function(elem, name, value, pass) {
		// don't set attributes on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		if (pass && name in jQuery.attrFn) {
			return jQuery(elem)[name](value);
		}

		var notxml = elem.nodeType !== 1 || !jQuery.isXMLDoc(elem),
			// Whether we are setting (or getting)
			set = value !== undefined;

		// Try to normalize/fix the name
		name = notxml && jQuery.props[name] || name;

		// Only do all the following if this is a node (faster for style)
		if (elem.nodeType === 1) {
			// These attributes require special treatment
			var special = rspecialurl.test(name);

			// Safari mis-reports the default selected property of an option
			// Accessing the parent's selectedIndex property fixes it
			if (name === "selected" && !jQuery.support.optSelected) {
				var parent = elem.parentNode;
				if (parent) {
					parent.selectedIndex;
	
					// Make sure that it also works with optgroups, see #5701
					if (parent.parentNode) {
						parent.parentNode.selectedIndex;
					}
				}
			}

			// If applicable, access the attribute via the DOM 0 way
			if (name in elem && notxml && !special) {
				if (set) {
					// We can't allow the type property to be changed (since it causes problems in IE)
					if (name === "type" && rtype.test(elem.nodeName) && elem.parentNode) {
						jQuery.error("type property can't be changed");
					}

					elem[name] = value;
				}

				// browsers index elements by id/name on forms, give priority to attributes.
				if (jQuery.nodeName(elem, "form") && elem.getAttributeNode(name)) {
					return elem.getAttributeNode(name).nodeValue;
				}

				// elem.tabIndex doesn't always return the correct value when it hasn't been explicitly set
				// http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				if (name === "tabIndex") {
					var attributeNode = elem.getAttributeNode("tabIndex");

					return attributeNode && attributeNode.specified ?
						attributeNode.value :
						rfocusable.test(elem.nodeName) || rclickable.test(elem.nodeName) && elem.href ?
							0 :
							undefined;
				}

				return elem[name];
			}

			if (!jQuery.support.style && notxml && name === "style") {
				if (set) {
					elem.style.cssText = "" + value;
				}

				return elem.style.cssText;
			}

			if (set) {
				// convert the value to a string (all browsers do this but IE) see #1070
				elem.setAttribute(name, "" + value);
			}

			var attr = !jQuery.support.hrefNormalized && notxml && special ?
					// Some attributes require a special call on IE
					elem.getAttribute(name, 2) :
					elem.getAttribute(name);

			// Non-existent attributes return null, we normalize to undefined
			return attr === null ? undefined : attr;
		}

		// elem is actually elem.style ... set the style
		// Using attr for specific style information is now deprecated. Use style instead.
		return jQuery.style(elem, name, value);
	}
});
var rnamespaces = /\.(.*)$/,
	fcleanup = function(nm) {
		return nm.replace(/[^\w\s\.\|`]/g, function(ch) {
			return "\\" + ch;
		});
	};

/*
 * A number of helper functions used for managing events.
 * Many of the ideas behind this code originated from
 * Dean Edwards' addEvent library.
 */
jQuery.event = {

	// Bind an event to an element
	// Original by Dean Edwards
	add: function(elem, types, handler, data) {
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// For whatever reason, IE has trouble passing the window object
		// around, causing it to be cloned in the process
		if (elem.setInterval && (elem !== window && !elem.frameElement)) {
			elem = window;
		}

		var handleObjIn, handleObj;

		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
		}

		// Make sure that the function being executed has a unique ID
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure
		var elemData = jQuery.data(elem);

		// If no elemData is found then we must be trying to bind to one of the
		// banned noData elements
		if (!elemData) {
			return;
		}

		var events = elemData.events = elemData.events || {},
			eventHandle = elemData.handle, eventHandle;

		if (!eventHandle) {
			elemData.handle = eventHandle = function() {
				// Handle the second event of a trigger and when
				// an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && !jQuery.event.triggered ?
					jQuery.event.handle.apply(eventHandle.elem, arguments) :
					undefined;
			};
		}

		// Add elem as a property of the handle function
		// This is to prevent a memory leak with non-native events in IE.
		eventHandle.elem = elem;

		// Handle multiple events separated by a space
		// jQuery(...).bind("mouseover mouseout", fn);
		types = types.split(" ");

		var type, i = 0, namespaces;

		while ((type = types[i++])) {
			handleObj = handleObjIn ?
				jQuery.extend({}, handleObjIn) :
				{ handler: handler, data: data };

			// Namespaced event handlers
			if (type.indexOf(".") > -1) {
				namespaces = type.split(".");
				type = namespaces.shift();
				handleObj.namespace = namespaces.slice(0).sort().join(".");

			} else {
				namespaces = [];
				handleObj.namespace = "";
			}

			handleObj.type = type;
			handleObj.guid = handler.guid;

			// Get the current list of functions bound to this event
			var handlers = events[type],
				special = jQuery.event.special[type] || {};

			// Init the event handler queue
			if (!handlers) {
				handlers = events[type] = [];

				// Check for a special event handler
				// Only use addEventListener/attachEvent if the special
				// events handler returns false
				if (!special.setup || special.setup.call(elem, data, namespaces, eventHandle) === false) {
					// Bind the global event handler to the element
					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle, false);

					} else if (elem.attachEvent) {
						elem.attachEvent("on" + type, eventHandle);
					}
				}
			}
			
			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add the function to the element's handler list
			handlers.push(handleObj);

			// Keep track of which events have been used, for global triggering
			jQuery.event.global[type] = true;
		}

		// Nullify elem to prevent memory leaks in IE
		elem = null;
	},

	global: {},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, pos) {
		// don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		var ret, type, fn, i = 0, all, namespaces, namespace, special, eventType, handleObj, origType,
			elemData = jQuery.data(elem),
			events = elemData && elemData.events;

		if (!elemData || !events) {
			return;
		}

		// types is actually an event object here
		if (types && types.type) {
			handler = types.handler;
			types = types.type;
		}

		// Unbind all events for the element
		if (!types || typeof types === "string" && types.charAt(0) === ".") {
			types = types || "";

			for (type in events) {
				jQuery.event.remove(elem, type + types);
			}

			return;
		}

		// Handle multiple events separated by a space
		// jQuery(...).unbind("mouseover mouseout", fn);
		types = types.split(" ");

		while ((type = types[i++])) {
			origType = type;
			handleObj = null;
			all = type.indexOf(".") < 0;
			namespaces = [];

			if (!all) {
				// Namespaced event handlers
				namespaces = type.split(".");
				type = namespaces.shift();

				namespace = new RegExp("(^|\\.)" +
					jQuery.map(namespaces.slice(0).sort(), fcleanup).join("\\.(?:.*\\.)?") + "(\\.|$)")
			}

			eventType = events[type];

			if (!eventType) {
				continue;
			}

			if (!handler) {
				for (var j = 0; j < eventType.length; j++) {
					handleObj = eventType[j];

					if (all || namespace.test(handleObj.namespace)) {
						jQuery.event.remove(elem, origType, handleObj.handler, j);
						eventType.splice(j--, 1);
					}
				}

				continue;
			}

			special = jQuery.event.special[type] || {};

			for (var j = pos || 0; j < eventType.length; j++) {
				handleObj = eventType[j];

				if (handler.guid === handleObj.guid) {
					// remove the given handler for the given type
					if (all || namespace.test(handleObj.namespace)) {
						if (pos == null) {
							eventType.splice(j--, 1);
						}

						if (special.remove) {
							special.remove.call(elem, handleObj);
						}
					}

					if (pos != null) {
						break;
					}
				}
			}

			// remove generic event handler if no more handlers exist
			if (eventType.length === 0 || pos != null && eventType.length === 1) {
				if (!special.teardown || special.teardown.call(elem, namespaces) === false) {
					removeEvent(elem, type, elemData.handle);
				}

				ret = null;
				delete events[type];
			}
		}

		// Remove the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			var handle = elemData.handle;
			if (handle) {
				handle.elem = null;
			}

			delete elemData.events;
			delete elemData.handle;

			if (jQuery.isEmptyObject(elemData)) {
				jQuery.removeData(elem);
			}
		}
	},

	// bubbling is internal
	trigger: function(event, data, elem /*, bubbling */) {
		// Event object or event type
		var type = event.type || event,
			bubbling = arguments[3];

		if (!bubbling) {
			event = typeof event === "object" ?
				// jQuery.Event object
				event[expando] ? event :
				// Object literal
				jQuery.extend(jQuery.Event(type), event) :
				// Just the event type (string)
				jQuery.Event(type);

			if (type.indexOf("!") >= 0) {
				event.type = type = type.slice(0, -1);
				event.exclusive = true;
			}

			// Handle a global trigger
			if (!elem) {
				// Don't bubble custom events when global (to avoid too much overhead)
				event.stopPropagation();

				// Only trigger if we've ever bound an event for it
				if (jQuery.event.global[type]) {
					jQuery.each(jQuery.cache, function() {
						if (this.events && this.events[type]) {
							jQuery.event.trigger(event, data, this.handle.elem);
						}
					});
				}
			}

			// Handle triggering a single element

			// don't do events on text and comment nodes
			if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
				return undefined;
			}

			// Clean up in case it is reused
			event.result = undefined;
			event.target = elem;

			// Clone the incoming data, if any
			data = jQuery.makeArray(data);
			data.unshift(event);
		}

		event.currentTarget = elem;

		// Trigger the event, it is assumed that "handle" is a function
		var handle = jQuery.data(elem, "handle");
		if (handle) {
			handle.apply(elem, data);
		}

		var parent = elem.parentNode || elem.ownerDocument;

		// Trigger an inline bound script
		try {
			if (!(elem && elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()])) {
				if (elem["on" + type] && elem["on" + type].apply(elem, data) === false) {
					event.result = false;
				}
			}

		// prevent IE from throwing an error for some elements with some event types, see #3533
		} catch (e) {}

		if (!event.isPropagationStopped() && parent) {
			jQuery.event.trigger(event, data, parent, true);

		} else if (!event.isDefaultPrevented()) {
			var target = event.target, old,
				isClick = jQuery.nodeName(target, "a") && type === "click",
				special = jQuery.event.special[type] || {};

			if ((!special._default || special._default.call(elem, event) === false) &&
				!isClick && !(target && target.nodeName && jQuery.noData[target.nodeName.toLowerCase()])) {

				try {
					if (target[type]) {
						// Make sure that we don't accidentally re-trigger the onFOO events
						old = target["on" + type];

						if (old) {
							target["on" + type] = null;
						}

						jQuery.event.triggered = true;
						target[type]();
					}

				// prevent IE from throwing an error for some elements with some event types, see #3533
				} catch (e) {}

				if (old) {
					target["on" + type] = old;
				}

				jQuery.event.triggered = false;
			}
		}
	},

	handle: function(event) {
		var all, handlers, namespaces, namespace, events;

		event = arguments[0] = jQuery.event.fix(event || window.event);
		event.currentTarget = this;

		// Namespaced event handlers
		all = event.type.indexOf(".") < 0 && !event.exclusive;

		if (!all) {
			namespaces = event.type.split(".");
			event.type = namespaces.shift();
			namespace = new RegExp("(^|\\.)" + namespaces.slice(0).sort().join("\\.(?:.*\\.)?") + "(\\.|$)");
		}

		var events = jQuery.data(this, "events"), handlers = events[event.type];

		if (events && handlers) {
			// Clone the handlers to prevent manipulation
			handlers = handlers.slice(0);

			for (var j = 0, l = handlers.length; j < l; j++) {
				var handleObj = handlers[j];

				// Filter the functions by class
				if (all || namespace.test(handleObj.namespace)) {
					// Pass in a reference to the handler function itself
					// So that we can later remove it
					event.handler = handleObj.handler;
					event.data = handleObj.data;
					event.handleObj = handleObj;
	
					var ret = handleObj.handler.apply(this, arguments);

					if (ret !== undefined) {
						event.result = ret;
						if (ret === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}

					if (event.isImmediatePropagationStopped()) {
						break;
					}
				}
			}
		}

		return event.result;
	},

	props: "altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY originalTarget pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),

	fix: function(event) {
		if (event[expando]) {
			return event;
		}

		// store a copy of the original event object
		// and "clone" to set read-only properties
		var originalEvent = event;
		event = jQuery.Event(originalEvent);

		for (var i = this.props.length, prop; i;) {
			prop = this.props[--i];
			event[prop] = originalEvent[prop];
		}

		// Fix target property, if necessary
		if (!event.target) {
			event.target = event.srcElement || document; // Fixes #1925 where srcElement might not be defined either
		}

		// check if target is a textnode (safari)
		if (event.target.nodeType === 3) {
			event.target = event.target.parentNode;
		}

		// Add relatedTarget, if necessary
		if (!event.relatedTarget && event.fromElement) {
			event.relatedTarget = event.fromElement === event.target ? event.toElement : event.fromElement;
		}

		// Calculate pageX/Y if missing and clientX/Y available
		if (event.pageX == null && event.clientX != null) {
			var doc = document.documentElement, body = document.body;
			event.pageX = event.clientX + (doc && doc.scrollLeft || body && body.scrollLeft || 0) - (doc && doc.clientLeft || body && body.clientLeft || 0);
			event.pageY = event.clientY + (doc && doc.scrollTop || body && body.scrollTop || 0) - (doc && doc.clientTop || body && body.clientTop || 0);
		}

		// Add which for key events
		if (!event.which && ((event.charCode || event.charCode === 0) ? event.charCode : event.keyCode)) {
			event.which = event.charCode || event.keyCode;
		}

		// Add metaKey to non-Mac browsers (use ctrl for PC's and Meta for Macs)
		if (!event.metaKey && event.ctrlKey) {
			event.metaKey = event.ctrlKey;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		// Note: button is not normalized, so don't use it
		if (!event.which && event.button !== undefined) {
			event.which = (event.button & 1 ? 1 : (event.button & 2 ? 3 : (event.button & 4 ? 2 : 0)));
		}

		return event;
	},

	// Deprecated, use jQuery.guid instead
	guid: 1E8,

	// Deprecated, use jQuery.proxy instead
	proxy: jQuery.proxy,

	special: {
		ready: {
			// Make sure the ready event is setup
			setup: jQuery.bindReady,
			teardown: jQuery.noop
		},

		live: {
			add: function(handleObj) {
				jQuery.event.add(this, handleObj.origType, jQuery.extend({}, handleObj, {handler: liveHandler}));
			},

			remove: function(handleObj) {
				var remove = true,
					type = handleObj.origType.replace(rnamespaces, "");
				
				jQuery.each(jQuery.data(this, "events").live || [], function() {
					if (type === this.origType.replace(rnamespaces, "")) {
						remove = false;
						return false;
					}
				});

				if (remove) {
					jQuery.event.remove(this, handleObj.origType, liveHandler);
				}
			}

		},

		beforeunload: {
			setup: function(data, namespaces, eventHandle) {
				// We only want to do this special case on windows
				if (this.setInterval) {
					this.onbeforeunload = eventHandle;
				}

				return false;
			},
			teardown: function(namespaces, eventHandle) {
				if (this.onbeforeunload === eventHandle) {
					this.onbeforeunload = null;
				}
			}
		}
	}
};

var removeEvent = document.removeEventListener ?
	function(elem, type, handle) {
		elem.removeEventListener(type, handle, false);
	} :
	function(elem, type, handle) {
		elem.detachEvent("on" + type, handle);
	};

jQuery.Event = function(src) {
	// Allow instantiation without the 'new' keyword
	if (!this.preventDefault) {
		return new jQuery.Event(src);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;
	// Event type
	} else {
		this.type = src;
	}

	// timeStamp is buggy for some events on Firefox(#3843)
	// So we won't rely on the native value
	this.timeStamp = now();

	// Mark it as fixed
	this[expando] = true;
};

function returnFalse() {
	return false;
}
function returnTrue() {
	return true;
}

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	preventDefault: function() {
		this.isDefaultPrevented = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		
		// if preventDefault exists run it on the original event
		if (e.preventDefault) {
			e.preventDefault();
		}
		// otherwise set the returnValue property of the original event to false (IE)
		e.returnValue = false;
	},
	stopPropagation: function() {
		this.isPropagationStopped = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		// if stopPropagation exists run it on the original event
		if (e.stopPropagation) {
			e.stopPropagation();
		}
		// otherwise set the cancelBubble property of the original event to true (IE)
		e.cancelBubble = true;
	},
	stopImmediatePropagation: function() {
		this.isImmediatePropagationStopped = returnTrue;
		this.stopPropagation();
	},
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse
};

// Checks if an event happened on an element within another element
// Used in jQuery.event.special.mouseenter and mouseleave handlers
var withinElement = function(event) {
	// Check if mouse(over|out) are still within the same parent element
	var parent = event.relatedTarget;

	// Firefox sometimes assigns relatedTarget a XUL element
	// which we cannot access the parentNode property of
	try {
		// Traverse up the tree
		while (parent && parent !== this) {
			parent = parent.parentNode;
		}

		if (parent !== this) {
			// set the correct event type
			event.type = event.data;

			// handle event if we actually just moused on to a non sub-element
			jQuery.event.handle.apply(this, arguments);
		}

	// assuming we've left the element since we most likely mousedover a xul element
	} catch(e) { }
},

// In case of event delegation, we only need to rename the event.type,
// liveHandler will take care of the rest.
delegate = function(event) {
	event.type = event.data;
	jQuery.event.handle.apply(this, arguments);
};

// Create mouseenter and mouseleave events
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		setup: function(data) {
			jQuery.event.add(this, fix, data && data.selector ? delegate : withinElement, orig);
		},
		teardown: function(data) {
			jQuery.event.remove(this, fix, data && data.selector ? delegate : withinElement);
		}
	};
});

// submit delegation
if (!jQuery.support.submitBubbles) {

	jQuery.event.special.submit = {
		setup: function(data, namespaces) {
			if (this.nodeName.toLowerCase() !== "form") {
				jQuery.event.add(this, "click.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "submit" || type === "image") && jQuery(elem).closest("form").length) {
						return trigger("submit", this, arguments);
					}
				});
	
				jQuery.event.add(this, "keypress.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "text" || type === "password") && jQuery(elem).closest("form").length && e.keyCode === 13) {
						return trigger("submit", this, arguments);
					}
				});

			} else {
				return false;
			}
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialSubmit");
		}
	};

}

// change delegation, happens here so we have bind.
if (!jQuery.support.changeBubbles) {

	var formElems = /textarea|input|select/i,

	changeFilters,

	getVal = function(elem) {
		var type = elem.type, val = elem.value;

		if (type === "radio" || type === "checkbox") {
			val = elem.checked;

		} else if (type === "select-multiple") {
			val = elem.selectedIndex > -1 ?
				jQuery.map(elem.options, function(elem) {
					return elem.selected;
				}).join("-") :
				"";

		} else if (elem.nodeName.toLowerCase() === "select") {
			val = elem.selectedIndex;
		}

		return val;
	},

	testChange = function testChange(e) {
		var elem = e.target, data, val;

		if (!formElems.test(elem.nodeName) || elem.readOnly) {
			return;
		}

		data = jQuery.data(elem, "_change_data");
		val = getVal(elem);

		// the current data will be also retrieved by beforeactivate
		if (e.type !== "focusout" || elem.type !== "radio") {
			jQuery.data(elem, "_change_data", val);
		}
		
		if (data === undefined || val === data) {
			return;
		}

		if (data != null || val) {
			e.type = "change";
			return jQuery.event.trigger(e, arguments[1], elem);
		}
	};

	jQuery.event.special.change = {
		filters: {
			focusout: testChange,

			click: function(e) {
				var elem = e.target, type = elem.type;

				if (type === "radio" || type === "checkbox" || elem.nodeName.toLowerCase() === "select") {
					return testChange.call(this, e);
				}
			},

			// Change has to be called before submit
			// Keydown will be called before keypress, which is used in submit-event delegation
			keydown: function(e) {
				var elem = e.target, type = elem.type;

				if ((e.keyCode === 13 && elem.nodeName.toLowerCase() !== "textarea") ||
					(e.keyCode === 32 && (type === "checkbox" || type === "radio")) ||
					type === "select-multiple") {
					return testChange.call(this, e);
				}
			},

			// Beforeactivate happens also before the previous element is blurred
			// with this event you can't trigger a change event, but you can store
			// information/focus[in] is not needed anymore
			beforeactivate: function(e) {
				var elem = e.target;
				jQuery.data(elem, "_change_data", getVal(elem));
			}
		},

		setup: function(data, namespaces) {
			if (this.type === "file") {
				return false;
			}

			for (var type in changeFilters) {
				jQuery.event.add(this, type + ".specialChange", changeFilters[type]);
			}

			return formElems.test(this.nodeName);
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialChange");

			return formElems.test(this.nodeName);
		}
	};

	changeFilters = jQuery.event.special.change.filters;
}

function trigger(type, elem, args) {
	args[0].type = type;
	return jQuery.event.handle.apply(elem, args);
}

// Create "bubbling" focus and blur events
if (document.addEventListener) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {
		jQuery.event.special[fix] = {
			setup: function() {
				this.addEventListener(orig, handler, true);
			},
			teardown: function() {
				this.removeEventListener(orig, handler, true);
			}
		};

		function handler(e) {
			e = jQuery.event.fix(e);
			e.type = fix;
			return jQuery.event.handle.call(this, e);
		}
	});
}

jQuery.each(["bind", "one"], function(i, name) {
	jQuery.fn[name] = function(type, data, fn) {
		// Handle object literals
		if (typeof type === "object") {
			for (var key in type) {
				this[name](key, data, type[key], fn);
			}
			return this;
		}
		
		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		var handler = name === "one" ? jQuery.proxy(fn, function(event) {
			jQuery(this).unbind(event, handler);
			return fn.apply(this, arguments);
		}) : fn;

		if (type === "unload" && name !== "one") {
			this.one(type, data, fn);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.add(this[i], type, handler, data);
			}
		}

		return this;
	};
});

jQuery.fn.extend({
	unbind: function(type, fn) {
		// Handle object literals
		if (typeof type === "object" && !type.preventDefault) {
			for (var key in type) {
				this.unbind(key, type[key]);
			}

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.remove(this[i], type, fn);
			}
		}

		return this;
	},
	
	delegate: function(selector, types, data, fn) {
		return this.live(types, data, fn, selector);
	},
	
	undelegate: function(selector, types, fn) {
		if (arguments.length === 0) {
				return this.unbind("live");
		
		} else {
			return this.die(types, null, fn, selector);
		}
	},
	
	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},

	triggerHandler: function(type, data) {
		if (this[0]) {
			var event = jQuery.Event(type);
			event.preventDefault();
			event.stopPropagation();
			jQuery.event.trigger(event, data, this[0]);
			return event.result;
		}
	},

	toggle: function(fn) {
		// Save reference to arguments for access in closure
		var args = arguments, i = 1;

		// link all the functions, so any of them can unbind this click handler
		while (i < args.length) {
			jQuery.proxy(fn, args[i++]);
		}

		return this.click(jQuery.proxy(fn, function(event) {
			// Figure out which function to execute
			var lastToggle = (jQuery.data(this, "lastToggle" + fn.guid) || 0) % i;
			jQuery.data(this, "lastToggle" + fn.guid, lastToggle + 1);

			// Make sure that clicks stop
			event.preventDefault();

			// and execute the function
			return args[lastToggle].apply(this, arguments) || false;
		}));
	},

	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

var liveMap = {
	focus: "focusin",
	blur: "focusout",
	mouseenter: "mouseover",
	mouseleave: "mouseout"
};

jQuery.each(["live", "die"], function(i, name) {
	jQuery.fn[name] = function(types, data, fn, origSelector /* Internal Use Only */) {
		var type, i = 0, match, namespaces, preType,
			selector = origSelector || this.selector,
			context = origSelector ? this : jQuery(this.context);

		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		types = (types || "").split(" ");

		while ((type = types[i++]) != null) {
			match = rnamespaces.exec(type);
			namespaces = "";

			if (match) {
				namespaces = match[0];
				type = type.replace(rnamespaces, "");
			}

			if (type === "hover") {
				types.push("mouseenter" + namespaces, "mouseleave" + namespaces);
				continue;
			}

			preType = type;

			if (type === "focus" || type === "blur") {
				types.push(liveMap[type] + namespaces);
				type = type + namespaces;

			} else {
				type = (liveMap[type] || type) + namespaces;
			}

			if (name === "live") {
				// bind live handler
				context.each(function(){
					jQuery.event.add(this, liveConvert(type, selector),
						{ data: data, selector: selector, handler: fn, origType: type, origHandler: fn, preType: preType });
				});

			} else {
				// unbind live handler
				context.unbind(liveConvert(type, selector), fn);
			}
		}
		
		return this;
	}
});

function liveHandler(event) {
	var stop, elems = [], selectors = [], args = arguments,
		related, match, handleObj, elem, j, i, l, data,
		events = jQuery.data(this, "events");

	// Make sure we avoid non-left-click bubbling in Firefox (#3861)
	if (event.liveFired === this || !events || !events.live || event.button && event.type === "click") {
		return;
	}

	event.liveFired = this;

	var live = events.live.slice(0);

	for (j = 0; j < live.length; j++) {
		handleObj = live[j];

		if (handleObj.origType.replace(rnamespaces, "") === event.type) {
			selectors.push(handleObj.selector);

		} else {
			live.splice(j--, 1);
		}
	}

	match = jQuery(event.target).closest(selectors, event.currentTarget);

	for (i = 0, l = match.length; i < l; i++) {
		for (j = 0; j < live.length; j++) {
			handleObj = live[j];

			if (match[i].selector === handleObj.selector) {
				elem = match[i].elem;
				related = null;

				// Those two events require additional checking
				if (handleObj.preType === "mouseenter" || handleObj.preType === "mouseleave") {
					related = jQuery(event.relatedTarget).closest(handleObj.selector)[0];
				}

				if (!related || related !== elem) {
					elems.push({ elem: elem, handleObj: handleObj });
				}
			}
		}
	}

	for (i = 0, l = elems.length; i < l; i++) {
		match = elems[i];
		event.currentTarget = match.elem;
		event.data = match.handleObj.data;
		event.handleObj = match.handleObj;

		if (match.handleObj.origHandler.apply(match.elem, args) === false) {
			stop = false;
			break;
		}
	}

	return stop;
}

function liveConvert(type, selector) {
	return "live." + (type && type !== "*" ? type + "." : "") + selector.replace(/\./g, "`").replace(/ /g, "&");
}

jQuery.each(("blur focus focusin focusout load resize scroll unload click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup error").split(" "), function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(fn) {
		return fn ? this.bind(name, fn) : this.trigger(name);
	};

	if (jQuery.attrFn) {
		jQuery.attrFn[name] = true;
	}
});

// Prevent memory leaks in IE
// Window isn't included so as not to unbind existing unload events
// More info:
// - http://isaacschlueter.com/2006/10/msie-memory-leaks/
if (window.attachEvent && !window.addEventListener) {
	window.attachEvent("onunload", function() {
		for (var id in jQuery.cache) {
			if (jQuery.cache[id].handle) {
				// Try/Catch is to handle iframes being unloaded, see #4280
				try {
					jQuery.event.remove(jQuery.cache[id].handle.elem);
				} catch(e) {}
			}
		}
	});
}
/*!
 * Sizzle CSS Selector Engine - v1.0
 * Copyright 2009, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 * More information: http://sizzlejs.com/
 */
(function(){

var chunker = /((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^[\]]*\]|['"][^'"]*['"]|[^[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,
	done = 0,
	toString = Object.prototype.toString,
	hasDuplicate = false,
	baseHasDuplicate = true;

// Here we check if the JavaScript engine is using some sort of
// optimization where it does not always call our comparision
// function. If that is the case, discard the hasDuplicate value.
// Thus far that includes Google Chrome.
[0, 0].sort(function(){
	baseHasDuplicate = false;
	return 0;
});

var Sizzle = function(selector, context, results, seed) {
	results = results || [];
	var origContext = context = context || document;

	if (context.nodeType !== 1 && context.nodeType !== 9) {
		return [];
	}
	
	if (!selector || typeof selector !== "string") {
		return results;
	}

	var parts = [], m, set, checkSet, extra, prune = true, contextXML = isXML(context),
		soFar = selector;
	
	// Reset the position of the chunker regexp (start from head)
	while ((chunker.exec(""), m = chunker.exec(soFar)) !== null) {
		soFar = m[3];
		
		parts.push(m[1]);
		
		if (m[2]) {
			extra = m[3];
			break;
		}
	}

	if (parts.length > 1 && origPOS.exec(selector)) {
		if (parts.length === 2 && Expr.relative[parts[0]]) {
			set = posProcess(parts[0] + parts[1], context);
		} else {
			set = Expr.relative[parts[0]] ?
				[context] :
				Sizzle(parts.shift(), context);

			while (parts.length) {
				selector = parts.shift();

				if (Expr.relative[selector]) {
					selector += parts.shift();
				}
				
				set = posProcess(selector, set);
			}
		}
	} else {
		// Take a shortcut and set the context if the root selector is an ID
		// (but not if it'll be faster if the inner selector is an ID)
		if (!seed && parts.length > 1 && context.nodeType === 9 && !contextXML &&
				Expr.match.ID.test(parts[0]) && !Expr.match.ID.test(parts[parts.length - 1])) {
			var ret = Sizzle.find(parts.shift(), context, contextXML);
			context = ret.expr ? Sizzle.filter(ret.expr, ret.set)[0] : ret.set[0];
		}

		if (context) {
			var ret = seed ?
				{ expr: parts.pop(), set: makeArray(seed) } :
				Sizzle.find(parts.pop(), parts.length === 1 && (parts[0] === "~" || parts[0] === "+") && context.parentNode ? context.parentNode : context, contextXML);
			set = ret.expr ? Sizzle.filter(ret.expr, ret.set) : ret.set;

			if (parts.length > 0) {
				checkSet = makeArray(set);
			} else {
				prune = false;
			}

			while (parts.length) {
				var cur = parts.pop(), pop = cur;

				if (!Expr.relative[cur]) {
					cur = "";
				} else {
					pop = parts.pop();
				}

				if (pop == null) {
					pop = context;
				}

				Expr.relative[cur](checkSet, pop, contextXML);
			}
		} else {
			checkSet = parts = [];
		}
	}

	if (!checkSet) {
		checkSet = set;
	}

	if (!checkSet) {
		Sizzle.error(cur || selector);
	}

	if (toString.call(checkSet) === "[object Array]") {
		if (!prune) {
			results.push.apply(results, checkSet);
		} else if (context && context.nodeType === 1) {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && (checkSet[i] === true || checkSet[i].nodeType === 1 && contains(context, checkSet[i]))) {
					results.push(set[i]);
				}
			}
		} else {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && checkSet[i].nodeType === 1) {
					results.push(set[i]);
				}
			}
		}
	} else {
		makeArray(checkSet, results);
	}

	if (extra) {
		Sizzle(extra, origContext, results, seed);
		Sizzle.uniqueSort(results);
	}

	return results;
};

Sizzle.uniqueSort = function(results){
	if (sortOrder) {
		hasDuplicate = baseHasDuplicate;
		results.sort(sortOrder);

		if (hasDuplicate) {
			for (var i = 1; i < results.length; i++) {
				if (results[i] === results[i-1]) {
					results.splice(i--, 1);
				}
			}
		}
	}

	return results;
};

Sizzle.matches = function(expr, set){
	return Sizzle(expr, null, null, set);
};

Sizzle.find = function(expr, context, isXML){
	var set, match;

	if (!expr) {
		return [];
	}

	for (var i = 0, l = Expr.order.length; i < l; i++) {
		var type = Expr.order[i], match;
		
		if ((match = Expr.leftMatch[type].exec(expr))) {
			var left = match[1];
			match.splice(1,1);

			if (left.substr(left.length - 1) !== "\\") {
				match[1] = (match[1] || "").replace(/\\/g, "");
				set = Expr.find[type](match, context, isXML);
				if (set != null) {
					expr = expr.replace(Expr.match[type], "");
					break;
				}
			}
		}
	}

	if (!set) {
		set = context.getElementsByTagName("*");
	}

	return {set: set, expr: expr};
};

Sizzle.filter = function(expr, set, inplace, not){
	var old = expr, result = [], curLoop = set, match, anyFound,
		isXMLFilter = set && set[0] && isXML(set[0]);

	while (expr && set.length) {
		for (var type in Expr.filter) {
			if ((match = Expr.leftMatch[type].exec(expr)) != null && match[2]) {
				var filter = Expr.filter[type], found, item, left = match[1];
				anyFound = false;

				match.splice(1,1);

				if (left.substr(left.length - 1) === "\\") {
					continue;
				}

				if (curLoop === result) {
					result = [];
				}

				if (Expr.preFilter[type]) {
					match = Expr.preFilter[type](match, curLoop, inplace, result, not, isXMLFilter);

					if (!match) {
						anyFound = found = true;
					} else if (match === true) {
						continue;
					}
				}

				if (match) {
					for (var i = 0; (item = curLoop[i]) != null; i++) {
						if (item) {
							found = filter(item, match, i, curLoop);
							var pass = not ^ !!found;

							if (inplace && found != null) {
								if (pass) {
									anyFound = true;
								} else {
									curLoop[i] = false;
								}
							} else if (pass) {
								result.push(item);
								anyFound = true;
							}
						}
					}
				}

				if (found !== undefined) {
					if (!inplace) {
						curLoop = result;
					}

					expr = expr.replace(Expr.match[type], "");

					if (!anyFound) {
						return [];
					}

					break;
				}
			}
		}

		// Improper expression
		if (expr === old) {
			if (anyFound == null) {
				Sizzle.error(expr);
			} else {
				break;
			}
		}

		old = expr;
	}

	return curLoop;
};

Sizzle.error = function(msg) {
	throw "Syntax error, unrecognized expression: " + msg;
};

var Expr = Sizzle.selectors = {
	order: ["ID", "NAME", "TAG"],
	match: {
		ID: /#((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		CLASS: /\.((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		NAME: /\[name=['"]*((?:[\w\u00c0-\uFFFF-]|\\.)+)['"]*\]/,
		ATTR: /\[\s*((?:[\w\u00c0-\uFFFF-]|\\.)+)\s*(?:(\S?=)\s*(['"]*)(.*?)\3|)\s*\]/,
		TAG: /^((?:[\w\u00c0-\uFFFF*-]|\\.)+)/,
		CHILD: /:(only|nth|last|first)-child(?:\((even|odd|[\dn+-]*)\))?/,
		POS: /:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^-]|$)/,
		PSEUDO: /:((?:[\w\u00c0-\uFFFF-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/
	},
	leftMatch: {},
	attrMap: {
		"class": "className",
		"for": "htmlFor"
	},
	attrHandle: {
		href: function(elem){
			return elem.getAttribute("href");
		}
	},
	relative: {
		"+": function(checkSet, part){
			var isPartStr = typeof part === "string",
				isTag = isPartStr && !/\W/.test(part),
				isPartStrNotTag = isPartStr && !isTag;

			if (isTag) {
				part = part.toLowerCase();
			}

			for (var i = 0, l = checkSet.length, elem; i < l; i++) {
				if ((elem = checkSet[i])) {
					while ((elem = elem.previousSibling) && elem.nodeType !== 1) {}

					checkSet[i] = isPartStrNotTag || elem && elem.nodeName.toLowerCase() === part ?
						elem || false :
						elem === part;
				}
			}

			if (isPartStrNotTag) {
				Sizzle.filter(part, checkSet, true);
			}
		},
		">": function(checkSet, part){
			var isPartStr = typeof part === "string";

			if (isPartStr && !/\W/.test(part)) {
				part = part.toLowerCase();

				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						var parent = elem.parentNode;
						checkSet[i] = parent.nodeName.toLowerCase() === part ? parent : false;
					}
				}
			} else {
				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						checkSet[i] = isPartStr ?
							elem.parentNode :
							elem.parentNode === part;
					}
				}

				if (isPartStr) {
					Sizzle.filter(part, checkSet, true);
				}
			}
		},
		"": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("parentNode", part, doneName, checkSet, nodeCheck, isXML);
		},
		"~": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("previousSibling", part, doneName, checkSet, nodeCheck, isXML);
		}
	},
	find: {
		ID: function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? [m] : [];
			}
		},
		NAME: function(match, context){
			if (typeof context.getElementsByName !== "undefined") {
				var ret = [], results = context.getElementsByName(match[1]);

				for (var i = 0, l = results.length; i < l; i++) {
					if (results[i].getAttribute("name") === match[1]) {
						ret.push(results[i]);
					}
				}

				return ret.length === 0 ? null : ret;
			}
		},
		TAG: function(match, context){
			return context.getElementsByTagName(match[1]);
		}
	},
	preFilter: {
		CLASS: function(match, curLoop, inplace, result, not, isXML){
			match = " " + match[1].replace(/\\/g, "") + " ";

			if (isXML) {
				return match;
			}

			for (var i = 0, elem; (elem = curLoop[i]) != null; i++) {
				if (elem) {
					if (not ^ (elem.className && (" " + elem.className + " ").replace(/[\t\n]/g, " ").indexOf(match) >= 0)) {
						if (!inplace) {
							result.push(elem);
						}
					} else if (inplace) {
						curLoop[i] = false;
					}
				}
			}

			return false;
		},
		ID: function(match){
			return match[1].replace(/\\/g, "");
		},
		TAG: function(match, curLoop){
			return match[1].toLowerCase();
		},
		CHILD: function(match){
			if (match[1] === "nth") {
				// parse equations like 'even', 'odd', '5', '2n', '3n+2', '4n-1', '-n+6'
				var test = /(-?)(\d*)n((?:\+|-)?\d*)/.exec(
					match[2] === "even" && "2n" || match[2] === "odd" && "2n+1" ||
					!/\D/.test(match[2]) && "0n+" + match[2] || match[2]);

				// calculate the numbers (first)n+(last) including if they are negative
				match[2] = (test[1] + (test[2] || 1)) - 0;
				match[3] = test[3] - 0;
			}

			// TODO: Move to normal caching system
			match[0] = done++;

			return match;
		},
		ATTR: function(match, curLoop, inplace, result, not, isXML){
			var name = match[1].replace(/\\/g, "");
			
			if (!isXML && Expr.attrMap[name]) {
				match[1] = Expr.attrMap[name];
			}

			if (match[2] === "~=") {
				match[4] = " " + match[4] + " ";
			}

			return match;
		},
		PSEUDO: function(match, curLoop, inplace, result, not){
			if (match[1] === "not") {
				// If we're dealing with a complex expression, or a simple one
				if ((chunker.exec(match[3]) || "").length > 1 || /^\w/.test(match[3])) {
					match[3] = Sizzle(match[3], null, null, curLoop);
				} else {
					var ret = Sizzle.filter(match[3], curLoop, inplace, true ^ not);
					if (!inplace) {
						result.push.apply(result, ret);
					}
					return false;
				}
			} else if (Expr.match.POS.test(match[0]) || Expr.match.CHILD.test(match[0])) {
				return true;
			}
			
			return match;
		},
		POS: function(match){
			match.unshift(true);
			return match;
		}
	},
	filters: {
		enabled: function(elem){
			return elem.disabled === false && elem.type !== "hidden";
		},
		disabled: function(elem){
			return elem.disabled === true;
		},
		checked: function(elem){
			return elem.checked === true;
		},
		selected: function(elem){
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			elem.parentNode.selectedIndex;
			return elem.selected === true;
		},
		parent: function(elem){
			return !!elem.firstChild;
		},
		empty: function(elem){
			return !elem.firstChild;
		},
		has: function(elem, i, match){
			return !!Sizzle(match[3], elem).length;
		},
		header: function(elem){
			return /h\d/i.test(elem.nodeName);
		},
		text: function(elem){
			return "text" === elem.type;
		},
		radio: function(elem){
			return "radio" === elem.type;
		},
		checkbox: function(elem){
			return "checkbox" === elem.type;
		},
		file: function(elem){
			return "file" === elem.type;
		},
		password: function(elem){
			return "password" === elem.type;
		},
		submit: function(elem){
			return "submit" === elem.type;
		},
		image: function(elem){
			return "image" === elem.type;
		},
		reset: function(elem){
			return "reset" === elem.type;
		},
		button: function(elem){
			return "button" === elem.type || elem.nodeName.toLowerCase() === "button";
		},
		input: function(elem){
			return /input|select|textarea|button/i.test(elem.nodeName);
		}
	},
	setFilters: {
		first: function(elem, i){
			return i === 0;
		},
		last: function(elem, i, match, array){
			return i === array.length - 1;
		},
		even: function(elem, i){
			return i % 2 === 0;
		},
		odd: function(elem, i){
			return i % 2 === 1;
		},
		lt: function(elem, i, match){
			return i < match[3] - 0;
		},
		gt: function(elem, i, match){
			return i > match[3] - 0;
		},
		nth: function(elem, i, match){
			return match[3] - 0 === i;
		},
		eq: function(elem, i, match){
			return match[3] - 0 === i;
		}
	},
	filter: {
		PSEUDO: function(elem, match, i, array){
			var name = match[1], filter = Expr.filters[name];

			if (filter) {
				return filter(elem, i, match, array);
			} else if (name === "contains") {
				return (elem.textContent || elem.innerText || getText([elem]) || "").indexOf(match[3]) >= 0;
			} else if (name === "not") {
				var not = match[3];

				for (var i = 0, l = not.length; i < l; i++) {
					if (not[i] === elem) {
						return false;
					}
				}

				return true;
			} else {
				Sizzle.error("Syntax error, unrecognized expression: " + name);
			}
		},
		CHILD: function(elem, match){
			var type = match[1], node = elem;
			switch (type) {
				case 'only':
				case 'first':
					while ((node = node.previousSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					if (type === "first") {
						return true;
					}
					node = elem;
				case 'last':
					while ((node = node.nextSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					return true;
				case 'nth':
					var first = match[2], last = match[3];

					if (first === 1 && last === 0) {
						return true;
					}
					
					var doneName = match[0],
						parent = elem.parentNode;
	
					if (parent && (parent.sizcache !== doneName || !elem.nodeIndex)) {
						var count = 0;
						for (node = parent.firstChild; node; node = node.nextSibling) {
							if (node.nodeType === 1) {
								node.nodeIndex = ++count;
							}
						}
						parent.sizcache = doneName;
					}
					
					var diff = elem.nodeIndex - last;
					if (first === 0) {
						return diff === 0;
					} else {
						return (diff % first === 0 && diff / first >= 0);
					}
			}
		},
		ID: function(elem, match){
			return elem.nodeType === 1 && elem.getAttribute("id") === match;
		},
		TAG: function(elem, match){
			return (match === "*" && elem.nodeType === 1) || elem.nodeName.toLowerCase() === match;
		},
		CLASS: function(elem, match){
			return (" " + (elem.className || elem.getAttribute("class")) + " ")
				.indexOf(match) > -1;
		},
		ATTR: function(elem, match){
			var name = match[1],
				result = Expr.attrHandle[name] ?
					Expr.attrHandle[name](elem) :
					elem[name] != null ?
						elem[name] :
						elem.getAttribute(name),
				value = result + "",
				type = match[2],
				check = match[4];

			return result == null ?
				type === "!=" :
				type === "=" ?
				value === check :
				type === "*=" ?
				value.indexOf(check) >= 0 :
				type === "~=" ?
				(" " + value + " ").indexOf(check) >= 0 :
				!check ?
				value && result !== false :
				type === "!=" ?
				value !== check :
				type === "^=" ?
				value.indexOf(check) === 0 :
				type === "$=" ?
				value.substr(value.length - check.length) === check :
				type === "|=" ?
				value === check || value.substr(0, check.length + 1) === check + "-" :
				false;
		},
		POS: function(elem, match, i, array){
			var name = match[2], filter = Expr.setFilters[name];

			if (filter) {
				return filter(elem, i, match, array);
			}
		}
	}
};

var origPOS = Expr.match.POS;

for (var type in Expr.match) {
	Expr.match[type] = new RegExp(Expr.match[type].source + /(?![^\[]*\])(?![^\(]*\))/.source);
	Expr.leftMatch[type] = new RegExp(/(^(?:.|\r|\n)*?)/.source + Expr.match[type].source.replace(/\\(\d+)/g, function(all, num){
		return "\\" + (num - 0 + 1);
	}));
}

var makeArray = function(array, results) {
	array = Array.prototype.slice.call(array, 0);

	if (results) {
		results.push.apply(results, array);
		return results;
	}
	
	return array;
};

// Perform a simple check to determine if the browser is capable of
// converting a NodeList to an array using builtin methods.
// Also verifies that the returned array holds DOM nodes
// (which is not the case in the Blackberry browser)
try {
	Array.prototype.slice.call(document.documentElement.childNodes, 0)[0].nodeType;

// Provide a fallback method if it does not work
} catch(e){
	makeArray = function(array, results) {
		var ret = results || [];

		if (toString.call(array) === "[object Array]") {
			Array.prototype.push.apply(ret, array);
		} else {
			if (typeof array.length === "number") {
				for (var i = 0, l = array.length; i < l; i++) {
					ret.push(array[i]);
				}
			} else {
				for (var i = 0; array[i]; i++) {
					ret.push(array[i]);
				}
			}
		}

		return ret;
	};
}

var sortOrder;

if (document.documentElement.compareDocumentPosition) {
	sortOrder = function(a, b) {
		if (!a.compareDocumentPosition || !b.compareDocumentPosition) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.compareDocumentPosition ? -1 : 1;
		}

		var ret = a.compareDocumentPosition(b) & 4 ? -1 : a === b ? 0 : 1;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if ("sourceIndex" in document.documentElement) {
	sortOrder = function(a, b) {
		if (!a.sourceIndex || !b.sourceIndex) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.sourceIndex ? -1 : 1;
		}

		var ret = a.sourceIndex - b.sourceIndex;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if (document.createRange) {
	sortOrder = function(a, b) {
		if (!a.ownerDocument || !b.ownerDocument) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.ownerDocument ? -1 : 1;
		}

		var aRange = a.ownerDocument.createRange(), bRange = b.ownerDocument.createRange();
		aRange.setStart(a, 0);
		aRange.setEnd(a, 0);
		bRange.setStart(b, 0);
		bRange.setEnd(b, 0);
		var ret = aRange.compareBoundaryPoints(Range.START_TO_END, bRange);
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
}

// Utility function for retreiving the text value of an array of DOM nodes
function getText(elems) {
	var ret = "", elem;

	for (var i = 0; elems[i]; i++) {
		elem = elems[i];

		// Get the text from text nodes and CDATA nodes
		if (elem.nodeType === 3 || elem.nodeType === 4) {
			ret += elem.nodeValue;

		// Traverse everything else, except comment nodes
		} else if (elem.nodeType !== 8) {
			ret += getText(elem.childNodes);
		}
	}

	return ret;
}

// Check to see if the browser returns elements by name when
// querying by getElementById (and provide a workaround)
(function(){
	// We're going to inject a fake input element with a specified name
	var form = document.createElement("div"),
		id = "script" + (new Date).getTime();
	form.innerHTML = "";

	// Inject it into the root element, check its status, and remove it quickly
	var root = document.documentElement;
	root.insertBefore(form, root.firstChild);

	// The workaround has to do additional checks after a getElementById
	// Which slows things down for other browsers (hence the branching)
	if (document.getElementById(id)) {
		Expr.find.ID = function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? m.id === match[1] || typeof m.getAttributeNode !== "undefined" && m.getAttributeNode("id").nodeValue === match[1] ? [m] : undefined : [];
			}
		};

		Expr.filter.ID = function(elem, match){
			var node = typeof elem.getAttributeNode !== "undefined" && elem.getAttributeNode("id");
			return elem.nodeType === 1 && node && node.nodeValue === match;
		};
	}

	root.removeChild(form);
	root = form = null; // release memory in IE
})();

(function(){
	// Check to see if the browser returns only elements
	// when doing getElementsByTagName("*")

	// Create a fake element
	var div = document.createElement("div");
	div.appendChild(document.createComment(""));

	// Make sure no comments are found
	if (div.getElementsByTagName("*").length > 0) {
		Expr.find.TAG = function(match, context){
			var results = context.getElementsByTagName(match[1]);

			// Filter out possible comments
			if (match[1] === "*") {
				var tmp = [];

				for (var i = 0; results[i]; i++) {
					if (results[i].nodeType === 1) {
						tmp.push(results[i]);
					}
				}

				results = tmp;
			}

			return results;
		};
	}

	// Check to see if an attribute returns normalized href attributes
	div.innerHTML = "";
	if (div.firstChild && typeof div.firstChild.getAttribute !== "undefined" &&
			div.firstChild.getAttribute("href") !== "#") {
		Expr.attrHandle.href = function(elem){
			return elem.getAttribute("href", 2);
		};
	}

	div = null; // release memory in IE
})();

if (document.querySelectorAll) {
	(function(){
		var oldSizzle = Sizzle, div = document.createElement("div");
		div.innerHTML = "<p class='TEST'></p>";

		// Safari can't handle uppercase or unicode characters when
		// in quirks mode.
		if (div.querySelectorAll && div.querySelectorAll(".TEST").length === 0) {
			return;
		}
	
		Sizzle = function(query, context, extra, seed){
			context = context || document;

			// Only use querySelectorAll on non-XML documents
			// (ID selectors don't work in non-HTML documents)
			if (!seed && context.nodeType === 9 && !isXML(context)) {
				try {
					return makeArray(context.querySelectorAll(query), extra);
				} catch(e){}
			}
		
			return oldSizzle(query, context, extra, seed);
		};

		for (var prop in oldSizzle) {
			Sizzle[prop] = oldSizzle[prop];
		}

		div = null; // release memory in IE
	})();
}

(function(){
	var div = document.createElement("div");

	div.innerHTML = "<div class='test e'></div><div class='test'></div>";

	// Opera can't find a second classname (in 9.6)
	// Also, make sure that getElementsByClassName actually exists
	if (!div.getElementsByClassName || div.getElementsByClassName("e").length === 0) {
		return;
	}

	// Safari caches class attributes, doesn't catch changes (in 3.2)
	div.lastChild.className = "e";

	if (div.getElementsByClassName("e").length === 1) {
		return;
	}
	
	Expr.order.splice(1, 0, "CLASS");
	Expr.find.CLASS = function(match, context, isXML) {
		if (typeof context.getElementsByClassName !== "undefined" && !isXML) {
			return context.getElementsByClassName(match[1]);
		}
	};

	div = null; // release memory in IE
})();

function dirNodeCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1 && !isXML){
					elem.sizcache = doneName;
					elem.sizset = i;
				}

				if (elem.nodeName.toLowerCase() === cur) {
					match = elem;
					break;
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

function dirCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1) {
					if (!isXML) {
						elem.sizcache = doneName;
						elem.sizset = i;
					}
					if (typeof cur !== "string") {
						if (elem === cur) {
							match = true;
							break;
						}

					} else if (Sizzle.filter(cur, [elem]).length > 0) {
						match = elem;
						break;
					}
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

var contains = document.compareDocumentPosition ? function(a, b){
	return !!(a.compareDocumentPosition(b) & 16);
} : function(a, b){
	return a !== b && (a.contains ? a.contains(b) : true);
};

var isXML = function(elem){
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = (elem ? elem.ownerDocument || elem : 0).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

var posProcess = function(selector, context){
	var tmpSet = [], later = "", match,
		root = context.nodeType ? [context] : context;

	// Position selectors must be done after the filter
	// And so must :not(positional) so we move all PSEUDOs to the end
	while ((match = Expr.match.PSEUDO.exec(selector))) {
		later += match[0];
		selector = selector.replace(Expr.match.PSEUDO, "");
	}

	selector = Expr.relative[selector] ? selector + "*" : selector;

	for (var i = 0, l = root.length; i < l; i++) {
		Sizzle(selector, root[i], tmpSet);
	}

	return Sizzle.filter(later, tmpSet);
};

// EXPOSE
jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;
jQuery.expr[":"] = jQuery.expr.filters;
jQuery.unique = Sizzle.uniqueSort;
jQuery.text = getText;
jQuery.isXMLDoc = isXML;
jQuery.contains = contains;

return;

window.Sizzle = Sizzle;

})();
var runtil = /Until$/,
	rparentsprev = /^(?:parents|prevUntil|prevAll)/,
	// Note: This RegExp should be improved, or likely pulled from Sizzle
	rmultiselector = /,/,
	slice = Array.prototype.slice;

// Implement the identical functionality for filter and not
var winnow = function(elements, qualifier, keep) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) === keep;
		});

	} else if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem, i) {
			return (elem === qualifier) === keep;
		});

	} else if (typeof qualifier === "string") {
		var filtered = jQuery.grep(elements, function(elem) {
			return elem.nodeType === 1;
		});

		if (isSimple.test(qualifier)) {
			return jQuery.filter(qualifier, filtered, !keep);
		} else {
			qualifier = jQuery.filter(qualifier, filtered);
		}
	}

	return jQuery.grep(elements, function(elem, i) {
		return (jQuery.inArray(elem, qualifier) >= 0) === keep;
	});
};

jQuery.fn.extend({
	find: function(selector) {
		var ret = this.pushStack("", "find", selector), length = 0;

		for (var i = 0, l = this.length; i < l; i++) {
			length = ret.length;
			jQuery.find(selector, this[i], ret);

			if (i > 0) {
				// Make sure that the results are unique
				for (var n = length; n < ret.length; n++) {
					for (var r = 0; r < length; r++) {
						if (ret[r] === ret[n]) {
							ret.splice(n--, 1);
							break;
						}
					}
				}
			}
		}

		return ret;
	},

	has: function(target) {
		var targets = jQuery(target);
		return this.filter(function() {
			for (var i = 0, l = targets.length; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	not: function(selector) {
		return this.pushStack(winnow(this, selector, false), "not", selector);
	},

	filter: function(selector) {
		return this.pushStack(winnow(this, selector, true), "filter", selector);
	},
	
	is: function(selector) {
		return !!selector && jQuery.filter(selector, this).length > 0;
	},

	closest: function(selectors, context) {
		if (jQuery.isArray(selectors)) {
			var ret = [], cur = this[0], match, matches = {}, selector;

			if (cur && selectors.length) {
				for (var i = 0, l = selectors.length; i < l; i++) {
					selector = selectors[i];

					if (!matches[selector]) {
						matches[selector] = jQuery.expr.match.POS.test(selector) ?
							jQuery(selector, context || this.context) :
							selector;
					}
				}

				while (cur && cur.ownerDocument && cur !== context) {
					for (selector in matches) {
						match = matches[selector];

						if (match.jquery ? match.index(cur) > -1 : jQuery(cur).is(match)) {
							ret.push({ selector: selector, elem: cur });
							delete matches[selector];
						}
					}
					cur = cur.parentNode;
				}
			}

			return ret;
		}

		var pos = jQuery.expr.match.POS.test(selectors) ?
			jQuery(selectors, context || this.context) : null;

		return this.map(function(i, cur) {
			while (cur && cur.ownerDocument && cur !== context) {
				if (pos ? pos.index(cur) > -1 : jQuery(cur).is(selectors)) {
					return cur;
				}
				cur = cur.parentNode;
			}
			return null;
		});
	},
	
	// Determine the position of an element within
	// the matched set of elements
	index: function(elem) {
		if (!elem || typeof elem === "string") {
			return jQuery.inArray(this[0],
				// If it receives a string, the selector is used
				// If it receives nothing, the siblings are used
				elem ? jQuery(elem) : this.parent().children());
		}
		// Locate the position of the desired element
		return jQuery.inArray(
			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem, this);
	},

	add: function(selector, context) {
		var set = typeof selector === "string" ?
				jQuery(selector, context || this.context) :
				jQuery.makeArray(selector),
			all = jQuery.merge(this.get(), set);

		return this.pushStack(isDisconnected(set[0]) || isDisconnected(all[0]) ?
			all :
			jQuery.unique(all));
	},

	andSelf: function() {
		return this.add(this.prevObject);
	}
});

// A painfully simple check to see if an element is disconnected
// from a document (should be improved, where feasible).
function isDisconnected(node) {
	return !node || !node.parentNode || node.parentNode.nodeType === 11;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return jQuery.dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return jQuery.dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return jQuery.nth(elem, 2, "nextSibling");
	},
	prev: function(elem) {
		return jQuery.nth(elem, 2, "previousSibling");
	},
	nextAll: function(elem) {
		return jQuery.dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return jQuery.dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return jQuery.dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return jQuery.dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return jQuery.sibling(elem.parentNode.firstChild, elem);
	},
	children: function(elem) {
		return jQuery.sibling(elem.firstChild);
	},
	contents: function(elem) {
		return jQuery.nodeName(elem, "iframe") ?
			elem.contentDocument || elem.contentWindow.document :
			jQuery.makeArray(elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var ret = jQuery.map(this, fn, until);
		
		if (!runtil.test(name)) {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			ret = jQuery.filter(selector, ret);
		}

		ret = this.length > 1 ? jQuery.unique(ret) : ret;

		if ((this.length > 1 || rmultiselector.test(selector)) && rparentsprev.test(name)) {
			ret = ret.reverse();
		}

		return this.pushStack(ret, name, slice.call(arguments).join(","));
	};
});

jQuery.extend({
	filter: function(expr, elems, not) {
		if (not) {
			expr = ":not(" + expr + ")";
		}

		return jQuery.find.matches(expr, elems);
	},
	
	dir: function(elem, dir, until) {
		var matched = [], cur = elem[dir];
		while (cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery(cur).is(until))) {
			if (cur.nodeType === 1) {
				matched.push(cur);
			}
			cur = cur[dir];
		}
		return matched;
	},

	nth: function(cur, result, dir, elem) {
		result = result || 1;
		var num = 0;

		for (; cur; cur = cur[dir]) {
			if (cur.nodeType === 1 && ++num === result) {
				break;
			}
		}

		return cur;
	},

	sibling: function(n, elem) {
		var r = [];

		for (; n; n = n.nextSibling) {
			if (n.nodeType === 1 && n !== elem) {
				r.push(n);
			}
		}

		return r;
	}
});
var rinlinejQuery = / jQuery\d+="(?:\d+|null)"/g,
	rleadingWhitespace = /^\s+/,
	rxhtmlTag = /(<([\w:]+)[^>]*?)\/>/g,
	rselfClosing = /^(?:area|br|col|embed|hr|img|input|link|meta|param)$/i,
	rtagName = /<([\w:]+)/,
	rtbody = /<tbody/i,
	rhtml = /<|&#?\w+;/,
	rnocache = /<script|<object|<embed|<option|<style/i,
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i, // checked="checked" or checked (html5)
	fcloseTag = function(all, front, tag) {
		return rselfClosing.test(tag) ?
			all :
			front + "></" + tag + ">";
	},
	wrapMap = {
		option: [1, "<select multiple='multiple'>", "</select>"],
		legend: [1, "<fieldset>", "</fieldset>"],
		thead: [1, "<table>", "</table>"],
		tr: [2, "<table><tbody>", "</tbody></table>"],
		td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],
		col: [2, "<table><tbody></tbody><colgroup>", "</colgroup></table>"],
		area: [1, "<map>", "</map>"],
		_default: [0, "", ""]
	};

wrapMap.optgroup = wrapMap.option;
wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

// IE can't serialize <link> and <script> tags normally
if (!jQuery.support.htmlSerialize) {
	wrapMap._default = [1, "div<div>", "</div>"];
}

jQuery.fn.extend({
	text: function(text) {
		if (jQuery.isFunction(text)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.text(text.call(this, i, self.text()));
			});
		}

		if (typeof text !== "object" && text !== undefined) {
			return this.empty().append((this[0] && this[0].ownerDocument || document).createTextNode(text));
		}

		return jQuery.text(this);
	},

	wrapAll: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapAll(html.call(this, i));
			});
		}

		if (this[0]) {
			// The elements to wrap the target around
			var wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstChild && elem.firstChild.nodeType === 1) {
					elem = elem.firstChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this), contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		return this.each(function() {
			jQuery(this).wrapAll(html);
		});
	},

	unwrap: function() {
		return this.parent().each(function() {
			if (!jQuery.nodeName(this, "body")) {
				jQuery(this).replaceWith(this.childNodes);
			}
		}).end();
	},

	append: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.insertBefore(elem, this.firstChild);
			}
		});
	},

	before: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this);
			});
		} else if (arguments.length) {
			var set = jQuery(arguments[0]);
			set.push.apply(set, this.toArray());
			return this.pushStack(set, "before", arguments);
		}
	},

	after: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			});
		} else if (arguments.length) {
			var set = this.pushStack(this, "after", arguments);
			set.push.apply(set, jQuery(arguments[0]).toArray());
			return set;
		}
	},
	
	// keepData is for internal use only--do not document
	remove: function(selector, keepData) {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			if (!selector || jQuery.filter(selector, [elem]).length) {
				if (!keepData && elem.nodeType === 1) {
					jQuery.cleanData(elem.getElementsByTagName("*"));
					jQuery.cleanData([elem]);
				}

				if (elem.parentNode) {
					 elem.parentNode.removeChild(elem);
				}
			}
		}
		
		return this;
	},

	empty: function() {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			// Remove element nodes and prevent memory leaks
			if (elem.nodeType === 1) {
				jQuery.cleanData(elem.getElementsByTagName("*"));
			}

			// Remove any remaining nodes
			while (elem.firstChild) {
				elem.removeChild(elem.firstChild);
			}
		}
		
		return this;
	},

	clone: function(events) {
		// Do the clone
		var ret = this.map(function() {
			if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
				// IE copies events bound via attachEvent when
				// using cloneNode. Calling detachEvent on the
				// clone will also remove the events from the orignal
				// In order to get around this, we use innerHTML.
				// Unfortunately, this means some modifications to
				// attributes in IE that are actually only stored
				// as properties will not be copied (such as the
				// the name attribute on an input).
				var html = this.outerHTML, ownerDocument = this.ownerDocument;
				if (!html) {
					var div = ownerDocument.createElement("div");
					div.appendChild(this.cloneNode(true));
					html = div.innerHTML;
				}

				return jQuery.clean([html.replace(rinlinejQuery, "")
					// Handle the case in IE 8 where action=/test/> self-closes a tag
					.replace(/=([^="'>\s]+\/)>/g, '="$1">')
					.replace(rleadingWhitespace, "")], ownerDocument)[0];
			} else {
				return this.cloneNode(true);
			}
		});

		// Copy the events from the original to the clone
		if (events === true) {
			cloneCopyEvent(this, ret);
			cloneCopyEvent(this.find("*"), ret.find("*"));
		}

		// Return the cloned set
		return ret;
	},

	html: function(value) {
		if (value === undefined) {
			return this[0] && this[0].nodeType === 1 ?
				this[0].innerHTML.replace(rinlinejQuery, "") :
				null;

		// See if we can take a shortcut and just use innerHTML
		} else if (typeof value === "string" && !rnocache.test(value) &&
			(jQuery.support.leadingWhitespace || !rleadingWhitespace.test(value)) &&
			!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

			value = value.replace(rxhtmlTag, fcloseTag);

			try {
				for (var i = 0, l = this.length; i < l; i++) {
					// Remove element nodes and prevent memory leaks
					if (this[i].nodeType === 1) {
						jQuery.cleanData(this[i].getElementsByTagName("*"));
						this[i].innerHTML = value;
					}
				}

			// If using innerHTML throws an exception, use the fallback method
			} catch(e) {
				this.empty().append(value);
			}

		} else if (jQuery.isFunction(value)) {
			this.each(function(i){
				var self = jQuery(this), old = self.html();
				self.empty().append(function(){
					return value.call(this, i, old);
				});
			});

		} else {
			this.empty().append(value);
		}

		return this;
	},

	replaceWith: function(value) {
		if (this[0] && this[0].parentNode) {
			// Make sure that the elements are removed from the DOM before they are inserted
			// this can help fix replacing a parent with child elements
			if (jQuery.isFunction(value)) {
				return this.each(function(i) {
					var self = jQuery(this), old = self.html();
					self.replaceWith(value.call(this, i, old));
				});
			}

			if (typeof value !== "string") {
				value = jQuery(value).detach();
			}

			return this.each(function() {
				var next = this.nextSibling, parent = this.parentNode;

				jQuery(this).remove();

				if (next) {
					jQuery(next).before(value);
				} else {
					jQuery(parent).append(value);
				}
			});
		} else {
			return this.pushStack(jQuery(jQuery.isFunction(value) ? value() : value), "replaceWith", value);
		}
	},

	detach: function(selector) {
		return this.remove(selector, true);
	},

	domManip: function(args, table, callback) {
		var results, first, value = args[0], scripts = [], fragment, parent;

		// We can't cloneNode fragments that contain checked, in WebKit
		if (!jQuery.support.checkClone && arguments.length === 3 && typeof value === "string" && rchecked.test(value)) {
			return this.each(function() {
				jQuery(this).domManip(args, table, callback, true);
			});
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				args[0] = value.call(this, i, table ? self.html() : undefined);
				self.domManip(args, table, callback);
			});
		}

		if (this[0]) {
			parent = value && value.parentNode;

			// If we're in a fragment, just use that instead of building a new one
			if (jQuery.support.parentNode && parent && parent.nodeType === 11 && parent.childNodes.length === this.length) {
				results = { fragment: parent };

			} else {
				results = buildFragment(args, this, scripts);
			}
			
			fragment = results.fragment;
			
			if (fragment.childNodes.length === 1) {
				first = fragment = fragment.firstChild;
			} else {
				first = fragment.firstChild;
			}

			if (first) {
				table = table && jQuery.nodeName(first, "tr");

				for (var i = 0, l = this.length; i < l; i++) {
					callback.call(
						table ?
							root(this[i], first) :
							this[i],
						i > 0 || results.cacheable || this.length > 1 ?
							fragment.cloneNode(true) :
							fragment
);
				}
			}

			if (scripts.length) {
				jQuery.each(scripts, evalScript);
			}
		}

		return this;

		function root(elem, cur) {
			return jQuery.nodeName(elem, "table") ?
				(elem.getElementsByTagName("tbody")[0] ||
				elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
				elem;
		}
	}
});

function cloneCopyEvent(orig, ret) {
	var i = 0;

	ret.each(function() {
		if (this.nodeName !== (orig[i] && orig[i].nodeName)) {
			return;
		}

		var oldData = jQuery.data(orig[i++]), curData = jQuery.data(this, oldData), events = oldData && oldData.events;

		if (events) {
			delete curData.handle;
			curData.events = {};

			for (var type in events) {
				for (var handler in events[type]) {
					jQuery.event.add(this, type, events[type][handler], events[type][handler].data);
				}
			}
		}
	});
}

function buildFragment(args, nodes, scripts) {
	var fragment, cacheable, cacheresults,
		doc = (nodes && nodes[0] ? nodes[0].ownerDocument || nodes[0] : document);

	// Only cache "small" (1/2 KB) strings that are associated with the main document
	// Cloning options loses the selected state, so don't cache them
	// IE 6 doesn't like it when you put <object> or <embed> elements in a fragment
	// Also, WebKit does not clone 'checked' attributes on cloneNode, so don't cache
	if (args.length === 1 && typeof args[0] === "string" && args[0].length < 512 && doc === document &&
		!rnocache.test(args[0]) && (jQuery.support.checkClone || !rchecked.test(args[0]))) {

		cacheable = true;
		cacheresults = jQuery.fragments[args[0]];
		if (cacheresults) {
			if (cacheresults !== 1) {
				fragment = cacheresults;
			}
		}
	}

	if (!fragment) {
		fragment = doc.createDocumentFragment();
		jQuery.clean(args, doc, fragment, scripts);
	}

	if (cacheable) {
		jQuery.fragments[args[0]] = cacheresults ? fragment : 1;
	}

	return { fragment: fragment, cacheable: cacheable };
}

jQuery.fragments = {};

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var ret = [], insert = jQuery(selector),
			parent = this.length === 1 && this[0].parentNode;
		
		if (parent && parent.nodeType === 11 && parent.childNodes.length === 1 && insert.length === 1) {
			insert[original](this[0]);
			return this;
			
		} else {
			for (var i = 0, l = insert.length; i < l; i++) {
				var elems = (i > 0 ? this.clone(true) : this).get();
				jQuery.fn[original].apply(jQuery(insert[i]), elems);
				ret = ret.concat(elems);
			}
		
			return this.pushStack(ret, name, insert.selector);
		}
	};
});

jQuery.extend({
	clean: function(elems, context, fragment, scripts) {
		context = context || document;

		// !context.createElement fails in IE with an error but returns typeof 'object'
		if (typeof context.createElement === "undefined") {
			context = context.ownerDocument || context[0] && context[0].ownerDocument || document;
		}

		var ret = [];

		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			if (typeof elem === "number") {
				elem += "";
			}

			if (!elem) {
				continue;
			}

			// Convert html string into DOM nodes
			if (typeof elem === "string" && !rhtml.test(elem)) {
				elem = context.createTextNode(elem);

			} else if (typeof elem === "string") {
				// Fix "XHTML"-style tags in all browsers
				elem = elem.replace(rxhtmlTag, fcloseTag);

				// Trim whitespace, otherwise indexOf won't work as expected
				var tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase(),
					wrap = wrapMap[tag] || wrapMap._default,
					depth = wrap[0],
					div = context.createElement("div");

				// Go to html and back, then peel off extra wrappers
				div.innerHTML = wrap[1] + elem + wrap[2];

				// Move to the right depth
				while (depth--) {
					div = div.lastChild;
				}

				// Remove IE's autoinserted <tbody> from table fragments
				if (!jQuery.support.tbody) {

					// String was a <table>, *may* have spurious <tbody>
					var hasBody = rtbody.test(elem),
						tbody = tag === "table" && !hasBody ?
							div.firstChild && div.firstChild.childNodes :

							// String was a bare <thead> or <tfoot>
							wrap[1] === "<table>" && !hasBody ?
								div.childNodes :
								[];

					for (var j = tbody.length - 1; j >= 0 ; --j) {
						if (jQuery.nodeName(tbody[j], "tbody") && !tbody[j].childNodes.length) {
							tbody[j].parentNode.removeChild(tbody[j]);
						}
					}

				}

				// IE completely kills leading whitespace when innerHTML is used
				if (!jQuery.support.leadingWhitespace && rleadingWhitespace.test(elem)) {
					div.insertBefore(context.createTextNode(rleadingWhitespace.exec(elem)[0]), div.firstChild);
				}

				elem = div.childNodes;
			}

			if (elem.nodeType) {
				ret.push(elem);
			} else {
				ret = jQuery.merge(ret, elem);
			}
		}

		if (fragment) {
			for (var i = 0; ret[i]; i++) {
				if (scripts && jQuery.nodeName(ret[i], "script") && (!ret[i].type || ret[i].type.toLowerCase() === "text/javascript")) {
					scripts.push(ret[i].parentNode ? ret[i].parentNode.removeChild(ret[i]) : ret[i]);
				
				} else {
					if (ret[i].nodeType === 1) {
						ret.splice.apply(ret, [i + 1, 0].concat(jQuery.makeArray(ret[i].getElementsByTagName("script"))));
					}
					fragment.appendChild(ret[i]);
				}
			}
		}

		return ret;
	},
	
	cleanData: function(elems) {
		var data, id, cache = jQuery.cache,
			special = jQuery.event.special,
			deleteExpando = jQuery.support.deleteExpando;
		
		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			id = elem[jQuery.expando];
			
			if (id) {
				data = cache[id];
				
				if (data.events) {
					for (var type in data.events) {
						if (special[type]) {
							jQuery.event.remove(elem, type);

						} else {
							removeEvent(elem, type, data.handle);
						}
					}
				}
				
				if (deleteExpando) {
					delete elem[jQuery.expando];

				} else if (elem.removeAttribute) {
					elem.removeAttribute(jQuery.expando);
				}
				
				delete cache[id];
			}
		}
	}
});
// exclude the following css properties to add px
var rexclude = /z-?index|font-?weight|opacity|zoom|line-?height/i,
	ralpha = /alpha\([^)]*\)/,
	ropacity = /opacity=([^)]*)/,
	rfloat = /float/i,
	rdashAlpha = /-([a-z])/ig,
	rupper = /([A-Z])/g,
	rnumpx = /^-?\d+(?:px)?$/i,
	rnum = /^-?\d/,

	cssShow = { position: "absolute", visibility: "hidden", display:"block" },
	cssWidth = ["Left", "Right"],
	cssHeight = ["Top", "Bottom"],

	// cache check for defaultView.getComputedStyle
	getComputedStyle = document.defaultView && document.defaultView.getComputedStyle,
	// normalize float css property
	styleFloat = jQuery.support.cssFloat ? "cssFloat" : "styleFloat",
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn.css = function(name, value) {
	return access(this, name, value, true, function(elem, name, value) {
		if (value === undefined) {
			return jQuery.curCSS(elem, name);
		}
		
		if (typeof value === "number" && !rexclude.test(name)) {
			value += "px";
		}

		jQuery.style(elem, name, value);
	});
};

jQuery.extend({
	style: function(elem, name, value) {
		// don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		// ignore negative width and height values #1599
		if ((name === "width" || name === "height") && parseFloat(value) < 0) {
			value = undefined;
		}

		var style = elem.style || elem, set = value !== undefined;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity") {
			if (set) {
				// IE has trouble with opacity if it does not have layout
				// Force it by setting the zoom level
				style.zoom = 1;

				// Set the alpha filter to set the opacity
				var opacity = parseInt(value, 10) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")";
				var filter = style.filter || jQuery.curCSS(elem, "filter") || "";
				style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity;
			}

			return style.filter && style.filter.indexOf("opacity=") >= 0 ?
				(parseFloat(ropacity.exec(style.filter)[1]) / 100) + "":
				"";
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		name = name.replace(rdashAlpha, fcamelCase);

		if (set) {
			style[name] = value;
		}

		return style[name];
	},

	css: function(elem, name, force, extra) {
		if (name === "width" || name === "height") {
			var val, props = cssShow, which = name === "width" ? cssWidth : cssHeight;

			function getWH() {
				val = name === "width" ? elem.offsetWidth : elem.offsetHeight;

				if (extra === "border") {
					return;
				}

				jQuery.each(which, function() {
					if (!extra) {
						val -= parseFloat(jQuery.curCSS(elem, "padding" + this, true)) || 0;
					}

					if (extra === "margin") {
						val += parseFloat(jQuery.curCSS(elem, "margin" + this, true)) || 0;
					} else {
						val -= parseFloat(jQuery.curCSS(elem, "border" + this + "Width", true)) || 0;
					}
				});
			}

			if (elem.offsetWidth !== 0) {
				getWH();
			} else {
				jQuery.swap(elem, props, getWH);
			}

			return Math.max(0, Math.round(val));
		}

		return jQuery.curCSS(elem, name, force);
	},

	curCSS: function(elem, name, force) {
		var ret, style = elem.style, filter;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity" && elem.currentStyle) {
			ret = ropacity.test(elem.currentStyle.filter || "") ?
				(parseFloat(RegExp.$1) / 100) + "" :
				"";

			return ret === "" ?
				"1" :
				ret;
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		if (!force && style && style[name]) {
			ret = style[name];

		} else if (getComputedStyle) {

			// Only "float" is needed here
			if (rfloat.test(name)) {
				name = "float";
			}

			name = name.replace(rupper, "-$1").toLowerCase();

			var defaultView = elem.ownerDocument.defaultView;

			if (!defaultView) {
				return null;
			}

			var computedStyle = defaultView.getComputedStyle(elem, null);

			if (computedStyle) {
				ret = computedStyle.getPropertyValue(name);
			}

			// We should always get a number back from opacity
			if (name === "opacity" && ret === "") {
				ret = "1";
			}

		} else if (elem.currentStyle) {
			var camelCase = name.replace(rdashAlpha, fcamelCase);

			ret = elem.currentStyle[name] || elem.currentStyle[camelCase];

			// From the awesome hack by Dean Edwards
			// http://erik.eae.net/archives/2007/07/27/18.54.15/#comment-102291

			// If we're not dealing with a regular pixel number
			// but a number that has a weird ending, we need to convert it to pixels
			if (!rnumpx.test(ret) && rnum.test(ret)) {
				// Remember the original values
				var left = style.left, rsLeft = elem.runtimeStyle.left;

				// Put in the new values to get a computed value out
				elem.runtimeStyle.left = elem.currentStyle.left;
				style.left = camelCase === "fontSize" ? "1em" : (ret || 0);
				ret = style.pixelLeft + "px";

				// Revert the changed values
				style.left = left;
				elem.runtimeStyle.left = rsLeft;
			}
		}

		return ret;
	},

	// A method for quickly swapping in/out CSS properties to get correct calculations
	swap: function(elem, options, callback) {
		var old = {};

		// Remember the old values, and insert the new ones
		for (var name in options) {
			old[name] = elem.style[name];
			elem.style[name] = options[name];
		}

		callback.call(elem);

		// Revert the old values
		for (var name in options) {
			elem.style[name] = old[name];
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.hidden = function(elem) {
		var width = elem.offsetWidth, height = elem.offsetHeight,
			skip = elem.nodeName.toLowerCase() === "tr";

		return width === 0 && height === 0 && !skip ?
			true :
			width > 0 && height > 0 && !skip ?
				false :
				jQuery.curCSS(elem, "display") === "none";
	};

	jQuery.expr.filters.visible = function(elem) {
		return !jQuery.expr.filters.hidden(elem);
	};
}
var jsc = now(),
	rscript = /<script(.|\s)*?\/script>/gi,
	rselectTextarea = /select|textarea/i,
	rinput = /color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week/i,
	jsre = /=\?(&|$)/,
	rquery = /\?/,
	rts = /(\?|&)_=.*?(&|$)/,
	rurl = /^(\w+:)?\/\/([^\/?#]+)/,
	r20 = /%20/g,

	// Keep a copy of the old load method
	_load = jQuery.fn.load;

jQuery.fn.extend({
	load: function(url, params, callback) {
		if (typeof url !== "string") {
			return _load.call(this, url);

		// Don't do a request if no elements are being requested
		} else if (!this.length) {
			return this;
		}

		var off = url.indexOf(" ");
		if (off >= 0) {
			var selector = url.slice(off, url.length);
			url = url.slice(0, off);
		}

		// Default to a GET request
		var type = "GET";

		// If the second parameter was provided
		if (params) {
			// If it's a function
			if (jQuery.isFunction(params)) {
				// We assume that it's the callback
				callback = params;
				params = null;

			// Otherwise, build a param string
			} else if (typeof params === "object") {
				params = jQuery.param(params, jQuery.ajaxSettings.traditional);
				type = "POST";
			}
		}

		var self = this;

		// Request the remote document
		jQuery.ajax({
			url: url,
			type: type,
			dataType: "html",
			data: params,
			complete: function(res, status) {
				// If successful, inject the HTML into all the matched elements
				if (status === "success" || status === "notmodified") {
					// See if a selector was specified
					self.html(selector ?
						// Create a dummy div to hold the results
						jQuery("<div />")
							// inject the contents of the document in, removing the scripts
							// to avoid any 'Permission Denied' errors in IE
							.append(res.responseText.replace(rscript, ""))

							// Locate the specified elements
							.find(selector) :

						// If not, just inject the full result
						res.responseText);
				}

				if (callback) {
					self.each(callback, [res.responseText, status, res]);
				}
			}
		});

		return this;
	},

	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {
			return this.elements ? jQuery.makeArray(this.elements) : this;
		})
		.filter(function() {
			return this.name && !this.disabled &&
				(this.checked || rselectTextarea.test(this.nodeName) ||
					rinput.test(this.type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			return val == null ?
				null :
				jQuery.isArray(val) ?
					jQuery.map(val, function(val, i) {
						return { name: elem.name, value: val };
					}) :
					{ name: elem.name, value: val };
		}).get();
	}
});

// Attach a bunch of functions for handling common AJAX events
jQuery.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "), function(i, o) {
	jQuery.fn[o] = function(f) {
		return this.bind(o, f);
	};
});

jQuery.extend({

	get: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = null;
		}

		return jQuery.ajax({
			type: "GET",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	getScript: function(url, callback) {
		return jQuery.get(url, null, callback, "script");
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	post: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = {};
		}

		return jQuery.ajax({
			type: "POST",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	ajaxSetup: function(settings) {
		jQuery.extend(jQuery.ajaxSettings, settings);
	},

	ajaxSettings: {
		url: location.href,
		global: true,
		type: "GET",
		contentType: "application/x-www-form-urlencoded",
		processData: true,
		async: true,
		/*
		timeout: 0,
		data: null,
		username: null,
		password: null,
		traditional: false,
		*/
		// Create the request object; Microsoft failed to properly
		// implement the XMLHttpRequest in IE7 (can't request local files),
		// so we use the ActiveXObject when it is available
		// This function can be overriden by calling jQuery.ajaxSetup
		xhr: window.XMLHttpRequest && (window.location.protocol !== "file:" || !window.ActiveXObject) ?
			function() {
				return new window.XMLHttpRequest();
			} :
			function() {
				try {
					return new window.ActiveXObject("Microsoft.XMLHTTP");
				} catch(e) {}
			},
		accepts: {
			xml: "application/xml, text/xml",
			html: "text/html",
			script: "text/javascript, application/javascript",
			json: "application/json, text/javascript",
			text: "text/plain",
			_default: "*/*"
		}
	},

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajax: function(origSettings) {
		var s = jQuery.extend(true, {}, jQuery.ajaxSettings, origSettings);
		
		var jsonp, status, data,
			callbackContext = origSettings && origSettings.context || s,
			type = s.type.toUpperCase();

		// convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Handle JSONP Parameter Callbacks
		if (s.dataType === "jsonp") {
			if (type === "GET") {
				if (!jsre.test(s.url)) {
					s.url += (rquery.test(s.url) ? "&" : "?") + (s.jsonp || "callback") + "=?";
				}
			} else if (!s.data || !jsre.test(s.data)) {
				s.data = (s.data ? s.data + "&" : "") + (s.jsonp || "callback") + "=?";
			}
			s.dataType = "json";
		}

		// Build temporary JSONP function
		if (s.dataType === "json" && (s.data && jsre.test(s.data) || jsre.test(s.url))) {
			jsonp = s.jsonpCallback || ("jsonp" + jsc++);

			// Replace the =? sequence both in the query string and the data
			if (s.data) {
				s.data = (s.data + "").replace(jsre, "=" + jsonp + "$1");
			}

			s.url = s.url.replace(jsre, "=" + jsonp + "$1");

			// We need to make sure
			// that a JSONP style response is executed properly
			s.dataType = "script";

			// Handle JSONP-style loading
			window[jsonp] = window[jsonp] || function(tmp) {
				data = tmp;
				success();
				complete();
				// Garbage collect
				window[jsonp] = undefined;

				try {
					delete window[jsonp];
				} catch(e) {}

				if (head) {
					head.removeChild(script);
				}
			};
		}

		if (s.dataType === "script" && s.cache === null) {
			s.cache = false;
		}

		if (s.cache === false && type === "GET") {
			var ts = now();

			// try replacing _= if it is there
			var ret = s.url.replace(rts, "$1_=" + ts + "$2");

			// if nothing was replaced, add timestamp to the end
			s.url = ret + ((ret === s.url) ? (rquery.test(s.url) ? "&" : "?") + "_=" + ts : "");
		}

		// If data is available, append data to url for get requests
		if (s.data && type === "GET") {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.data;
		}

		// Watch for a new set of requests
		if (s.global && ! jQuery.active++) {
			jQuery.event.trigger("ajaxStart");
		}

		// Matches an absolute URL, and saves the domain
		var parts = rurl.exec(s.url),
			remote = parts && (parts[1] && parts[1] !== location.protocol || parts[2] !== location.host);

		// If we're requesting a remote document
		// and trying to load JSON or Script with a GET
		if (s.dataType === "script" && type === "GET" && remote) {
			var head = document.getElementsByTagName("head")[0] || document.documentElement;
			var script = document.createElement("script");
			script.src = s.url;
			if (s.scriptCharset) {
				script.charset = s.scriptCharset;
			}

			// Handle Script loading
			if (!jsonp) {
				var done = false;

				// Attach handlers for all browsers
				script.onload = script.onreadystatechange = function() {
					if (!done && (!this.readyState ||
							this.readyState === "loaded" || this.readyState === "complete")) {
						done = true;
						success();
						complete();

						// Handle memory leak in IE
						script.onload = script.onreadystatechange = null;
						if (head && script.parentNode) {
							head.removeChild(script);
						}
					}
				};
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709 and #4378).
			head.insertBefore(script, head.firstChild);

			// We handle everything using the script element injection
			return undefined;
		}

		var requestDone = false;

		// Create the request object
		var xhr = s.xhr();

		if (!xhr) {
			return;
		}

		// Open the socket
		// Passing null username, generates a login popup on Opera (#2865)
		if (s.username) {
			xhr.open(type, s.url, s.async, s.username, s.password);
		} else {
			xhr.open(type, s.url, s.async);
		}

		// Need an extra try/catch for cross domain requests in Firefox 3
		try {
			// Set the correct header, if data is being sent
			if (s.data || origSettings && origSettings.contentType) {
				xhr.setRequestHeader("Content-Type", s.contentType);
			}

			// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
			if (s.ifModified) {
				if (jQuery.lastModified[s.url]) {
					xhr.setRequestHeader("If-Modified-Since", jQuery.lastModified[s.url]);
				}

				if (jQuery.etag[s.url]) {
					xhr.setRequestHeader("If-None-Match", jQuery.etag[s.url]);
				}
			}

			// Set header so the called script knows that it's an XMLHttpRequest
			// Only send the header if it's not a remote XHR
			if (!remote) {
				xhr.setRequestHeader("X-Requested-With", "XMLHttpRequest");
			}

			// Set the Accepts header for the server, depending on the dataType
			xhr.setRequestHeader("Accept", s.dataType && s.accepts[s.dataType] ?
				s.accepts[s.dataType] + ", */*" :
				s.accepts._default);
		} catch(e) {}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend && s.beforeSend.call(callbackContext, xhr, s) === false) {
			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}

			// close opended socket
			xhr.abort();
			return false;
		}

		if (s.global) {
			trigger("ajaxSend", [xhr, s]);
		}

		// Wait for a response to come back
		var onreadystatechange = xhr.onreadystatechange = function(isTimeout) {
			// The request was aborted
			if (!xhr || xhr.readyState === 0 || isTimeout === "abort") {
				// Opera doesn't call onreadystatechange before this point
				// so we simulate the call
				if (!requestDone) {
					complete();
				}

				requestDone = true;
				if (xhr) {
					xhr.onreadystatechange = jQuery.noop;
				}

			// The transfer is complete and the data is available, or the request timed out
			} else if (!requestDone && xhr && (xhr.readyState === 4 || isTimeout === "timeout")) {
				requestDone = true;
				xhr.onreadystatechange = jQuery.noop;

				status = isTimeout === "timeout" ?
					"timeout" :
					!jQuery.httpSuccess(xhr) ?
						"error" :
						s.ifModified && jQuery.httpNotModified(xhr, s.url) ?
							"notmodified" :
							"success";

				var errMsg;

				if (status === "success") {
					// Watch for, and catch, XML document parse errors
					try {
						// process the data (runs the xml through httpData regardless of callback)
						data = jQuery.httpData(xhr, s.dataType, s);
					} catch(err) {
						status = "parsererror";
						errMsg = err;
					}
				}

				// Make sure that the request was successful or notmodified
				if (status === "success" || status === "notmodified") {
					// JSONP handles its own success callback
					if (!jsonp) {
						success();
					}
				} else {
					jQuery.handleError(s, xhr, status, errMsg);
				}

				// Fire the complete handlers
				complete();

				if (isTimeout === "timeout") {
					xhr.abort();
				}

				// Stop memory leaks
				if (s.async) {
					xhr = null;
				}
			}
		};

		// Override the abort handler, if we can (IE doesn't allow it, but that's OK)
		// Opera doesn't fire onreadystatechange at all on abort
		try {
			var oldAbort = xhr.abort;
			xhr.abort = function() {
				if (xhr) {
					oldAbort.call(xhr);
				}

				onreadystatechange("abort");
			};
		} catch(e) { }

		// Timeout checker
		if (s.async && s.timeout > 0) {
			setTimeout(function() {
				// Check to see if the request is still happening
				if (xhr && !requestDone) {
					onreadystatechange("timeout");
				}
			}, s.timeout);
		}

		// Send the data
		try {
			xhr.send(type === "POST" || type === "PUT" || type === "DELETE" ? s.data : null);
		} catch(e) {
			jQuery.handleError(s, xhr, null, e);
			// Fire the complete handlers
			complete();
		}

		// firefox 1.5 doesn't fire statechange for sync requests
		if (!s.async) {
			onreadystatechange();
		}

		function success() {
			// If a local callback was specified, fire it and pass it the data
			if (s.success) {
				s.success.call(callbackContext, data, status, xhr);
			}

			// Fire the global callback
			if (s.global) {
				trigger("ajaxSuccess", [xhr, s]);
			}
		}

		function complete() {
			// Process result
			if (s.complete) {
				s.complete.call(callbackContext, xhr, status);
			}

			// The request was completed
			if (s.global) {
				trigger("ajaxComplete", [xhr, s]);
			}

			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}
		}
		
		function trigger(type, args) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger(type, args);
		}

		// return XMLHttpRequest to allow aborting the request etc.
		return xhr;
	},

	handleError: function(s, xhr, status, e) {
		// If a local callback was specified, fire it
		if (s.error) {
			s.error.call(s.context || s, xhr, status, e);
		}

		// Fire the global callback
		if (s.global) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger("ajaxError", [xhr, s, e]);
		}
	},

	// Counter for holding the number of active queries
	active: 0,

	// Determines if an XMLHttpRequest was successful or not
	httpSuccess: function(xhr) {
		try {
			// IE error sometimes returns 1223 when it should be 204 so treat it as success, see #1450
			return !xhr.status && location.protocol === "file:" ||
				// Opera returns 0 when status is 304
				(xhr.status >= 200 && xhr.status < 300) ||
				xhr.status === 304 || xhr.status === 1223 || xhr.status === 0;
		} catch(e) {}

		return false;
	},

	// Determines if an XMLHttpRequest returns NotModified
	httpNotModified: function(xhr, url) {
		var lastModified = xhr.getResponseHeader("Last-Modified"),
			etag = xhr.getResponseHeader("Etag");

		if (lastModified) {
			jQuery.lastModified[url] = lastModified;
		}

		if (etag) {
			jQuery.etag[url] = etag;
		}

		// Opera returns 0 when status is 304
		return xhr.status === 304 || xhr.status === 0;
	},

	httpData: function(xhr, type, s) {
		var ct = xhr.getResponseHeader("content-type") || "",
			xml = type === "xml" || !type && ct.indexOf("xml") >= 0,
			data = xml ? xhr.responseXML : xhr.responseText;

		if (xml && data.documentElement.nodeName === "parsererror") {
			jQuery.error("parsererror");
		}

		// Allow a pre-filtering function to sanitize the response
		// s is checked to keep backwards compatibility
		if (s && s.dataFilter) {
			data = s.dataFilter(data, type);
		}

		// The filter can actually parse the response
		if (typeof data === "string") {
			// Get the JavaScript object, if JSON is used.
			if (type === "json" || !type && ct.indexOf("json") >= 0) {
				data = jQuery.parseJSON(data);

			// If the type is "script", eval it in global context
			} else if (type === "script" || !type && ct.indexOf("javascript") >= 0) {
				jQuery.globalEval(data);
			}
		}

		return data;
	},

	// Serialize an array of form elements or a set of
	// key/values into a query string
	param: function(a, traditional) {
		var s = [];
		
		// Set traditional to true for jQuery <= 1.3.2 behavior.
		if (traditional === undefined) {
			traditional = jQuery.ajaxSettings.traditional;
		}
		
		// If an array was passed in, assume that it is an array of form elements.
		if (jQuery.isArray(a) || a.jquery) {
			// Serialize the form elements
			jQuery.each(a, function() {
				add(this.name, this.value);
			});
			
		} else {
			// If traditional, encode the "old" way (the way 1.3.2 or older
			// did it), otherwise encode params recursively.
			for (var prefix in a) {
				buildParams(prefix, a[prefix]);
			}
		}

		// Return the resulting serialization
		return s.join("&").replace(r20, "+");

		function buildParams(prefix, obj) {
			if (jQuery.isArray(obj)) {
				// Serialize array item.
				jQuery.each(obj, function(i, v) {
					if (traditional || /\[\]$/.test(prefix)) {
						// Treat each array item as a scalar.
						add(prefix, v);
					} else {
						// If array item is non-scalar (array or object), encode its
						// numeric index to resolve deserialization ambiguity issues.
						// Note that rack (as of 1.0.0) can't currently deserialize
						// nested arrays properly, and attempting to do so may cause
						// a server error. Possible fixes are to modify rack's
						// deserialization algorithm or to provide an option or flag
						// to force array serialization to be shallow.
						buildParams(prefix + "[" + (typeof v === "object" || jQuery.isArray(v) ? i : "") + "]", v);
					}
				});
					
			} else if (!traditional && obj != null && typeof obj === "object") {
				// Serialize object item.
				jQuery.each(obj, function(k, v) {
					buildParams(prefix + "[" + k + "]", v);
				});
					
			} else {
				// Serialize scalar item.
				add(prefix, obj);
			}
		}

		function add(key, value) {
			// If value is a function, invoke it and return its value
			value = jQuery.isFunction(value) ? value() : value;
			s[s.length] = encodeURIComponent(key) + "=" + encodeURIComponent(value);
		}
	}
});
var elemdisplay = {},
	rfxtypes = /toggle|show|hide/,
	rfxnum = /^([+-]=)?([\d+-.]+)(.*)$/,
	timerId,
	fxAttrs = [
		// height animations
		["height", "marginTop", "marginBottom", "paddingTop", "paddingBottom"],
		// width animations
		["width", "marginLeft", "marginRight", "paddingLeft", "paddingRight"],
		// opacity animations
		["opacity"]
];

jQuery.fn.extend({
	show: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("show", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");

				this[i].style.display = old || "";

				if (jQuery.css(this[i], "display") === "none") {
					var nodeName = this[i].nodeName, display;

					if (elemdisplay[nodeName]) {
						display = elemdisplay[nodeName];

					} else {
						var elem = jQuery("<" + nodeName + " />").appendTo("body");

						display = elem.css("display");

						if (display === "none") {
							display = "block";
						}

						elem.remove();

						elemdisplay[nodeName] = display;
					}

					jQuery.data(this[i], "olddisplay", display);
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = jQuery.data(this[j], "olddisplay") || "";
			}

			return this;
		}
	},

	hide: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("hide", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");
				if (!old && old !== "none") {
					jQuery.data(this[i], "olddisplay", jQuery.css(this[i], "display"));
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = "none";
			}

			return this;
		}
	},

	// Save the old toggle function
	_toggle: jQuery.fn.toggle,

	toggle: function(fn, fn2) {
		var bool = typeof fn === "boolean";

		if (jQuery.isFunction(fn) && jQuery.isFunction(fn2)) {
			this._toggle.apply(this, arguments);

		} else if (fn == null || bool) {
			this.each(function() {
				var state = bool ? fn : jQuery(this).is(":hidden");
				jQuery(this)[state ? "show" : "hide"]();
			});

		} else {
			this.animate(genFx("toggle", 3), fn, fn2);
		}

		return this;
	},

	fadeTo: function(speed, to, callback) {
		return this.filter(":hidden").css("opacity", 0).show().end()
					.animate({opacity: to}, speed, callback);
	},

	animate: function(prop, speed, easing, callback) {
		var optall = jQuery.speed(speed, easing, callback);

		if (jQuery.isEmptyObject(prop)) {
			return this.each(optall.complete);
		}

		return this[optall.queue === false ? "each" : "queue"](function() {
			var opt = jQuery.extend({}, optall), p,
				hidden = this.nodeType === 1 && jQuery(this).is(":hidden"),
				self = this;

			for (p in prop) {
				var name = p.replace(rdashAlpha, fcamelCase);

				if (p !== name) {
					prop[name] = prop[p];
					delete prop[p];
					p = name;
				}

				if (prop[p] === "hide" && hidden || prop[p] === "show" && !hidden) {
					return opt.complete.call(this);
				}

				if ((p === "height" || p === "width") && this.style) {
					// Store display property
					opt.display = jQuery.css(this, "display");

					// Make sure that nothing sneaks out
					opt.overflow = this.style.overflow;
				}

				if (jQuery.isArray(prop[p])) {
					// Create (if needed) and add to specialEasing
					(opt.specialEasing = opt.specialEasing || {})[p] = prop[p][1];
					prop[p] = prop[p][0];
				}
			}

			if (opt.overflow != null) {
				this.style.overflow = "hidden";
			}

			opt.curAnim = jQuery.extend({}, prop);

			jQuery.each(prop, function(name, val) {
				var e = new jQuery.fx(self, opt, name);

				if (rfxtypes.test(val)) {
					e[val === "toggle" ? hidden ? "show" : "hide" : val](prop);

				} else {
					var parts = rfxnum.exec(val),
						start = e.cur(true) || 0;

					if (parts) {
						var end = parseFloat(parts[2]),
							unit = parts[3] || "px";

						// We need to compute starting value
						if (unit !== "px") {
							self.style[name] = (end || 1) + unit;
							start = ((end || 1) / e.cur(true)) * start;
							self.style[name] = start + unit;
						}

						// If a +=/-= token was provided, we're doing a relative animation
						if (parts[1]) {
							end = ((parts[1] === "-=" ? -1 : 1) * end) + start;
						}

						e.custom(start, end, unit);

					} else {
						e.custom(start, val, "");
					}
				}
			});

			// For JS strict compliance
			return true;
		});
	},

	stop: function(clearQueue, gotoEnd) {
		var timers = jQuery.timers;

		if (clearQueue) {
			this.queue([]);
		}

		this.each(function() {
			// go in reverse order so anything added to the queue during the loop is ignored
			for (var i = timers.length - 1; i >= 0; i--) {
				if (timers[i].elem === this) {
					if (gotoEnd) {
						// force the next step to be the last
						timers[i](true);
					}

					timers.splice(i, 1);
				}
			}
		});

		// start the next in the queue if the last step wasn't forced
		if (!gotoEnd) {
			this.dequeue();
		}

		return this;
	}

});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show", 1),
	slideUp: genFx("hide", 1),
	slideToggle: genFx("toggle", 1),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, callback) {
		return this.animate(props, speed, callback);
	};
});

jQuery.extend({
	speed: function(speed, easing, fn) {
		var opt = speed && typeof speed === "object" ? speed : {
			complete: fn || !fn && easing ||
				jQuery.isFunction(speed) && speed,
			duration: speed,
			easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
		};

		opt.duration = jQuery.fx.off ? 0 : typeof opt.duration === "number" ? opt.duration :
			jQuery.fx.speeds[opt.duration] || jQuery.fx.speeds._default;

		// Queueing
		opt.old = opt.complete;
		opt.complete = function() {
			if (opt.queue !== false) {
				jQuery(this).dequeue();
			}
			if (jQuery.isFunction(opt.old)) {
				opt.old.call(this);
			}
		};

		return opt;
	},

	easing: {
		linear: function(p, n, firstNum, diff) {
			return firstNum + diff * p;
		},
		swing: function(p, n, firstNum, diff) {
			return ((-Math.cos(p*Math.PI)/2) + 0.5) * diff + firstNum;
		}
	},

	timers: [],

	fx: function(elem, options, prop) {
		this.options = options;
		this.elem = elem;
		this.prop = prop;

		if (!options.orig) {
			options.orig = {};
		}
	}

});

jQuery.fx.prototype = {
	// Simple function for setting a style value
	update: function() {
		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		(jQuery.fx.step[this.prop] || jQuery.fx.step._default)(this);

		// Set display property to block for height/width animations
		if ((this.prop === "height" || this.prop === "width") && this.elem.style) {
			this.elem.style.display = "block";
		}
	},

	// Get the current size
	cur: function(force) {
		if (this.elem[this.prop] != null && (!this.elem.style || this.elem.style[this.prop] == null)) {
			return this.elem[this.prop];
		}

		var r = parseFloat(jQuery.css(this.elem, this.prop, force));
		return r && r > -10000 ? r : parseFloat(jQuery.curCSS(this.elem, this.prop)) || 0;
	},

	// Start an animation from one number to another
	custom: function(from, to, unit) {
		this.startTime = now();
		this.start = from;
		this.end = to;
		this.unit = unit || this.unit || "px";
		this.now = this.start;
		this.pos = this.state = 0;

		var self = this;
		function t(gotoEnd) {
			return self.step(gotoEnd);
		}

		t.elem = this.elem;

		if (t() && jQuery.timers.push(t) && !timerId) {
			timerId = setInterval(jQuery.fx.tick, 13);
		}
	},

	// Simple 'show' function
	show: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.show = true;

		// Begin the animation
		// Make sure that we start at a small width/height to avoid any
		// flash of content
		this.custom(this.prop === "width" || this.prop === "height" ? 1 : 0, this.cur());

		// Start by showing the element
		jQuery(this.elem).show();
	},

	// Simple 'hide' function
	hide: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.hide = true;

		// Begin the animation
		this.custom(this.cur(), 0);
	},

	// Each step of an animation
	step: function(gotoEnd) {
		var t = now(), done = true;

		if (gotoEnd || t >= this.options.duration + this.startTime) {
			this.now = this.end;
			this.pos = this.state = 1;
			this.update();

			this.options.curAnim[this.prop] = true;

			for (var i in this.options.curAnim) {
				if (this.options.curAnim[i] !== true) {
					done = false;
				}
			}

			if (done) {
				if (this.options.display != null) {
					// Reset the overflow
					this.elem.style.overflow = this.options.overflow;

					// Reset the display
					var old = jQuery.data(this.elem, "olddisplay");
					this.elem.style.display = old ? old : this.options.display;

					if (jQuery.css(this.elem, "display") === "none") {
						this.elem.style.display = "block";
					}
				}

				// Hide the element if the "hide" operation was done
				if (this.options.hide) {
					jQuery(this.elem).hide();
				}

				// Reset the properties, if the item has been hidden or shown
				if (this.options.hide || this.options.show) {
					for (var p in this.options.curAnim) {
						jQuery.style(this.elem, p, this.options.orig[p]);
					}
				}

				// Execute the complete function
				this.options.complete.call(this.elem);
			}

			return false;

		} else {
			var n = t - this.startTime;
			this.state = n / this.options.duration;

			// Perform the easing function, defaults to swing
			var specialEasing = this.options.specialEasing && this.options.specialEasing[this.prop];
			var defaultEasing = this.options.easing || (jQuery.easing.swing ? "swing" : "linear");
			this.pos = jQuery.easing[specialEasing || defaultEasing](this.state, n, 0, 1, this.options.duration);
			this.now = this.start + ((this.end - this.start) * this.pos);

			// Perform the next step of the animation
			this.update();
		}

		return true;
	}
};

jQuery.extend(jQuery.fx, {
	tick: function() {
		var timers = jQuery.timers;

		for (var i = 0; i < timers.length; i++) {
			if (!timers[i]()) {
				timers.splice(i--, 1);
			}
		}

		if (!timers.length) {
			jQuery.fx.stop();
		}
	},
		
	stop: function() {
		clearInterval(timerId);
		timerId = null;
	},
	
	speeds: {
		slow: 600,
 		fast: 200,
 		// Default speed
 		_default: 400
	},

	step: {
		opacity: function(fx) {
			jQuery.style(fx.elem, "opacity", fx.now);
		},

		_default: function(fx) {
			if (fx.elem.style && fx.elem.style[fx.prop] != null) {
				fx.elem.style[fx.prop] = (fx.prop === "width" || fx.prop === "height" ? Math.max(0, fx.now) : fx.now) + fx.unit;
			} else {
				fx.elem[fx.prop] = fx.now;
			}
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.animated = function(elem) {
		return jQuery.grep(jQuery.timers, function(fn) {
			return elem === fn.elem;
		}).length;
	};
}

function genFx(type, num) {
	var obj = {};

	jQuery.each(fxAttrs.concat.apply([], fxAttrs.slice(0,num)), function() {
		obj[this] = type;
	});

	return obj;
}
if ("getBoundingClientRect" in document.documentElement) {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		var box = elem.getBoundingClientRect(), doc = elem.ownerDocument, body = doc.body, docElem = doc.documentElement,
			clientTop = docElem.clientTop || body.clientTop || 0, clientLeft = docElem.clientLeft || body.clientLeft || 0,
			top = box.top + (self.pageYOffset || jQuery.support.boxModel && docElem.scrollTop || body.scrollTop) - clientTop,
			left = box.left + (self.pageXOffset || jQuery.support.boxModel && docElem.scrollLeft || body.scrollLeft) - clientLeft;

		return { top: top, left: left };
	};

} else {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		jQuery.offset.initialize();

		var offsetParent = elem.offsetParent, prevOffsetParent = elem,
			doc = elem.ownerDocument, computedStyle, docElem = doc.documentElement,
			body = doc.body, defaultView = doc.defaultView,
			prevComputedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle,
			top = elem.offsetTop, left = elem.offsetLeft;

		while ((elem = elem.parentNode) && elem !== body && elem !== docElem) {
			if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
				break;
			}

			computedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle;
			top -= elem.scrollTop;
			left -= elem.scrollLeft;

			if (elem === offsetParent) {
				top += elem.offsetTop;
				left += elem.offsetLeft;

				if (jQuery.offset.doesNotAddBorder && !(jQuery.offset.doesAddBorderForTableAndCells && /^t(able|d|h)$/i.test(elem.nodeName))) {
					top += parseFloat(computedStyle.borderTopWidth) || 0;
					left += parseFloat(computedStyle.borderLeftWidth) || 0;
				}

				prevOffsetParent = offsetParent, offsetParent = elem.offsetParent;
			}

			if (jQuery.offset.subtractsBorderForOverflowNotVisible && computedStyle.overflow !== "visible") {
				top += parseFloat(computedStyle.borderTopWidth) || 0;
				left += parseFloat(computedStyle.borderLeftWidth) || 0;
			}

			prevComputedStyle = computedStyle;
		}

		if (prevComputedStyle.position === "relative" || prevComputedStyle.position === "static") {
			top += body.offsetTop;
			left += body.offsetLeft;
		}

		if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
			top += Math.max(docElem.scrollTop, body.scrollTop);
			left += Math.max(docElem.scrollLeft, body.scrollLeft);
		}

		return { top: top, left: left };
	};
}

jQuery.offset = {
	initialize: function() {
		var body = document.body, container = document.createElement("div"), innerDiv, checkDiv, table, td, bodyMarginTop = parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0,
			html = "<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";

		jQuery.extend(container.style, { position: "absolute", top: 0, left: 0, margin: 0, border: 0, width: "1px", height: "1px", visibility: "hidden" });

		container.innerHTML = html;
		body.insertBefore(container, body.firstChild);
		innerDiv = container.firstChild;
		checkDiv = innerDiv.firstChild;
		td = innerDiv.nextSibling.firstChild.firstChild;

		this.doesNotAddBorder = (checkDiv.offsetTop !== 5);
		this.doesAddBorderForTableAndCells = (td.offsetTop === 5);

		checkDiv.style.position = "fixed", checkDiv.style.top = "20px";
		// safari subtracts parent border width here which is 5px
		this.supportsFixedPosition = (checkDiv.offsetTop === 20 || checkDiv.offsetTop === 15);
		checkDiv.style.position = checkDiv.style.top = "";

		innerDiv.style.overflow = "hidden", innerDiv.style.position = "relative";
		this.subtractsBorderForOverflowNotVisible = (checkDiv.offsetTop === -5);

		this.doesNotIncludeMarginInBodyOffset = (body.offsetTop !== bodyMarginTop);

		body.removeChild(container);
		body = container = innerDiv = checkDiv = table = td = null;
		jQuery.offset.initialize = jQuery.noop;
	},

	bodyOffset: function(body) {
		var top = body.offsetTop, left = body.offsetLeft;

		jQuery.offset.initialize();

		if (jQuery.offset.doesNotIncludeMarginInBodyOffset) {
			top += parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0;
			left += parseFloat(jQuery.curCSS(body, "marginLeft", true)) || 0;
		}

		return { top: top, left: left };
	},
	
	setOffset: function(elem, options, i) {
		// set position first, in-case top/left are set even on static elem
		if (/static/.test(jQuery.curCSS(elem, "position"))) {
			elem.style.position = "relative";
		}
		var curElem = jQuery(elem),
			curOffset = curElem.offset(),
			curTop = parseInt(jQuery.curCSS(elem, "top", true), 10) || 0,
			curLeft = parseInt(jQuery.curCSS(elem, "left", true), 10) || 0;

		if (jQuery.isFunction(options)) {
			options = options.call(elem, i, curOffset);
		}

		var props = {
			top: (options.top - curOffset.top) + curTop,
			left: (options.left - curOffset.left) + curLeft
		};
		
		if ("using" in options) {
			options.using.call(elem, props);
		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	position: function() {
		if (!this[0]) {
			return null;
		}

		var elem = this[0],

		// Get *real* offsetParent
		offsetParent = this.offsetParent(),

		// Get correct offsets
		offset = this.offset(),
		parentOffset = /^body|html$/i.test(offsetParent[0].nodeName) ? { top: 0, left: 0 } : offsetParent.offset();

		// Subtract element margins
		// note: when an element has margin: auto the offsetLeft and marginLeft
		// are the same in Safari causing offset.left to incorrectly be 0
		offset.top -= parseFloat(jQuery.curCSS(elem, "marginTop", true)) || 0;
		offset.left -= parseFloat(jQuery.curCSS(elem, "marginLeft", true)) || 0;

		// Add offsetParent borders
		parentOffset.top += parseFloat(jQuery.curCSS(offsetParent[0], "borderTopWidth", true)) || 0;
		parentOffset.left += parseFloat(jQuery.curCSS(offsetParent[0], "borderLeftWidth", true)) || 0;

		// Subtract the two offsets
		return {
			top: offset.top - parentOffset.top,
			left: offset.left - parentOffset.left
		};
	},

	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent || document.body;
			while (offsetParent && (!/^body|html$/i.test(offsetParent.nodeName) && jQuery.css(offsetParent, "position") === "static")) {
				offsetParent = offsetParent.offsetParent;
			}
			return offsetParent;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each(["Left", "Top"], function(i, name) {
	var method = "scroll" + name;

	jQuery.fn[method] = function(val) {
		var elem = this[0], win;
		
		if (!elem) {
			return null;
		}

		if (val !== undefined) {
			// Set the scroll offset
			return this.each(function() {
				win = getWindow(this);

				if (win) {
					win.scrollTo(
						!i ? val : jQuery(win).scrollLeft(),
						 i ? val : jQuery(win).scrollTop()
);

				} else {
					this[method] = val;
				}
			});
		} else {
			win = getWindow(elem);

			// Return the scroll offset
			return win ? ("pageXOffset" in win) ? win[i ? "pageYOffset" : "pageXOffset"] :
				jQuery.support.boxModel && win.document.documentElement[method] ||
					win.document.body[method] :
				elem[method];
		}
	};
});

function getWindow(elem) {
	return ("scrollTo" in elem && elem.document) ?
		elem :
		elem.nodeType === 9 ?
			elem.defaultView || elem.parentWindow :
			false;
}
// Create innerHeight, innerWidth, outerHeight and outerWidth methods
jQuery.each(["Height", "Width"], function(i, name) {

	var type = name.toLowerCase();

	// innerHeight and innerWidth
	jQuery.fn["inner" + name] = function() {
		return this[0] ?
			jQuery.css(this[0], type, false, "padding") :
			null;
	};

	// outerHeight and outerWidth
	jQuery.fn["outer" + name] = function(margin) {
		return this[0] ?
			jQuery.css(this[0], type, false, margin ? "margin" : "border") :
			null;
	};

	jQuery.fn[type] = function(size) {
		// Get window width or height
		var elem = this[0];
		if (!elem) {
			return size == null ? null : this;
		}
		
		if (jQuery.isFunction(size)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self[type](size.call(this, i, self[type]()));
			});
		}

		return ("scrollTo" in elem && elem.document) ? // does it walk and quack like a window?
			// Everyone else use document.documentElement or document.body depending on Quirks vs Standards mode
			elem.document.compatMode === "CSS1Compat" && elem.document.documentElement["client" + name] ||
			elem.document.body["client" + name] :

			// Get document width or height
			(elem.nodeType === 9) ? // is it a document
				// Either scroll[Width/Height] or offset[Width/Height], whichever is greater
				Math.max(
					elem.documentElement["client" + name],
					elem.body["scroll" + name], elem.documentElement["scroll" + name],
					elem.body["offset" + name], elem.documentElement["offset" + name]
) :

				// Get or set width or height on the element
				size === undefined ?
					// Get width or height on the element
					jQuery.css(elem, type) :

					// Set the width or height on the element (default to pixels if value is unitless)
					this.css(type, typeof size === "string" ? size : size + "px");
	};

});
// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

})(window);

OEBPS/answer09.html

		
			

			
Answer

		
			

Lewis provides a useful framework for thinking about the links between trends in sociology and cultural studies, adult literature and picturebooks. He starts by outlining some of the main aspects of postmodernity – indeterminacy fragmentation, decanonisation, irony and hybridisation. These are not, of course, exclusive properties of postmodern texts: indeterminacy and irony are, for example, features of many novels and poems. At issue perhaps is the degree to which such features seem salient to the reader: the extent to which they invite us to see them as ‘postmodern’. You may have already considered the idea of the literary canon and the notion of hybridity, and some of these concepts may be familiar to you from literary studies. What may be new is Lewis’ analysis of how these are represented visually in texts for children. Activity 8 then offers some examples of texts (both children's and adult) which demonstrate his points.

		

	

OEBPS/images/e301_1_001i.jpg
‘Fury said to a
mouse, That he
met in the
house,
“Let us
both go to
law: 7 will
prosecute
you. — Come,
I'll take no
denial; We
must have a
trial: For

really this,
morning I've

nothing
t0 do.”
Said the
mouse to the
cur, “Such
a trial,
dear Sir,
With
no jury
or judge,
would be
wasting
our
breath.”
“T'llbe
judge, Tl
be jury
Said
cunning
old Fury:’
“ril
ry the
whole
cause,
and
condemn
you

)
death.”

OEBPS/answer01.html

		
			

			
Answer

		
			

‘The Mouse's Tale’ is an example of concrete poetry, where words are arranged on the page in a significant way. When read aloud, its rhyme and metre are easier to access, but the layout initially challenges our attempts to read it as a poem. We consider concrete poetry in more detail in the next section.

			‘The Mouse's Tale’ can be considered as literary not only because it comes from a highly valued and canonical work of literature, but because it can be analysed in terms of defamiliarisation and creative deviation in the discussion of Russian Formalism. The poem is eye-catching (‘made strange’) due to its unusual shape and can thus be seen as deviating from ‘normal’ layout conventions of poetry – even though readers of poetry are familiar, of course, with a range of such conventions. The text is also poetic in Formalist terms because it contains an obvious pun – in this case between semiotic modes. The verbal ‘tale’ being told by the mouse is represented by the visual ‘tail’.

		

	

OEBPS/answer11.html

		
			

			
Answer

		
			

Like ‘Poems For All’, this is a poem encountered in a public space. I would accept this as poetry, and accord it literary value. Its meaning and form seem to connect quite directly with each other, and with the context of the poem's encounter There are references such as damp city streets and rush-hour headlights which the weary commuter passing through the subway would find easy to relate to. You may well disagree.

		

	

OEBPS/images/e301_1_013i.jpg
IpReam Of
fCReeN GarDEN
W

[°re tHe SUN
flHers my face

Lik >
ke youp once

fager kiss

alreapy your face recepes seNeath tie st

ON clock,

MUDGE AMONG tHe SHADOWS

MIRRORED IN thie tRAIN's wet glass,

OEBPS/images/e301_1_i001i.jpg
SHOUT AT YOU

OEBPS/images/e301_1_012i.jpg
PiEMS

FoR
i f PIEA

ZSH"RZ%"}C)Z N

33 W

A FLwag ﬁaz
in

BELIVEA 0"

‘Mo S HorRE
mm

e

ToF Fonpvermmpl

OEBPS/media/easterwings.pdf
Easter Wings, from The Temple (1633) by George
Herbert

The Church,
o Eafter wings.

gl

Taeny Apmed o] ypip negl
SUTEL PO SR LA [puy

tamdaq prp Mowoy w 9dc apum A4

g wif

a1 pTAY
taitod yopg
Jwes g IpL
adow pure asowr Smuftaag
£ty atgs g0y o Appoo] gfnog L
SRR o

Faoy pue e ur 1Pty oA fpso T
anp Y

g w-n O

umng |

“hyronourey € sy vy

3o £y Kep s oy puy

fow uf WSy S Spmy qy g

Lord, Who createdst man in wealth and store,
Though foolishly he lost the same,
Decaying more and more,

Till he became
Most poore:

With Thee
O let me rise,
As larks, harmoniously,
And sing this day Thy victories:
Then shall the fall further the flight in me.

My tender age in sorrow did beginne;
And still with sicknesses and shame
Thou didst so punish sinne,
That | became
Most thinne.

With Thee
Let me combine,
And feel this day Thy victorie;
For, if I imp my wing on Thine,
Affliction shall advance the flight in me...

		Easter Wings, from The Temple (1633) by George Herbert

OEBPS/media/e301_1_001s.mp3
309.7746

OEBPS/answer03.html

		
			

			
Answer

		
			

As a single image, Baby McFry is iconic – a photograph of a toddler. On the level of denotation, then, we could say it denotes that particular child, wearing those particular clothes, at the particular time the photograph was taken. On the connotative level, though, the image is complex. It is made up of component signs. Connotations evoked by signs are not universal – different people may read any image in different ways. Images also require some interpretative effort on the part of the reader: the more time you spend looking at them, the more you will probably see. For example, you may look at Baby McFry and immediately recognise the McDonald's corporate logo (known as the ‘Golden Arches’, due to the shape of the letter M). It is one of the best known logos in the world. You might then decide that the bib and hat are significant – for you, these may connote pleasure, distaste, or neither, but quite possibly a feeling you associate with a trip to McDonald's.

			Bignell also discusses codes in his reading, a discussion which relates to the principle of selection and combination. Signs are selected from a paradigm – a set of possible signs in a given category, such as nouns, jackets, colours. Here we have a white (not Asian or Black for example) child (not a man, not an adolescent, not a grandfather), with a McDonald's bib (not a different bib), and so on. These are combined along the syntagm – in a sentence, this would be the linear order of the words, but in an image it is the spatial arrangement. Because on the paradigmatic and syntagmatic axes elements have been selected and combined, it is often illuminating to consider what elements were not selected, and how a different combination would have changed the meaning.

			All the advertisement actually shows (denotes) is a fairly plump-looking baby, probably between 12 and 18 months old, wearing a McDonald's bib and a paper hat with an image of chips printed on it. So it would be quite possible to read this as an advertisement for McDonald's itself, or as a children's party invitation, or a family snap.

			But this image is an ‘anti-advertisement’ or ‘subvertisement’ produced by Adbusters, a network of artists and activists concerned about ecological and commercial issues. They are known for their anti-consumption campaigns such as Buy Nothing Day, and TV Turnoff Week, as well as for their parodies of advertisements by international corporations, such as this one. This multimodal text condenses into a single image current and ongoing concerns about the activities of large multinational corporations, and the amount of contextual information we need to read it is enormous.

			McDonald's is a global brand; many people know that it has been targeted by anti-capitalism activists, who raise concerns about the environmental damage they believe stems from the production of ‘fast food’; by those who want to replace what have been termed ‘McJobs’ with better long-term career options and pay for young people; by health professionals concerned with the projected rise in obesity attributable, in part, to excessive consumption of fast food; and by those concerned that the global expansion of McDonald's rides roughshod over local cultural traditions. When viewing this advertisement, you may or may not have access to all of this background information. Your interpretation of this spoof advertisement therefore depends on your recognition (or not) of at least some of the current controversies, your attitudes towards them, and perhaps your attitudes to advertising in general. Your experience of such texts (and indeed any other text) is dependent also on your cultural context, and social and political factors: you may be fully aware of the opposition to McDonald's but think it entirely unreasonable. We return later to this point in Reading B, where the meanings of the words and images in postcolonial picturebooks are discussed.

		

	

OEBPS/images/e301_1_c001i.jpg

OEBPS/media/e301_1reading_a.pdf
278

THE ART OF ENGLISH: LITERARY CREATIVITY

READING A: Extracts from ‘Signs and myths’

Jonathan Bignell

Semiotics originates mainly in the work of two people, Ferdinand de
Saussure, and Charles Peirce. Their ideas are quite closely related, but exhibit
some differences. [...] Saussure showed that language is made up of signs
(like words) which communicate meanings, and he expected that all kinds of
other things which communicate meanings could potentially be studied in
the same way as linguistic signs, using the same methods of analysis.

Semiotics or semiology, then, is the study of signs in society, and while
the study of linguistic signs is one branch of it, it encompasses every use of a
system where something (the sign) carries a meaning for someone. [...] Since
language is the most fundamental and pervasive medium for human
communication, semiotics takes the way that language works as the model
for all other media of communication, all other sign systems. [...]

Sign systems

Saussure’s first move was to set limits to the variety of tasks which his study
of language might involve. Instead of considering language from a
psychological, sociological, or physiological point of view, he decided to
focus on a clearly defined object of study: the linguistic sign. He showed that
the linguistic sign is arbitrary. The linguistic sign ‘cat’ is arbitrary in that it has
no connection either in its sound, or its visual shape, with what cats are really
like. In another language, the sign for cat will be different from the linguistic
sign in English (e.g. French uses chat). Clearly, there must be a kind of
agreement among the users of our language that the sign ‘cat’ shall refer to a
particular group of furry four-legged animals. But this agreement about signs
is not consciously entered into, since we learn how to use language so early
in our lives that there can be no deliberate choice available to us. Language
has always been there before we arrived on the scene. Even if I perversely
decided to adopt another sign for what we call a cat, like ‘yarup’ for instance,
this sign would be entirely useless since no-one else would understand me.
The capacity of linguistic signs to be meaningful depends on their existence
in a social context, and on their conventionally accepted use in that social
context.

[...] The systems in which signs are organised into groups are called
codes. This is a familiar term, for instance in the phrase ‘dress codes’. In our
society, the dress code that governs what men should wear when going to a
formal wedding includes items like a top hat and a tail jacket. [...] By contrast,
a man might select jogging shorts, training shoes and a baseball cap to go to
the local gym. These clothing signs belong to a different dress code, and
communicate a message of ‘informality’. In the case of dress codes, it is
possible to select the clothing signs which we use in order to communicate
particular messages about ourselves. Even when clothes perform practical

CHAPTER 6 WORD AND IMAGE 279

See also the
discussion of
syntagm and
paradigm in
Chapter 2.

functions (like the loose and light clothes worn to play sports) codes still give
social meanings to our choices, like codes of fashionableness and codes
governing what men may wear versus what women may wear. [...]

Components of the sign

[...] In his analysis of linguistic signs, Saussure showed that there are two
components to every sign. One is the vehicle which expresses the sign, like a
pattern of sound which makes up a word, or the marks on paper which we
read as words, or the pattern of shapes and colours which photographs use
to represent an object or person. This vehicle which exists in the material
world is called the ‘signifier’. The other part of the sign is called the
‘signified’. The signified is the concept which the signifier calls forth when we
perceive it. So when you perceive the sign ‘cat’ written on this page, you
perceive a group of marks, the letters ¢, a, and t, which are the signifier. This
signifier is the vehicle which immediately calls up the signified or concept of
cat in your mind. The sign is the inseparable unity of the signifier with the
signified, since in fact we never have one without the other. [...]

Sequences of linguistic signs

[...] When signs are spread out in a sequence over time, or have an order in
their spatial arrangement, their order is obviously important. In a sentence
like ‘The dog bites the man’, meaning unfolds from left to right along the line
of the sentence, as we read the words in sequence one after another. This
horizontal movement is called the ‘syntagmatic’ aspect of the sentence. If we
reverse the order into ‘The man bites the dog’, the meaning is obviously
different. Each linguistic sign in the syntagm could also be replaced by
another sign which is related to it, having perhaps the same grammatical
function, a similar sound, or relating to a similar signified. It is as if there are
vertical lists of signs intersecting the horizontal line of the sentence, where
our sentence has used one of the signs in each vertical list.

These lists of signs are called ‘paradigms’. We could replace ‘dog’ with
‘cat’ or ‘tiger’, and replace ‘bites’ with ‘licks’ or ‘kicks’ or ‘chews’. Each
different selection from these paradigms would alter the meaning of the
syntagm, our horizontal sentence of words.

[...] As a general principle, every sign that is present must be considered
in relation to other signs present in the structure of the articulation, and every
sign present has meaning by virtue of the other signs which have been
excluded and are not present in the text.

Visual signs

Most of the account of linguistic signs above comes directly from Saussure,
but some of the principles and terms [...] derive from the semiotic work of
the American philosopher Charles S. Peirce (1958). In particular, the semiotic
analysis of images and other nonverbal signs is made much more effective by

280

THE ART OF ENGLISH: LITERARY CREATIVITY

some of Peirce’s distinctions. Although language is the most striking form of
human sign production, the whole of our social world is pervaded by
messages which contain visual as well as linguistic signs, or which are
exclusively visual. Gestures, dress codes, traffic signs, advertising images,
newspapers, television programmes and so on are all kinds of media which
use visual signs. The same principles underlie the semiotic study of visual
signs and linguistic signs. In each case, there is a material signifier, which
expresses the sign, and a mental concept, a signified, which immediately
accompanies it. Visual signs also belong to codes, are arranged in syntagms,
and selected from paradigms. [...]

We have already seen how linguistic signs are arbitrary, since there is no
necessary connection between the signifier ‘cat’ on this page and the
signified concept of cat in our minds. [...] The relationship of signifier to
signified, and of sign to referent, is entirely a matter of the conventions
established [...] in this case by the English language in particular. This type
of sign, characterised by arbitrariness, Peirce calls the ‘symbolic’ sign.

But a photograph of a cat looks recognisably like a specific cat. The
arrangement of shape and colour in the photograph, the signifier which
expresses the signified ‘cat’, has a close resemblance to its referent, the real
cat which the photograph represents. In a photograph, the signifier is the
colour and shape on the flat surface of the picture. The signified is the
concept of a cat which this signifier immediately calls up. The referent is the
cat which was photographed. Just as my cat is white with some black and
orange patches, so a photograph of my cat will faithfully record these
different shapes and colours. This kind of sign, where the signifier resembles
the referent, Peirce calls an ‘iconic’ sign. [...] Unlike the case of linguistic
signs, iconic signs have the property of merging the signifier, signified and
referent together. It is much more difficult to realise that the two components
of the photographic sign plus their referent are three different things. It is for
this reason that photographic media seem to be more realistic than linguistic
media [...].

When a cat is hungry and miaows to gain our attention, the sound made
by the cat is pointing to its presence nearby, asking us to notice it, and this
kind of sign Peirce calls ‘indexical’. Indexical signs have a concrete and often
causal relationship to their signified. The shadow cast on a sundial tells us the
time, it is an indexical sign which is directly caused by the position of the
sun, and similarly smoke is an index of fire, a sign caused by the thing which
it signifies. Certain signs have mixed symbolic, indexical and iconic features.
For instance, a traffic light showing red has both indexical and symbolic
components. It is an indexical sign pointing to a traffic situation (that cars
here must wait), and using an arbitrary symbolic system to do this
(red arbitrarily signifies danger and prohibition in this context).

CHAPTER 6 WORD AND IMAGE

281

Connotation and myth

[...] Because we use signs to describe and interpret the world, it often seems
that their function is simply to ‘denote’ something, to label it. The linguistic
sign ‘Rolls-Royce’ denotes a particular make of car, or a photographic sign
showing Buckingham Palace denotes a building in London. But along with
the denotative, or labelling function of these signs to communicate a fact,
come some extra associations which are called ‘connotations’. Because
Rolls-Royce cars are expensive and luxurious, they can be used to connote
signifieds of wealth and luxury. The linguistic sign ‘Rolls-Royce’ is no longer
simply denoting a particular type of car, but generating a whole set of
connotations which come from our social experience. The photograph of
Buckingham Palace not only denotes a particular building, but also connotes
signifieds of royalty, tradition, wealth and power.

When we consider advertising, news, and TV or film texts, it will become
clear that linguistic, visual, and other kinds of sign are used not simply to
denote something, but also to trigger a range of connotations attached to the
sign. [The French critic, Roland] Barthes calls this social phenomenon, the
bringing-together of signs and their connotations to shape a particular
message, the making of ‘myth’. Myth here does not refer to mythology in
the usual sense of traditional stories, but to ways of thinking about people,
products, places, or ideas which are structured to send particular messages
to the reader or viewer of the text. So an advertisement for shoes which
contains a photograph of someone stepping out of a Rolls Royce is not only
denoting the shoes and a car, but attaching the connotations of luxury which
are available through the sign ‘Rolls-Royce’ to the shoes, suggesting a mythic
meaning in which the shoes are part of a privileged way of life. [...]

Myth takes hold of an existing sign, and makes it function as a signifier
on another level. The sign ‘Rolls-Royce’ becomes the signifier attached to the
signified ‘luxury’, for example. It is as if myth were a special form of
language, which takes up existing signs and makes a new sign system out of
them. [... M]yth is not an innocent language, but one that picks up existing
signs and their connotations, and orders them purposefully to play a
particular social role.

Reference

PEIRCE, C.S. (1958) Selected Writings (Values in a Universe of Chance),
ed. P. WIENER, New York, Dover Press.

Source: BIGNELL, J. (2002) Media Semiotics: An Introduction, 2nd edn,
Chapter 1, Manchester/New York, Manchester University Press.

OEBPS/images/e301_1_i002i.jpg
whisper quietly

OEBPS/images/e301_1_004i.jpg
%
%, %
%, s &

>
click _ toroar flick to soar
<

o

o &
& &

the wings,

58

Apears @,
%y

totouch °

the, Q\‘D(A

Z

&

OEBPS/images/e301_1_005i.jpg

OEBPS/media/dreams_dickinson.pdf
b
il’é""%wf- Rar Frcer- Fier—
Cltzscreys Fedd -
‘-";- Frrr ﬂﬂﬁd‘r. P
R A
FeLes -
Ccon ireeres - </ e e - ._ﬂ

S Zoreces . CHr Slr mersorio
i

Fhrrvr Gl Ereer 7‘_;-?5-' -
VA, < o €Zrra .
Cosr fo e Caregr -
'E‘i#""f";fﬁ ST Do * 'z’iwf';«g,, =

¥

