
		
			[image: cover image]
		

	
		About this ebook

		This ebook is taken from an Open University module, which was originally
 published as an open educational resource on the OpenLearn website.
 For
 more information on OpenLearn, and to access the study units published there,
 visit http://openlearn.open.ac.uk/.

		Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the
 “Creative Commons Licence”. Copyright and rights falling outside
 the terms of the Creative Commons Licence are retained or controlled by The Open
 University. Please read the full text before using any of the content of this
 ebook.

		Cover photograph © Pgiam.

		
			
				Show full text
			

		

	
		
			Crossing the boundary - analogue universe, digital worlds
			

			
			
			
			
			
			
			
			
			
		
		Introduction

		This unit introduces the important distinction between our analogue world of colour, sound, taste and touch and the computer's peculiar binary world of digital entities. Concepts of the analogue universe in which we live and the digital world we create are explained. The way in which information, in the form of text, still and moving images, and sound can cross the boundary from the analogue universe into a digital world is explored.

		
			Learning outcomes

		

		Having studied this unit, you should be able to:

		
				give examples of quantities that are intrinsically analogue, and quantities that are intrinsically discrete/digital;

				 define the terms ‘bit’, ‘byte’ and ‘word’;

				 outline how visual information, such as pictures, diagrams and moving images can be expressed numerically inside a computer;

				describe how sounds such as speech and music can be represented inside a computer in terms of numbers.

		

	
		1 Aims

		In this unit, I want to be more specific and look at the way computers represent and handle data. The unit aims to:

		
				
				broaden the definition of a computer and explain the concept of crossing the boundary between the computer's world and our own (Section 2);

			

				
				explain the digital nature of the computer's world and contrast it with our analogue world of sense and motion (Section 3);

			

				
				describe in detail how to transform features of our world into computer representation (Section 4);

			

				
				look at ways in which digital information in the computer can be displayed for our eyes and ears (Section 5);

			

				
				consider the amazing implications of being able to use the computer to manipulate and transform digital representations of our world (Section 6).

			

		

	
		2 The worlds we live in

		2.1 Between two worlds

		Between two worlds life hovers like a star,

		‘Twixt night and morn, under the horizon's verge.

		How little do we know that which we are!

		How less what we may be!

		(Byron, Don Juan)

		2.2 Sensual world

		
			Just back home after a night walk, Klingsor stood on the narrow stone balcony of his studio. Below him, dizzyingly precipitate, the old terrace gardens dropped away, a densely shadowed tangle of tree tops, palms, cedars, chestnuts, Judas-trees, red beech and eucalyptus, intertwined with climbing plants, lianas, wisterias …. From the massed leafage, penetrating and rousing, a tartly sweet smell of lemons drifted towards him. From some indefinite distance languorous music winged its way to him, perhaps a guitar, perhaps a piano; there was no saying. A peacock suddenly cried from a yard, twice, three times, piercing the night with the short, angry wooden tone of its tormented voice …. Starlight flowed through the wooded valley ….

			Klingsor stood on the balcony, coatless, his bare forearms leaning on the iron railing, and with a touch of sullenness, his eyes hot, read the script of the stars against the pale sky …. Yes it was night again, late and he ought to go to sleep now, absolutely and at all costs. Perhaps if he could really sleep for several nights in succession, sleep soundly for six or eight hours, he would be able to recover, his eyes would be obedient and patient again, his heart calmer and his temples without pain. But then this summer would be over … and along with it a thousand undrunk glasses would be spilled, a thousand unseen loving looks shattered, a thousand irrecoverable pictures extinguished unseen!

			He laid his forehead and his aching eyes against the cool iron railing. That refreshed him for a moment. In a year, perhaps sooner, these eyes would be blind and the fires in his heart extinct. No human being could endure his flaming life for long …. Nobody could be ablaze day and night, working feverishly for many hours every day, spending many hours every night in feverish thoughts…. It would come to an end. A great deal of strength had already been squandered, much eyesight consumed, much life bled away.

			(Hermann Hesse, Klingsor's Last Summer)

		

		The sensuality of this passage reminds us powerfully how immersed we are in our world. The reader is aware of all sorts of sensory stimuli: the gentle moonlight; the tropical heat and humidity of the scene; the sounds of the peacock and of distant music; the smell of lemon blossom; the coolness of the iron railing; the ache of the temples and the burning of the eyes. But the writing also speaks of more abstract human concerns: the need for rest; the imminence of death. It looks back to past summers of strength and inspiration. It looks forward into possible futures: one of sleep and respite from pain, another of love and creativity; and a bleak final future of the end of summer, death and extinction.

		Our own lives may not be as passionate, sensual and dramatic as this, but our concerns are similar. We too swim in a sea of sensory stimuli, enjoying the warmth of the sun, and enduring the discomfort of cold and damp. We are also aware of less immediate concerns, such as the price of petrol, the rate of inflation, and global warming. And we all can summon up past memories, good and bad, and imagine possible futures. What if we bought a new car? Would it be as good (or bad) as the old one? What would be the effect on our budget, and the environment, if we went for the two litre model?

		Like Klingsor:

		
				
				we live in and experience an actual, immediate world;

			

				
				we have remembered, past worlds to draw on;

			

				
				we can mentally explore a range of possible future worlds that do not exist yet, and may never exist.

			

		

		So what can this possibly have to do with computers?

		2.3 The computer in the world

		I want to stress what, for me, is the main point. Computers exist because of our human need to reach out into the world. The computer is a tool which, like all tools, strengthens our ability to reach into, and grapple with, the world. This unit explores:

		
				
				the ways in which computers help us make contact with the world;

			

				
				the many purposes we can achieve once a computer has been used to capture some part of the world.

			

		

		2.4 The pervasive computer

		We can start with a simple proposition:

		
			The computer's job is to acquire, store, present, control, exchange and manipulate interesting characteristics of the natural world.

		

		So what are ‘interesting characteristics of the natural world‘? Obviously that depends on your point of view. An ordinary tourist might want to capture a memory of some scene she was experiencing – moonlight on the Acropolis, or the majesty of the Grand Canyon, for instance. A scientist might be interested in the colour and intensity of light from a distant galaxy. An engineer might want to focus on the pattern of forces operating on a bridge. A graphic artist, contemplating the same bridge, would be more concerned with its shape, outline and colouring, while an accountant would focus on the bridge's cost. We all extract from our experience the features that most concern us. For this, the computer is a particularly powerful tool.

		Now let's look in a little more detail at what we want the computer to do with these interesting characteristics of the world.

		2.4.1 Storage and presentation

		Once some aspect of the world has been captured it can be stored semipermanently, copied as many times as we want, and examined whenever we wish. For example, if I take a digital photo of some attractive scene I can store it on a computer and then access it at any time. I can look at it on screen, display it using a data projector, or print as many copies as I want.

		2.4.2 Control

		Computers can be used to monitor and control mechanical systems, from satellites to microwave ovens. I don't propose to say any more about this here, except to point out that this form of control is now widespread, with probably the vast majority of consumer appliances, vehicles, scientific instruments, transport and information systems operating under some form of computer control.

		2.4.3 Exchange

		Being able to link computers into networks has enormously boosted their capabilities. Data can now be sent between any two computers, maybe thousands of miles apart, at the speed of light. For example, I can share the digital photo stored on my computer with people all over the world almost instantaneously, simply by sending the image to them as an email attachment. Or I can go further and post the image to a website on the internet, where it will be publicly available for any suitably equipped person in the world to look at. Countless individuals worldwide now have personal websites on which they publish pictures of themselves, their partners and their pets, along with details of their personal lives and habits. Whether or not this is a wise thing to do is an open question; the fact is, computer technology makes it easy.

		2.4.4 Manipulation

		Suppose I take a digital photograph of myself for my website. Horrified by my wrinkled, baggy appearance, what can I do? Actually, with the right software I can do more or less anything I like: I can smooth out the wrinkles; I can restore the grey hair to its former splendour; I can even put in a background of books to give me a scholarly appearance. In fact, I can so improve the picture that if you met the real me you probably wouldn't recognise me.

		‘Massaging’ my photographic image may seem a trivial reason for using a computer to acquire features of reality, but actually it has enormous significance. Figure 1 shows a landscape in which it may be difficult to distinguish what is real from what has been added by the computer. I say a bit more about this in Subsection 2.5, but a proper discussion will have to wait until Section 6.

		
			[image: A digitally manipulated image of a rockface]
		

		
			
				Figure 1: A digitally manipulated image: half reality, half digital transformation, the illusion can be difficult to detect
		

		
			
				Show description
			

		

		
			
				
					Exercise 1

				

			

			For each of the purposes above (storage, control, exchange, and manipulation), try to think of a specific example in which a computer is used for such a reason.

			
				
					Show
 discussion
				

			

		

		2.5: Crossing the boundary

		So computers are used to acquire, store and present, exchange, and manipulate interesting characteristics of the world. But this raises a serious problem: the world we inhabit and know so well and the world inside the computer are very different in kind. We live in an analogue world. The world of the computer is digital. The exact meaning of these terms may not be very clear to you at the moment. I will define them both in the next section. For the moment, the only point I want to make is that in order to capture pieces of reality on a computer, you have to move them from an analogue to a digital world inside the computer. In other words, you have to cross the boundary between two very different territories.

		In Section 3, I look at the nature of the analogue and digital worlds, while how we can transport aspects of our world across the boundary into the digital world is discussed in Section 4.

		2.6 Going back

		Capturing bits of reality and transferring them to a computer would be a pointless exercise if they stayed locked in the digital world. We want access to what we've captured. We want to see the results. In particular, we may want to look at our captive in a different form. For instance, suppose we input the series of temperature readings shown in Figure 2a into a computer. A useful way of looking at these numbers would be in the form of a graph or chart similar to that shown in Figure 2 (b). All this means that at some point we will have to take our digital slice of reality back across the boundary into the analogue world where we can look at it and play with it.

		
			[image: Image showing a table of temperature readings and these readings plotted onto a chart.]
		

		
			
				Figure 2: Transforming a series of temperature readings into a chart
		

		
			
				Show description
			

		

		In Section 5, I look in a bit more detail at what it means to go back across the boundary, and the sorts of device that are commonly used in the process.

		2.7 Manipulation

		As I suggested above, we can change a digital version of some aspect of reality in any way we want. I've used the simple example of tinkering with a digital photograph, but the possibilities for transformation go far beyond this. We can set up elaborate replicas of real-world systems and inspect them in detail. We can establish digital models and run them forward in time to see what might happen in the future. We can even create completely imaginary digital worlds and then explore them as if they were real. The computer not only gives us access to the immediate present world, but to the past and to possible future worlds – and to new worlds as well.

		As I try to show in Section 6, this ability to encapsulate important features of the world inside a computer and then use the machine to transform them has already had a huge impact on the arts, on science and on our understanding of the way the world works. It may have an immense impact on politics and society in the future.

		2.8 The price

		But using computers to acquire, store, exchange and manipulate data comes at a price. By this, I don't mean that the technology is expensive, although this may be an issue. Rather it's the fact that the quality of the information computers give us can often be suspect. More worrying still are the questions of privacy, liberty and security that are raised. The computer gives ordinary people unprecedented access to information. But it also gives people that might not wish us well – governments, criminals, terrorists – similar access, including access to information about you and me.

		There is also a less obvious penalty for crossing the boundary into the digital world, which I consider in Section 7. The fact that we have captured a certain feature of the world into a computer does not mean that we have captured the feature itself. We only have a representation of it, and an imperfect one at that. We would be unwise to place perfect trust in what our computers tell us.

		2.9 Summary

		In this section, I started by emphasising the fact that the computer, which has become more or less omnipresent in modern society, is a tool like any other.

		I went on to look at the special nature of that tool, establishing that its function is to capture, store, present, exchange and manipulate interesting aspects of the world.

		I then introduced the idea of two contrasting realms: the analogue world we inhabit and the digital interior world of the computer. When we capture features of the analogue world, we transport them across the boundary between these two worlds – the theme of this unit.

		Finally, I pointed out some of the dangers that can arise from the capture, storage and manipulation of digital information.

	
		3 Analogue information: digital representation

		3.1 Ghosts of departed quantities

		
			They are neither finite quantities, or quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?

			(Bishop G. Berkeley, The Analyst)

		

		This section follows up the ideas presented in Section 2, and aims to:

		
				
				define the terms analogue, discrete and digital;

			

				
				look briefly at the human perceptual system, which enables us to sense the analogue world we inhabit;

			

				
				explain the principles of the binary system, the basis of the digital world, and contrast it with the familiar decimal system.

			

		

		3.2 Analogue things

		In Section 2, I claimed that we lived in an analogue world, but put off defining what the term ‘analogue’ means. Here is a starting point: analogue quantities are ones that change continuously.

		It is easy to misread this definition. What it does not mean is that analogue quantities are ones that change continually, or all the time. So what does it mean? We need an example.

		
					Figure 3 shows part of a simple thermometer, which measures temperature, an analogue quantity. Most thermometers still use the length of a column of mercury or coloured alcohol to indicate the temperature which we read off a scale beside the column.

		
			[image: Image showing the scale on a simple analogue thermometer.]
		

		
			
				Figure 3: A simple analogue thermometer
		

		
			
				Show description
			

		

		Now focus on a small part of the temperature scale in Figure 3, the gap between 14°C and 15°C, say. Are there possible temperatures between these two values? Of course there are: 14.5°C lies between the two, along with many other values. What about the gap between 14.5°C and 15°C? Once again, there are countless possible temperatures between these two quantities. In fact, however small the gap between any two temperatures there will always be more possible temperatures inside that gap.

		
			SAQ 1

			How many possible temperatures might there be between 14°C and 15°C?

			
				
					Show
 answer
				

			

		

		Now imagine that the sun has risen and is starting to warm the room in which we've put our thermometer. The temperature starts to rise. If you stare fixedly at the thermometer while the room is getting warmer, you would never see the temperature suddenly leap from 14°C to 15°C, or from 14°C to 14.5°C. Instead the temperature rises smoothly and continuously, with no gaps or jumps. In moving from 14°C to 15°C it passes steadily through all of the infinite number of possible temperatures between the two. This is what we mean when we say the temperature is an analogue quantity.

		Just to press the point, here is another example. Most of you will own a radio or stereo with a mechanism for controlling the volume. Usually this is just a simple knob, as in Figure 4, which is rotated clockwise to increase the volume. Now, if you put on your favourite piece of music and slowly turn the control from low to deafening, what happens? The intensity of the sound does not increase in a series of jumps but, as with the temperature, goes up smoothly and progressively. Volume, too, is an analogue quantity.

		
			[image: Image of a simple circle volume control with a ‘lo’ and ‘hi’ position.]
		

		
			
				Figure 4: An analogue volume control
		

		
			
				Show description
			

		

		
			SAQ 2

			Name two other analogue quantities.

			
				
					Show
 answer
				

			

		

		If you ponder for a minute about the world we experience, you can see the justification for calling it an analogue world. We live in a world of light and sound, touches, smells and tastes. I will look more closely at the nature of some of these later in the unit. However, at this stage it is easy to see that they are mostly analogue things.

		3.3 How we perceive things

		3.3.1 The human perceptual system

		In order to survive, all living things have evolved some sort of ability to sense or perceive the world around them. Even the humble amoeba is sensitive to light. Complex animals have intricate perceptual systems that respond to many different features of their environment – insects, despite their impressive eyes, are most sensitive to trails of chemicals; bats are blind to light but responsive to sonar pulses; dogs and pigs depend more on smell than vision for sensing the world.

		We were all taught at school that humans have five senses: vision, hearing, smell, taste and touch (though some talk of balance as a sixth sense). Of these, vision and hearing are probably the ones we most depend on. The human visual system detects a narrow range of electromagnetic radiation we call light using sensitive nerve cells in the eye. Our auditory (hearing) system responds to the vibrations of the air which we recognise as sound. Our other senses also use specialised nerve cells to detect physical contact with the skin surface (touch), or concentrations of certain chemicals around us (smell and taste).

		3.3.2 Enhancing the perceptual system

		Magnificently evolved though it is, our sensory system is nothing special. We do not see as well as birds; our hearing is feeble compared to that of bats and some forest-dwelling mammals. Our sense of smell can't compare with that of dogs or pigs. There are many things we don't detect at all – radio waves, for instance.

		In one capacity, though, humans are supreme: we have learned to enhance our perceptual systems with instruments. For example, the human eye has only a limited power to resolve very small objects, but we can now create images of atoms themselves with electron microscopes. Our retinas do not respond well to very dim light, but we can now detect the faintest light sources with telescopes or light-intensifying apparatus. Our capacity to build tools to strengthen our perceptual abilities is unique in the living world. And in the twenty-first century digital computer technology is an essential component of modern instruments. Neither of the microscopic and telescopic images in Figure 5 could have been made without advanced computer technology. Indeed, the galaxies shown in Figure 5 (b) are among the most distant objects ever seen, and are about four billion times fainter than the limits of human vision.

		
			[image: Computer assisted images. The first shows red iron atoms on a blue copper background forming the kanji character for ‘atom’ and the second shows galaxies.]
		

		
			
				Figure 5: Computer-assisted images (a) red iron atoms on a mostly blue copper surface form the kanji character for the word ‘atom’ (b) galaxies
		

		
			
				Show description
			

		

		
			SAQ 3

			The discussion above used the examples of telescopes and microscopes. Name three other instruments that enhance our perceptual systems

			
				
					Show
 answer
				

			

		

		3.4 Discrete things

		In contrast to analogue quantities, which change continuously, discrete quantities change in a series of clear steps.

		Again, an example should make this clear. In Subsection 3.2, I considered the case of an analogue volume control. A discrete volume control is shown in Figure 6.

		
			[image: A discrete volume control which increases volume in steps not incrementally.]
		

		
			
				Figure 6: A discrete volume control
		

		
			
				Show description
			

		

		Turning a volume control like this is rather a different sensation from the smooth feeling of the one illustrated in Figure 4. For a start, the movement progresses through a series of definite clicks. And if you listen to the sound as the control moves clockwise from click to click, you can hear the volume increasing not smoothly, but in a series of steps, each one sharply and distinctly higher than the one before. This is just what we mean by a discrete quantity.

		Think back again to my example of a thermometer. I claimed that, for any two temperatures there is an infinite number of possible temperature differences between them. This cannot be true of a discrete quantity, which only has a fixed number of possible values between any two points on its scale.

		You may now have a question in mind. Didn't he say earlier that volume is an analogue quantity? Now he's suggesting that it is a discrete quantity. Which is true? Well, both can be true in a way. Temperature and volume are fundamentally analogue quantities in that they are infinitely variable. But we may choose to treat them as if they were discrete for our own convenience. Take the example of a thermometer again. Perhaps you own a clinical thermometer that looks something like the one shown in Figure 7.

		
			[image: A drawing of a digital thermometer]
		

		
			
				Figure 7: A discrete thermometer
		

		
			
				Show description
			

		

		The thermometer in Figure 7 has no column of mercury and no scale – just a window in which we can read out a temperature value to two decimal places. Now, if I warm the bulb of this sort of thermometer and watch what happens in the window, I will see the temperature rise in a series of distinct steps: 97.18, 97.19, 97.20, … . The values in-between these steps are simply ignored. I could, of course, design a thermometer with a much wider window, so I could record temperatures like 97.1843750927341. But why would I want to? For my purposes, the difference between 101.8374923 and 101.8374924 is of no interest: I still feel ill. And no matter how wide the window is, it can't record all possible temperatures, because an infinite number of infinitely small temperature differences are possible. So I can treat temperature as if it were a discrete quantity because it suits my purpose. This happens whenever we measure something.

		However, you should note that many quantities are fundamentally discrete, in that there is truly only a fixed range of values they can take.

		
			SAQ 4

			Try to think of another quantity that is strictly discrete, in that it can only have a finite number of values.

			
				
					Show
 answer
				

			

		

		In fact anything that we can count is likely to be a discrete quantity. The weight of a pile of sand is an analogue quantity, but the number of grains of sand in the pile is discrete.

		
			
				
					Exercise 2

				

			

			Which items in the following list are fundamentally analogue and which fundamentally discrete?

			
					
					The price of petrol

				

					
					The amount of heat from a fire

				

					
					The speed of a car

				

					
					The energy of a star

				

					
					The size of the audience at a play

				

					
					The pressure of the atmosphere.

				

			

			
				
					Show
 discussion
				

			

		

		3.5 Digital things

		The terms ‘discrete’ and ‘digital’ are often used interchangeably. For example, The New Penguin Dictionary of Computing contains the following definition.

		
			
				Digital. Any communication or computing technology whose data may only have a finite number of discrete values.

		

		However, I want you to be clear about the strong association between a digital thing and a number. So let's now look a bit more closely at the interior world of the computer. It is a discrete world. But, more precisely, it is a digital world, a world of numbers.

		3.6 A world of numbers

		Although we may not all enjoy it, using numbers to count and do arithmetic seems to be a natural human activity. For computers, however, there is nothing but numbers. They were designed from the first to handle numbers and that is still all they do. The cleverness of modern software may make it appear that they do much more, but this is an illusion. The interior world of the computer, the territory inside the boundary, is a world of numbers and nothing else.

		Some of you may have gone into the details of how numbers are represented and manipulated; others may have gratefully left the subject behind as soon as possible. But in this subsection I want to say a little about the systems used for working with numbers, and to bring out the very different ways in which humans and computers do the same things.

		3.7 How we work with numbers

		Most civilisations have had to face the problem of counting and recording numbers. Our own culture has adopted the so-called Arabic system of numbers. This system is now used more or less worldwide. In this section I will look very briefly at some of its key features.

		We have an infinity of numbers at our disposal. If we start counting from 1, we can in theory go on for ever. But although there is an infinity of numbers, we only have a very small, fixed number of digits to play with – the figures 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. This is no accident: we have ten fingers. But how, then, do we get beyond nine? This is something we learned at school. We represent the number after 9 as

		10

		which we can read as one group of ten plus zero, in other words ten. We create a new column to the left and use it to count groups of ten. So now we can represent numbers above ten, such as

		37

		which is three groups of ten (thirty) plus seven, i.e. thirty-seven.

		Obviously, two columns only take us as far as ninety-nine, after which we run out of digits again. But we can reuse the same idea: we create a new column to the left of our tens column; this column counts groups of a hundred, so

		345

		is three groups of one hundred (three hundred), plus four groups of ten (forty) plus five: three hundred and forty-five.

		We can add a new column to the left every time we run out of columns and digits. So

		4621

		is four groups of one thousand, plus six groups of one hundred, plus two groups of ten plus one.

		By now you should see a pattern starting to emerge. Each column counts groups that are ten times bigger than the groups counted by the column immediately to its right, with the rightmost column counting ones. This can be represented as follows.

		
			
		

		
			
				View table
			

		

		Put slightly more mathematically, the following version tells exactly the same story.

		
			
		

		
			
				View table
			

		

		The fact that our way of doing arithmetic

		
				
				uses ten digits (0 to 9); and

			

				
				each column counts groups ten times bigger than those counted in the column to its right;

			

		

		leads to it being called a base 10 arithmetic, or a decimal system, from the Latin decima meaning ‘a tenth’.

		Using base 10, we can count to, and write down, any number we want.

		
			
				
					Exercise 3

				

			

			Computer scientists sometimes use an octal (base 8) system? What digits would we need for that and what would the columns represent?

			Discussion

			To start with, we need only the first eight digits, 0 to 7, so we can discard 8 and 9.

			The first column will count units as before. Each new column will count groups eight times the size of the groups counted by the column immediately to its right. So the table would look like this:

			
				
			

			
				
					View table
				

			

			End of discussion

		

		3.8 How computers work with numbers

		Today's mass media wrap computers in a damaging myth. The message of TV thrillers seems to be that computers are inscrutable, subtle devices, far beyond the ordinary person's comprehension. Only spectacularly gifted, young, ‘cool’ people seem to be capable of working with them successfully. For such individuals, a few clicks on the keyboard work miracles. The myth suggests that when we less gifted mortals use a computer and something goes wrong, it's our fault. We're simply too stupid for the machine. Figure 8 probably sums up many people's view of working with computers.

		
			[image: A clip art image of a duck wielding a sledgehammer at a PC.]
		

		
			
				Figure 8: A popular piece of clip art
		

		
			
				Show description
			

		

		Of course, there is a tiny core of truth to this myth. The computer that sits on your desk is the result of 60 years of innovation and research. Its hardware – the electronic circuits that make it work – is a masterpiece of engineering skill. But in other ways, the media fiction turns the facts upside down. Far from being immensely complex machines, in many ways computers are very simple. Some of the problems in working with them come from poorly designed software. However, most difficulties arise not from our stupidity when faced with the computer's intricacy. They come from the difficulty of lowering our subtle human intelligences to the very basic level of the machine.

		I've already stated that the computer's world is one of numbers. There are no sights and smells, no love and hate, no complex relationships, hopes and fears. Just numbers. But what kind of numbers? I have just looked at how we handle numbers. However, as you may already know, computers use a different system.

		The inner world of the computer is impoverished in many ways, and when it comes to numbers this is spectacularly true. In contrast to our system of ten digits, a computer uses only two digits, 0 and 1. These correspond to tiny differences in voltage in the computer's electronic memory. Now let's use the ideas from the decimal and octal systems to consider how an arithmetic based on only two digits might work.

		With only two digits to play with, simple counting doesn't get us very far. We can count from zero to one and then we've run out of digits. Clearly, we have to follow the strategy of the decimal system and create a new column. But we can't have a column to count groups of ten, as we do in base 10 arithmetic. We can only have the digits to count as far as one, so we will have to make our new column count groups of two. Therefore, in this new system the number

		1

		represents one, and the number

		10

		is not ten but two: one group of two plus zero. So the number

		11

		represents three in this new system: one group of two plus one. Now we've run out of columns and digits again, and we will have to make another column. Since we have got as far as three, the next column will have to count groups of four. So the number

		100

		represents four, one group of four, plus no groups of two plus zero.

		
			
				
					Exercise 4

				

			

			What is the decimal number represented by the following numbers in the new system?

			
					
					101

				

					
					111

				

			

			
				
					Show
 discussion
				

			

		

		
			
				
					Exercise 5

				

			

			What decimal numbers will be represented by columns 4, 5 and 6 in the new system?

			Discussion

			Column 4 represents a group of eight.

			Column 5 represents a group of sixteen.

			Column 6 represents a group of thirty-two.

			Again you should be able to see a pattern. Each column counts groups that are two times bigger than groups counted in the column immediately to its right, as shown below.

			
				
			

			
				
					View table
				

			

			End of discussion

		

		
			
				
					Exercise 6

				

			

			What is the decimal equivalent of the following numbers in the new system?

			
					
					101001

				

					
					11010001

				

					
					100010110

				

			

			
				
					Show
 discussion
				

			

		

		Given that our own system of arithmetic based on the digits 0 to 9 is called a base 10 system, it follows that the system I've just been discussing is a base 2 system, usually called the binary system, from the Latin binarius meaning ‘two by two’.

		Obviously, it takes much more space to represent a number in a binary, rather than a decimal, system. This doesn't matter to a computer, though, since space is unimportant in its digital world. And cleverly designed software means that nowadays even computer scientists rarely have to work directly with binary numbers.

		3.9 A few more terms

		Just to round off this description of the interior of the digital world, let me introduce and define a few more terms that you will come across again in this course and in any future studies of computers. Specifically, you may have heard the terms bits, bytes and words used in connection with computers. Now that we have taken a look at the binary system that underlies computer arithmetic, you will find there is no mystery in any of these three terms.

		The word Bit is short for binary digit and refers to a 1 or a 0 stored in the computer. Since all computers have some limit to the size of their memory there are only so many bits that a particular computer can store.

		
			A byte is a group of a certain number of bits, usually eight. Now, if we take the eight bits together, and represent a byte pictorially, it will look like this:

		
			
		

		
			
				View table
			

		

		Recall that each bit, or binary digit, can be either 1 or 0. This means we can think of the byte as representing a binary number. Therefore the largest number we can store in the eight bits of a byte is:

		
			
		

		
			
				View table
			

		

		And the smallest number is:

		
			
		

		
			
				View table
			

		

		
			
				
					Exercise 7

				

			

			What do the binary numbers 0000000 and 11111111 represent in decimal?

			
				
					Show
 discussion
				

			

		

		A word is generally a group of four bytes. It is the largest data object a particular computer can process in a single operation.

		In the scheme we have discussed, a word is 32 bits (4×8), so the largest binary number that a computer using a four-byte word can process in a single operation would be

		11111111111111111111111111111111

		which is decimal 4,294,967,295. (In fact computers can handle much larger numbers than this, but need extra software support to do so.

		You will probably have noticed that the size of your computer's memory and hard drive is measured in bytes. But memories are so large now that it is impractical to count single bytes. A few years ago, memory size was usually rated in kilobytes (KBs), that is, thousands of bytes. Now it is measured in megabytes (MBs) – millions of bytes, or even gigabytes (GBs) – thousands of millions of bytes). The computer on which I am writing this unit has a memory of 512MB, or 512 million bytes. Drive sizes are even larger, so a typical hard drive will now hold 80–100GB, 80–100 thousand million bytes.

		But beware. There is confusion here. When computer scientists talk about a kilobyte, or a kilo- anything, they don't strictly mean one thousand. A computer kilo- is actually 1024 and a computer mega- is 1,048,576.

		
			SAQ 5

			Why do you think computer scientists use these strange values, rather than a simple 1,000 and 1,000,000?

			
				
					Show
 answer
				

			

		

		There is little consistency about this, though. Nowadays computer manufacturers may just as often use the world ‘kilo’ to mean a thousand of something as to mean 1024 of something. However, when you are offered a job in the computer industry at 40K, do remember to insist that your salary should be £40,960!

		3.10 A final word – analogue and digital worlds

		So there we have it. On the one hand is our world, an analogue world – a world of light and sound, of taste and touch. On the other side of the boundary is the computer's digital world – a bleak world of binary numbers.

		Before I leave the topic, though, I should point out that some of the points I've made may be controversial.

		For a start, it's not entirely clear whether the world we inhabit is fundamentally analogue. Quantum theory tells us, for instance, that quantities like light are made up of tiny packets (quanta) of energy. This means that the intensity of a source of light may not vary continuously, but will go up or down in discrete (quantum) steps. Some theories suggest that forces like gravity, and even space itself, may be made up of tiny quanta.

		Nor is it certain whether the human brain is an analogue or a digital device. Certainly, the brain is quite different in structure and function from a digital machine. Lazy comparisons between the human mind and a computer are completely misleading. However, there is still argument about whether, at some level, the brain functions like a digital device.

		These are all esoteric debates, though, and beyond the scope of this course. Let's now return to our main theme and cross the boundary.

		3.11 Summary

		In this section I examined the terms analogue, discrete and digital and illustrated their correct use through examples and brief definitions.

		I raised the familiar idea of the five human senses which enable us to perceive our analogue world.

		Finally I focused on the digital world of counting and representing numbers, and in particular the binary system used in the inner world of the computer.

	
		4 Crossing the boundary

		4.1 Mere numbers?

		If I could write the beauty of your eyes

		And in fresh numbers number all your graces

		The age to come would say, This poet lies’.

		(Shakespeare, Sonnet 17)

		As you learned in Section 3, the region inside the boundary, the computer world, is completely digital – a world of numbers. So taking features of our analogue experience across the boundary into a computer must mean somehow reducing or transforming these features into numbers. In this section I aim to show: how, despite the fears of the poet Blake (see Figure 9), various types of analogue item can all be reduced to numbers and stored inside the boundary in a computer's memory.

		
			[image: Figure 9: Newton by William Blake.]
		

		
			
				Figure 9: Newton by William Blake. The poet and mystic Blake reviled what he saw as Newton's attempt to reduce the wonder of creation to mere numbers
		

		
			
				Show description
			

		

		You now know that computers handle numbers in binary form, but to write them in binary here would be agonisingly tedious, and would not add to our understanding. So, from now on, whenever I refer to a specific number in a computer's memory, I shall use its decimal equivalent.

		4.2 Text

		As I said in Section 2, the human perceptual system is very strongly based on vision and hearing. When we think, we usually do so in terms of pictures and, perhaps to a lesser extent, spoken words and sounds. However, the simplest place to start thinking about how we can reduce human experience to numbers is with a very advanced human concept: written text.

		4.2.1 Reducing and processing text

		You are familiar with the idea of a word processor. Although I grew up long before the era of word processing, it's now difficult for me to imagine how I ever lived without one. Word processors enable us to enter text into the computer, edit and fiddle about with it, store it and then print it out when we are satisfied with the result. That's exactly what's happening as I write this unit. But, if the text spends time inside the computer before being returned to print, that must mean it exists there in the form of numbers. It's inside the boundary. How can text be made into numbers?

		Let's use the following famous line from Shakespeare as an example:

		
			Rough winds do shake the darling buds of May

			(Sonnet 18)

		

		This presents no problem to the human eye. We read it straight off. Actually the process by which we read, recognise, understand, combine and understand textual symbols is complex and not fully understood – but that's another course.

		
			
				
					Exercise 8

				

			

			How do you think this line could be transformed into numbers?

			
				
					Show
 discussion
				

			

		

		I did say earlier that the computer world is a simple world, and transforming text into numbers is as straightforward as that. First, we assign a unique number to each letter in the alphabet. Each letter in the text now becomes a number inside the computer. I'm going to make the following choices:

		
			
		

		
			
				View table
			

		

		
			
		

		
			
				View table
			

		

		These choices probably seem fairly arbitrary, but let's stick with them for the moment. Now if I simply substitute each letter with the number I've chosen for it, our line for will look like this inside the computer (the breaks to a new row have no significance):

		
			
		

		
			
				View table
			

		

		It looks as if the problem of converting text into numbers has been solved.

		
			SAQ 6

			Before going on, do you think the above table is a complete representation of the line of poetry?

			
				
					Show
 answer
				

			

		

		But a computer doesn't know anything about words or the spaces between them, still less about the months of the year. We need more numbers to solve this problem. Let's allocate a new number, 32, to represent a space. However, the problem of capital letters is more serious. There is no easy way of instructing the machine that V and ‘R’ are different forms of the same letter. Nor could we possibly tell it anything about the first letters of poetic lines. Our only option is to allocate a whole set of new numbers to the upper-case (capital) versions of every letter. Let's set aside 82 to represent a capital ‘R’ and 77 for a capital W. Now, if I use this enhanced way of representing characters as numbers and peer into the memory of the computer, our line of poetry becomes:

		
			
		

		
			
				View table
			

		

		This is now a better representation of the text. The example illustrates that unique numbers are needed, not simply for all the upper- and lower-case letters and for spaces, but also for characters that we might not think of straight away. These include mathematical symbols (e.g. > (greater than), < (less than) and ≠ (not equal to)) and accented letters found in foreign words (e.g. é, è, c and ö). This is why computer scientists usually refer to characters, rather than letters, when discussing text. All in all, then, a great many numbers will have to be assigned to representing text.

		4.2.2 Standards

		Representations must be agreed if they are to be shared. If different computers used different numbers to encode the same character, people would not be able to read each other's documents. There have to be standards. There are countless computer standards, covering every aspect of information technology, from music and picture encoding to programming language design. And, as you would expect, there are standards which apply to character encoding. You may have wondered why I chose such apparently random numbers to stand for the characters I needed. I didn't. I simply chose numbers that have already been agreed in the Unicode standard for character representation. Unicode is a development of an earlier standard, ASCII (American Standard Code for Information Interchange) which was approved in 1967.

		ASCII set aside 128 numbers, from 0 to 127, for upper and lower-case alphabetic characters, punctuation marks and some ‘invisible’ characters, such as a carriage return (start a new line) and a tab.

		Unicode, work on which began in 1987, preserves the ASCII numbers, but hugely expands the set of numbers available to 65,536. These are intended to be used roughly as follows:

		
				
				8192 numbers for representing characters in the world's main languages, including Hebrew and Sanskrit;

			

				
				4096 for punctuation marks, graphics and special symbols;

			

				
				5632 for developers to define their own symbols;

			

				
				27,000 or so for Han Chinese characters;

			

				
				the remainder for characters yet to be invented.

			

		

		
			SAQ 7

			Why do you think ASCII supported exactly 128 numbers and Unicode exactly 65,536?

			
				
					Show
 answer
				

			

		

		4.2.3 Text capture devices

		Practically, how can we take text across the boundary?

		
			SAQ 8

			What are the main devices for transforming text into digital form inside the computer?

			
				
					Show
 answer
				

			

		

		4.2.4 Keyboards

		Every computer comes with a keyboard. They are still the main way of taking text across the boundary into the computer. The one I'm using to type this unit has 109 keys. Under each key is a pressure sensor that detects when the key has been pressed and sends an electronic signal into the computer. There, a small program called the BIOS (Basic Input/Output System) translates the signal into the appropriate numeric code. Other software stores that code in a suitable place in the memory.

		
			
				
					Exercise 9

				

			

			List some of the drawbacks of keyboards.

			
				
					Show
 discussion
				

			

		

		4.2.5 Scanners and OCRs

		A better solution is to get some electronic help. A page of text is placed in a scanner, which produces an image of the page using techniques that I will discuss shortly. The image is passed to a computer program called an optical character recogniser (OCR), which detects each letter on the page in turn and transforms it into its digital code. This recognition is an immensely difficult task, requiring very sophisticated software, so OCRs are generally only partially effective.

		
			SAQ 9

			Why do you think recognising characters is such a difficult task for a machine?

			
				
					Show
 answer
				

			

		

		We need to remember that computers are very simple-minded devices. We have no difficulty in recognising that

		
			[image:]
		

		are all the same character. But a computer will interpret two images with even the smallest difference between them as completely separate things. Clever software has to be devised to tackle this problem.

		4.3 Graphics and video: images

		Vision is far and away humankind's most dominant sense. Every sighted person lives their entire waking (and dreaming) life at the centre of a visual field, a sphere of light, shade, colour, form and movement. Painters down the ages have tried to capture the essence of our visual life, as in the beautiful painting in Figure 10.

		
			[image: Painting – A Young Woman standing at a Virginal by Jan (Johannes) Vermeer]
		

		
			
				Figure 10: A Young Woman standing at a Virginal by Jan (Johannes) Vermeer
		

		
			
				Show description
			

		

		The theme of this painting seems not so much the young woman toying with her musical instrument as the light itself, slanting down across the room, illuminating her face, and casting deep shadows in the folds of her dress. How could we take that across the boundary? How could such a scene possibly be transformed into mere numbers?

		One clue might come from looking at how other painters have tackled the problem of portraying light and colour. The scene in Figure 11 looks quite different from Vermeer's gentle radiance. It has a grainy appearance, as if the light fell in patches of raw colour. Signac, and other artists of the pointillist school to which he belonged, chose to paint in this way because they had particular theories about the nature of light.

		
			[image: Painting – The Port at St Tropez by Paul Signac]
		

		
			
				Figure 11: The Port at St Tropez by Paul Signac
		

		
			
				Show description
			

		

		The point is that Vermeer's vision of light is essentially smooth and analogue; Signac's is blotchy, disconnected, and discrete. So, perhaps if we want to reduce a picture to numbers, we must divide it up in some way, as Signac has done.

		4.4 Introducing pixels

		Let's try a simple example. I'm going to take an image, divide it into discrete parts and then transform the result into numbers. I shall use the simple picture of a church shown in Figure 12(a). The process will be exactly the same, whatever image we use.

		
			[image: A simple line drawing of a church with a spire]
		

		
			
				Figure 12: Picture of a church
		

		
			
				Show description
			

		

		Signac laid down his paint with an artist's hand and eye. I will have to work more systematically. The first thing to do is place a border around the picture, as in Figure 12(b), to indicate the area I'm interested in. Anything outside the border will not be part of the capture.

		Next I'll divide the picture up by laying down a grid of equal-sized squares over it, as in Figure 13. I'll enlarge the original slightly so you can see clearly what is going on.

		I can now examine each square of Figure 13. If it contains just the background colour (light grey, in this case) I'll just fill the square with white. If it contains any other image colour (mauve), then I'll colour it black. Looking at the grid, you can see that some squares contain both background and image colour. In such cases I will colour a square black if roughly a third or more of it is image colour, white otherwise. There is no need at this stage to try to be too precise. The resulting image, shown in Figure 14, is rather crude, but at least recognisable.

		
			[image: The image of a church with a spire with a grid superimposed above]
		

		
			
				Figure 13: The picture with grid
		

		
			
				Show description
			

		

		
			[image: The church image mapped to the grid by using black/white blocks]
		

		
			
				Figure 14: The image of the original picture mapped to the grid
		

		
			
				Show description
			

		

		You might like to start thinking about how we might improve the image, but we are not quite ready for this yet. We still haven't reached our goal of transforming the picture into numbers. Let's take the final step. For each square on the image, I will assign the number 0 to it if it is coloured white and 1 if it is coloured black. I call this mapping the square's colour to a number. This gives the following pattern:

		
			[image: The image represented as a series of ‘O’ and ‘I’ to represent white and black blocks]
		

		
			
				Show description
			

		

		You might be tempted to look on this as one horrendously long binary number, but it's more accurate to see it as a set of 31×22 separate numbers. Since each number is only either 0 or 1, and computers use bits to store 0s and Is, this sort of encoding is usually referred to as a bitmap. Each square that we have mapped to a 0 or a 1 is called a pixel (short for picture element).

		As I've noted already, Figure 14 is hardly a very satisfactory image – a long way from Vermeer. It has a very crude appearance, with the diagonal lines, in particular, looking jagged and unrealistic. We need to improve the quality.

		4.5 Resolution

		
			SAQ 10

			What do you think could be done to improve the quality of the image?

			
				
					Show
 answer
				

			

		

		Suppose we double the number of the gridlines in each direction, making each pixel one quarter the size of the ones in Figure 13. This is called increasing the resolution of the picture. The new grid is shown in Figure 15.

		
			[image: The image of a church with a higher resolution grid (i.e. more lines)]
		

		
			
				Figure 15: A higher resolution grid
		

		
			
				Show description
			

		

		Now if I again map each square to a black or white pixel, I get the image shown in Figure 16.

		
			[image: The image mapped to the higher resolution grid, i.e. with more, smaller blocks representing the image.]
		

		
			
				Figure 16: The image using a higher resolution grid
		

		
			
				Show description
			

		

		This is still a bit ragged, but an improvement. It's easy to see that if we go on and on increasing the resolution of the picture, making the pixel size smaller and smaller, we will move closer and closer to an image that appears completely smooth. But note that we can never reach a perfectly smooth image by this process – to do this one would need infinitely small pixels. We can never reach an analogue representation by digital means, only approximate to it.

		
			
				
					Exercise 10

				

			

			Work out how many bits would be needed to store the image in Figure 16. How many bytes?

			
				
					Show
 discussion
				

			

		

		I will return to the issue of storage size later. But at the moment there is still a lot missing. This bitmap approach may be all right for simple images consisting of a few lines and some filled areas, but it will not be adequate for anything rather more subtle, such as the (still fairly modest) little pictures in Figure 17.

		
			[image: A series of more detailed pictures – a jetplane and a church with trees and people running]
		

		
			
				Figure 17: More sophisticated pictures
		

		
			
				Show description
			

		

		
			SAQ 11

			Why is the simple strategy used above not satisfactory for the pictures in Figure 17?

			
				
					Show
 answer
				

			

		

		The second point is somewhat more complex, so I will deal with it first. Any image tries to capture some aspect of the visual world. A glance back at the Vermeer painting reminds us of the analogue quality of light. There are no clear boundaries: between areas of brightness and darkness there are countless subtle textures of grey; boundaries are blurred by light and shadow. Our simple bitmap above is obviously too limited to handle such subtlety – it just deals in black and white. But there is no need to discard the basic idea. Can we adapt the simple bitmap strategy to deal with shade and texture?

		Of course we can – and quite easily. In our previous example, we dedicated one bit to each pixel in our image. All we need to do is devote more bits to each pixel to accommodate a greater range of shades. Let's allocate two bits per pixel with binary 11 representing black and binary 00 standing for white.

		
			SAQ 12

			How many shades can we represent using two bits per pixel? Remember your binary!

			
				
					Show
 answer
				

			

		

		4.6 Greyscale

		If this seems inadequate – it does seem rather an impoverished range of shades – all we need to do is allocate more bits. Three bits per pixel will give us eight shades, from black to white; four bits per pixel gives us 16 shades; and so on. This mapping of shades of grey between black and white in a black and white bitmap is known as greyscale. The range of numbers to which a pixel can be mapped is termed the pixel amplitude.

		Let's try a simple example. I'm going to take the first of the two images in Figure 17. Once again, I can lay a grid over the image as in Figure 18, which I've enlarged a bit, to demarcate the pixels. Note that I'm only working with a section of the picture, near the nose of the aircraft.

		
			[image: Image of the jetplane with a grid overlaid]
		

		
			
				Figure 18: Picture of aircraft divided into pixels
		

		
			
				Show description
			

		

		Now I need to inspect each pixel and decide on the closest shade of grey to represent what appears in the square. For simplicity, I've decided to use six shades of grey, as well as black and white. The result is shown in Figure 19. It's not brilliant, but that can be put down to a fairly large pixel size and a limited choice of greys.

		
			[image: A greyscale representation of the jetplane using six shades of grey]
		

		
			
				Figure 19: A greyscale image of the aircraft
		

		
			
				Show description
			

		

		Finally, I can map each pixel in the image onto one of the eight binary numbers between 000 and 111 inclusive, depending on whether the image at that pixel is black (111), white (000) or some shade of grey between. The mapping in the small area I've marked will look like this:

		
			[image: The sequence of binary numbers to represent this picture]
		

		
			
				Show description
			

		

		which is tedious enough to demonstrate just how simplistic the interior world of the computer is.

		4.7 Colour

		Now what about the issue of colour? You should know enough to answer the question without prompting. So far, we've allocated a suitable number of bits to each pixel to give us the range of shade we need. Clearly, then, we must do the same thing to represent colour. But, how many bits will we need to devote to each pixel to represent a useful range of possible colours?

		That all depends, of course. It depends on the answers to two questions.

		
				
				How is it possible to map a particular colour to a number?

			

				
				How many colours do we want?

			

		

		Colour is a perfect example of an analogue property. The spectrum of light – what we get when we split white light up with a prism – is shown in Figure 20.

		
			[image: An image showing the spectrum of light]
		

		
			
				Figure 20: Continuous spectrum of light
		

		
			
				Show description
			

		

		
			SAQ 13

			How does Figure 20 demonstrate that colour is an analogue property?

			
				
					Show
 answer
				

			

		

		So, as with all analogue things, there is an infinite number of colours to choose from. But we are trying to map colour to a finite number, so we simply haven't the option of an infinite number. What options do we have? That depends on the answer to the first question above: how to represent a colour with a number.

		There are several schemes available. One of the simplest and most popular stems from an understanding of how human vision works. Certain receptor cells in our retinas, known as cones, respond to different wavelengths of light, roughly to the wavelengths of red, green and blue. All the colours we sense are a mixture of these three colours. Now all we need to do is allocate three numbers, one to each colour, representing the amount of red, or green, or blue that is mixed in that particular colour. Let's use the range 0–255 (eight bits, one byte) for each of these three numbers. So, to take some simple examples, the group

		255, 0, 0

		represents the colour red, as we have the maximum amount of red in our mixture, with no green and no blue. Along the same lines, the set

		0, 255, 0

		stands for green, since the mixture contains no red, no blue and the maximum amount of green. If you remember any of your school science, then, you will know that

		255, 255, 255

		is white, because white is a mixture of all three colours. All the other colours we see are mixtures of these three basic, or primary, colours.

		128, 10, 128

		for example, is a striking deep purple. For obvious reasons, this way of representing colour is called the RGB (red, green, blue) model.

		
			SAQ 14

			What colour would 0, 0, 0 represent in the RGB scheme?

			
				
					Show
 answer
				

			

		

		Now we can come back to the question of how many colours to choose. With this model, there are 256×256×256 possible colours, reflecting every possible mixture of our three basic shades. That's 16,777,216 colours in all. Of course, we can opt for fewer if we wish, by allocating a smaller number of bits to each of the R, G and B values. But nowadays, in an age of very cheap memory, it is common to opt for the full 16 million colour range.

		
			Other colour models

			RGB is not the only colour model. Graphic designers concerned with printed media, for example, favour a model known as CMYK. This is because the primary colours that are reflected off paper are not red, green and blue – but cyan (blue-green), magenta and yellow. The K stands for a special black ink used to add crispness. However, we will not discuss colour models any further in this course.

		

		Before moving on, I want to introduce one problem which will become of increasing importance. Think about the question posed in the following exercise.

		
			
				
					Exercise 11

				

			

			The image of the Vermeer painting in Figure 10 contains 647×735 pixels, with the full 16 million colour palette. Work out how many bits are required to store this image as a bitmap inside the computer. How many bytes?

			
				
					Show
 discussion
				

			

		

		Although modern personal computers can easily handle these sorts of memory requirements, such demands can be tricky to deal with. For a start, if I try to exchange an image of this size over a network, it is likely to be quite a lengthy and expensive process. When dealing with images, sometimes large amounts of memory are required. That is a problem we will have to keep an eye on, and find answers to. Is there perhaps a more efficient way of storing visual information?

		4.8 Interlude – diagrams

		Some types of visual information can be represented more economically than in a bitmap. Consider the rather pointless little diagram shown in Figure 21.

		
			SAQ 15

			
				[image: A simple diagram with a rectangle and a circle and two arrows]
			

			
				
					Figure 21: A diagram of simple lines and shapes
			

			
				
					Show description
				

			

			Why do you think storing such a diagram as a bitmap would be a waste of memory?

			
				
					Show
 answer
				

			

		

		So what information do we need to record about the diagram? In fact, what we really care about are the objects depicted – the rest of it is just uninteresting empty space. Our example contains five types of object: a circle, a rectangle, a line, an arrow and a piece of text. To reconstruct the diagram the only information we really need about each of these objects is:

		
				
				what sort of object it is (e.g. line, square);

			

				
				its size and position on the page;

			

				
				details about its colouring, width of line (line weight), and so on.

			

		

		Remembering that our aim is to express Figure 21 as a set of numbers, we can now go into a bit more detail.

		First of all, I'll assign a number to each type of object. Quite randomly, I'm going to choose 17 to represent a circle, 24 to stand for a rectangle, 26 for a line, 27 for an arrow and 11 for a text area. So the initial set of numbers will be:

		17, 24, 26, 27, 11.

		The order is not important.

		Now let's record the size and position of each object. Here we need some way of identifying positions on the page. To do this we use the very simple, although slightly intimidating sounding, technique of Cartesian coordinates. (Named after Rene Descartes, who invented the system in the seventeenth century). We simply place two axes, x and y at right angles on the page, as in Figure 22.

		
			[image: A diagram showing the x and y axes plotted for a graph]
		

		
			
				Figure 22: Cartesian coordinates, x- and y-axes
		

		
			
				Show description
			

		

		Now we can identify any point on the page by its x- and y-coordinates, simply by measuring how far from the origin along the x-axis it is and then how far along the y-axis. So, any point on the page is located by two numbers – conventionally, × always goes first – as illustrated in Figure 23.

		
			[image: A diagram showing two points plotted on the graph by using their Cartesian coordinates]
		

		
			
				Figure 23: Two points identified by their coordinates
		

		
			
				Show description
			

		

		Now I can identify the size and position of each object in Figure 21. Exactly how this is done depends on the object, as follows.

		
				
				Starting with the circle, all I need is its radius and the position of its centre – this tells me everything I need to know about the size and location of a circle. Let's say the radius of the circle in Figure 21 is 2 cm and the position of the centre (13, 6).

			

				
				For the rectangle, I will have to record two sets of values: the position of the top left-hand corner and the position of the bottom right-hand corner. Let's say they are (1, 8) and (6, 4), respectively.

			

				
				For the line and the arrow, I simply need to record their start and end positions. I estimate the line in Figure 21 starts at roughly (6, 6) and ends at (11, 6). The arrow's start and end points are approximately (12, 4) and (9, 2).

			

				
				As for the text area, I just need the position of its top left-hand corner, which I put at about (10.5, 2.5)

			

		

		Now I can put these together and produce the following intermediate set of numbers:

		17, 2, 13, 6 (circle)

		24, 1, 8, 6, 4 (rectangle)

		26, 6, 6, 11, 6 (line)

		27, 12, 4, 9, 2 (arrow)

		28, 11, 10.5, 2.5 (text area)

		I have not quite finished. For the whole diagram we need to identify the background colour, which is white in this case. Coding white as 255, 255, 255 in the RGB model gives us binary 111111111111111111111111, which is decimal 16,777,215.

		Now, for each object, I can record such details as the line colour, fill colour, line width. I want to keep it simple, so let's say:

		
				
				the circle's line width is 1 pixel, its line colour is black (decimal 0) and its fill colour is light blue (decimal 828,124);

			

				
				the rectangle's line width is 3 pixels, its line colour is black (decimal 0) and its fill colour is a restful light purple, whose RGB value is decimal 1,340,877;

			

				
				the arrow and the line, both have a line width of 1 pixel, and their line colour is black (decimal 0);

			

				
				the colour of the text in the text area is black (0 again).

			

		

		We haven't yet recorded what the text says! Easy. You remember your Unicode standard perfectly, so you know the text ‘the way out’ translates to 116, 104, 101, 32, 119, 97, 121, 32, 111, 117, 116.

		Now we can put all this together and produce a final set of numbers, as follows:

		16777215 (background colour)

		17, 2 13, 6, 1, 0, 828124 (circle)

		24, 1, 8, 6, 4, 3, 0, 1340877 (rectangle)

		26, 6, 6, 11, 6, 1, 0 (line)

		27, 12, 4, 9, 2, 1, 0 (arrow)

		11, 10.5, 2.5, 0, 116, 104, 101, 32, 119, 97, 121, 32, 111, 117, 116 (text area)

		This is a simplification, but I hope you get the idea. This sort of encoding of visual information is usually known as vector graphics, as opposed to the bitmap approach we discussed earlier which is often called raster graphics.

		The obvious advantage of the vector strategy is that it is a very compact form of coding. With just 41 numbers (about 984 bytes), we have summed up the essence of our diagram. A bitmap of the same diagram would have required at least tens of thousands of bytes.

		Another advantage of vector graphics is the resulting image is scalable: we can easily shrink or stretch the size of it without any loss of information.

		As always in computing, though, there are problems. First, vector coding only really works with fairly simple images. It would be hopeless for the Vermeer or Signac paintings, for example. So it is only a partial answer to the problem of size. Second, if I send the set of numbers we generated to a friend, she will need a sophisticated computer program on her computer to interpret the numbers and display them as a diagram. For the moment, we may just note that programs that allow us to draw and display vector graphics are generally referred to as drawing packages. Systems for constructing and displaying raster graphics are usually called painting packages. There are many examples of each on the market.

		4.9 Making it move

		To me, there is a wonderful quality of timelessness about Vermeer's picture of the young woman at her harpsichord. It captures a tranquil moment, frozen for eternity. But of course our visual world is not like that at all. It is dynamic, seething with motion. And schoolchildren have known how to create the illusion of movement since time immemorial. Riffling quickly through a little ‘flick book’ under the desk, with each page showing one step in a moving sequence, as in Figure 24, gives the impression of uninterrupted motion and has whiled away many a tedious Latin or maths lesson down the ages.

		
			[image: The sequence of pictures of a cantering horse which comprised one of the earliest ‘flip book’ animations]
		

		
			
				Figure 24: The pages of a typical ‘flick book’
		

		
			
				Show description
			

		

		Many nineteenth century children's toys were based on the ‘flick book’ principle: in 1825, for instance, the ‘thaumatrope’ tricked the eye into seeing movement by means of a rapidly rotating card; in 1834 the ‘zoetrope’ created a more sophisticated effect with photographs attached to a rotating drum.

		The invention of the film camera, and of moving pictures themselves, is generally credited to the Lumiere brothers in 1895, but actually several others made similar inventions around the same time. The humble flick book and the Hollywood movie both rely on exactly the same principle. The human eye registers a new item in the visual field almost the instant it appears. However, after it disappears the image of it persists for some moments in the retina and brain. So, with the flick book, as each new picture appears in front of our eyes, a visual remnant of the previous picture remains. And since each new picture relates closely to the one before it (in the jargon, we say it is highly correlated with it), the brain integrates them into an apparent moving sequence.

		The same trick is worked on the mind at the cinema. In the following discussion, I will refer to each picture as a frame, and the speed at which the frames pass in front of our eyes as the frame rate. At less than 10 frames a second (fps) the viewer generally sees each frame as a separate image. Between 10 and 16 fps (the sort of speed the flick book moves at) there is an impression of jerky movement. Above 16 fps, the movement seems much smoother. Films are usually shot and displayed at 24 fps; TV pictures are presented at between 25 and 30 fps, depending on what country you live in. High definition TV, currently only available in Japan, uses 60 fps.

		Computers use the same principle to display moving visual information. A series of images is taken from the computer's memory, or direct from a storage device such as a CD, and presented on the computer screen in quick succession. Each image is different from, but correlated with, the previous image; the illusion of smooth movement is created by our own eyes and brains. But recall the problem I raised earlier, of the size of digital encoding of images, and get your calculator out ….

		
			
				
					Exercise 12

				

			

			Consider a two-hour film to be displayed on a computer at 24 fps. Each frame is 640×380 pixels and a 24-bit RGB colour encoding is being used. How many bytes (don't even bother with bits) will be required to represent the whole film?

			
				
					Show
 discussion
				

			

		

		Now we really are in trouble. Even for modern computers, this is a colossal memory demand – one and a half times the size of an average hard disk. Transferring such an enormous amount of digital information over a network would be achingly slow. The highest rate at which data can be moved around the Open University local network is 100 million bits per second, although it is usually much less for an individual user, as we all have to share. 126GB is 1008Gb (the small b stands for a bit). So it would take nearly three hours to send the video to my colleague in the next office. However, most people still use the telephone network to move data, and this is much slower – a maximum of 56Kb per second. Be sure to make a cup of tea before you try to download a film.

		For other practical reasons, it is impossible to work with this amount of data. We have to find some way of reducing the amount of storage that moving images, and still images too, need. The vector graphics approach will not work for complex images, so we must look for a way of compressing bitmapped visual information.

		
			
				
					Exercise 13

				

			

			Can you think of any strategy for reducing the size of a bitmapped film? It's a difficult question, so don't worry if you can't get too far with it.

			
				
					Show
 discussion
				

			

		

		4.10 Standards again

		Whatever compression strategy we adopt – and most real-life approaches use a combination – we again need to have agreement. If I compress a photograph using a certain technique and send it to a friend, her computer will have to be able to decompress it again to display it. So we must have a standard agreement between the parties about how the image has been compressed.

		There are many standards for image and film compression. It would be out of place to discuss in detail how they work here – the compression theme is taken up in a later unit. All I'll do is note that, among the standards for image compression, two stand out – the JPEG (Joint Photographic Experts Group) and the GIF (Graphics Interchange Format) standards. Both standards reduce the number of bits used to store each pixel. GIF, for example, condenses each pixel from 24 bits to 8, by reducing the set of colours used to a smaller set, called a palette. Image data can sometimes be compressed to one twenty-fifth of the original size.

		For video, the dominant standard is MPEG (Moving Picture Experts Group), which is now used in most digital camcorders.

		4.11 Image and video capture devices

		Earlier, we looked at keyboards and scanners as a means of taking text across the boundary.

		
			SAQ 16

			What are the main devices used for transforming images and video into digital form inside the computer?

			
				
					Show
 answer
				

			

		

		4.11.1 Digital still cameras and camcorders

		These devices are now widely and (fairly) cheaply available. There is no film. You point your camera, take your shot and get a compressed digital image that can be transferred straight onto a computer, where it can be edited or printed. Digital still cameras usually compress their images into JPEG format and store them on a tiny, removable memory card inside the camera; the latest digital camcorders can record in MPEG format, stored on a special tape. Both devices work by means of an electronic chip called a charge-coupled device (CCD).

		A CCD is basically an array of tiny cells, vaguely similar to the receptors in the eye, that respond to light by generating a tiny electric charge. The amount of charge depends on the intensity and colour of the light falling on the cell. Each cell then maps onto a pixel in the image being stored, so the CCD behaves just like a bitmap. Obviously then, the larger your array, the higher the definition, and thus better quality, your image will be. The best non-professional digital still cameras now have CCD arrays of 5 million or more cells, giving superb-quality bitmapped images. Software inside the camera converts the bitmap into compressed format.

		4.11.2 Scanners (again)

		In Subsection 4.2.5, scanners came up as devices that can convert text into digital form. They do this by making a digital image of the page and then passing this image to an OCR system to distinguish the various characters. However, they are more often used to take images such as photographs and printed diagrams across the digital boundary. A scanner works by moving a sensing point rapidly across the image, in a series of lines, as illustrated in Figure 25.

		
			[image: Image showing the characteristic pattern of a raster scan]
		

		
			
				Figure 25: Raster scanning
		

		
			
				Show description
			

		

		The characteristic pattern shown in Figure 25 is known as raster scanning. The scanner measures the brightness (luminance) and the colouring (chrominance) of a series of points along each line and converts the readings at each point into a number. The quality of the resulting bitmap will obviously depend on the number of lines the scanner follows across the specimen, and the number of measurement points along each line. Most scanners come with software that will compress the bitmap into a number of formats, including JPEG and GIF.

		4.12 Sound and music

		Second only to vision, we rely on sound. Music delights us, noises warn us of impending danger, and communication through speech is at the centre of our human lives. We have countless reasons for wanting computers to reach out and take sounds across the boundary.

		Sound is another analogue feature of the world. If you cry out, hit a piano key or drop a plate, then you set particles of air shaking – and any ears in the vicinity will interpret this tremor as sound. At first glance, the problem of capturing something as intangible as a vibration and taking it across the boundary seems even more intractable than capturing images. But we all know it can be done – so how is it done?

		The best way into the problem is to consider in a little more detail what sound is. Probably the purest sound you can make is by vibrating a tuning fork. As the prongs of the fork vibrate backwards and forwards, particles of air move in sympathy with them. One way to visualise this movement is to draw a graph of how far an air particle moves backwards and forwards (we call this its displacement) as time passes. The graph (showing a typical wave form) will look like Figure 26.

		
			[image: An image showing the pattern of peaks and troughs in air particle displacement over time by vibrating a tuning fork]
		

		
			
				Figure 26: Displacement of air particles over time by vibrating a tuning fork
		

		
			
				Show description
			

		

		Our particle of air moves backwards and forwards in the direction the sound is travelling. As shown in Figure 26, a cycle represents the time between adjacent peaks (or troughs) and the number of cycles completed in a fixed time (usually a second) is known as the frequency. The amplitude of the wave (i.e. maximum displacement – see Figure 26) determines how loud the sound is, the frequency decides how low or high pitched the note sounds to us. Note, though, that Figure 26 is theoretical; in reality, the amplitude will decrease as the sound fades away.

		Of course, a tuning fork is a very simple instrument, and so makes a very pure sound. Real instruments and real noises are much more complicated than this. An instrument like a clarinet would have a complex waveform, perhaps like the graph in Figure 27a, and the dropped plate would be a formless nightmare like Figure 27b.

		
			[image: Typical waveforms from a clarinet playing a note and a plate being dropped]
		

		
			
				Figure 27: Typical waveforms
		

		
			
				Show description
			

		

		
			
				
					Exercise 14

				

			

			Write down a few ideas about how we might go about transforming a waveform into numbers. This is a difficult question, so it might help to think back to the methods we used for encoding images in Subsection 4.3.

			
				
					Show
 discussion
				

			

		

		What we can do is record what the sound wave is doing at small time intervals. Taking readings like this at time intervals is called sampling. The number of times per second we take a sample is called the sampling rate.

		I'll take the tuning fork example, set an interval of say 0.5 second and look at the state of the wave every 0.5 second, as shown in Figure 28.

		
			[image: An image showing the sampling rate for the tuning fork at an interval of 0.5 seconds]
		

		
			
				Figure 28: Sampling a sound wave
		

		
			
				Show description
			

		

		Reading off the amplitude of the wave at every sampling point (marked with dots), gives the following set of numbers:

		+9.3, −3.1, −4.1, +8.2, −10.0, +4.0, +4.5

		as far as I can judge. Now, if we plot a new graph of the waveform, using just these figures, we get the graph in Figure 29.

		
			[image: The sample from the previous image shown as a graph]
		

		
			
				Figure 29: Image of a waveform
		

		
			
				Show description
			

		

		The plateaux at each sample point represent the intervals between samples, where we have no information, and so assume that nothing happens. It looks pretty hopeless, but we're on the right track.

		
			SAQ 17

			How can we improve on Figure 29?

			
				
					Show
 answer
				

			

		

		So, let's decrease the sampling interval by taking a reading of the amplitude every 0.1 second, as in Figure 30.

		
			[image: Image showing the amplitude every 0.1 second]
		

		
			
				Figure 30: Sampling every 0.1 second
		

		
			
				Show description
			

		

		Once again, I'll read the amplitude at each sampling point and plot them to a new graph, as in Figure 31, which is already starting to look like the original waveform.

		
			[image: Graph of the amplitude from the previous image which looks more like the original waveform because it is more detailed]
		

		
			
				Figure 31: Waveform using higher sampling rate
		

		
			
				Show description
			

		

		I hope you can see that this process of sampling the waveform has been very similar to the breaking up of a picture into pixels, except that, whereas we split the picture into tiny units of area; we are now breaking the waveform into units of time. In the case of the picture, making our pixels smaller increased the quality of the result, so making the time intervals at which we sample the waveform smaller will bring our encoding closer to the original sound. And just as it is impossible to make a perfect digital coding of an analogue picture, because we will always lose information between the pixels, so we will always lose information between the times we sample a waveform. We can never make a perfect digital representation of an analogue quantity.

		
			SAQ 18

			Now we've sampled the waveform, what do we need to do next to encode the image?

			
				
					Show
 answer
				

			

		

		This mapping of samples (or pixels) to numbers is known as quantisation. Again, the faithfulness of the digital copy to the analogue original will depend on how large a range of numbers we make available. The human eye is an immensely discriminating instrument; the ear is less so. We are not generally able to detect pitch differences of less than a few hertz (1 hertz (Hz) is a frequency of one cycle per second). So sound wave samples are generally mapped to 16-bit numbers.

		4.13 Sound capture devices

		In the past, the work of recording sound and music was carried out by professional recording studios. Before digital technology arrived, recordings were made by picking up sounds on a microphone which converted them to an analogue electrical signal. This signal was then transferred to another analogue medium, such as the grooves of a vinyl record or the changing patterns of metallic atoms on a magnetic tape.

		At the start of the digital revolution, analogue to digital conversion, and the transfer of digitally encoded sound to compact discs, could only be accomplished with sophisticated and expensive equipment. Nowadays, many personal computers come ready equipped with A/D (analogue to digital) electronics built in, and with a drive for writing CDs. A range of new compression formats for sound and music, the most notable being MP3, are looking as if they might undermine the whole financial basis of the music recording industry. It is now easy to compress the contents of a CD to MP3 format, and post the file to a website for anyone in the world to download and write to a CD of their own – free. Recently, one such a website, named Napster, was ordered by a US court to cease operations, on grounds of breach of copyright. But Napster has many imitators, so the problem remains.

		4.14 A final word

		I've looked at specific techniques for taking features of our analogue world across the boundary into the digital realm. All these methods have worked along the same lines – a two-step process consisting of:

		
				
				breaking the target into parts; and

			

				
				mapping each part onto a binary number.

			

		

		But I want to remind you of two points. First, we are not restricted to visual or sound information. Using the same strategy, we can take any feature of our world that interests us into the digital world. Second, once this information has been captured in digital form, there is no reason why it need just be stored and exchanged – we have other options. We can manipulate it in any way we want, an idea I discuss in Section 6. Before I move to this, however, I want to delve a bit deeper into what digital information means.

		4.15 Summary

		This has been a very long section; so congratulations on your persistence!

		I've considered in detail how text, pictures, moving pictures, diagrams and sound can all be reduced to numbers and stored inside the boundary in a computer's memory. A persistent theme has been the sheer size of the digital representation that we can get as the result. The need to reduce this amount of digital data, to compress the image, sound or film file we end up with, is taken up in the next unit.

	
		5 Going back

		5.1 As to the meaning ...

		And this song is considered a perfect gem,

		And as to the meaning, it's what you please.

		(C.S. Calverley, Ballad)

		This short section is devoted to rounding off the discussion so far. In Section 1 I remarked that a digital picture of some set of interesting features of the world is of no value unless we can examine it in some way – in other words, take it back across the boundary into the human realm. This section briefly takes up this theme, and aims to:

		
				
				examine what digital representations mean;

			

				
				outline some of the devices that are used to interpret digital information and turn it back into a form that means something to our human eyes and ears.

			

		

		5.2 A conundrum about meaning

		
			SAQ 19

			Look at the following set of binary numbers:

			00011010 00100011 10001001 10011100 10100011 01001101 10000011 01010100 10001000 00010001 10000110 11110010 …

			which we may imagine are stored in the memory of a computer.

			What do these figures mean? In other words, given they are a representation, what do they represent?

			
				
					Show
 answer
				

			

		

		Maybe this slice of computer memory is part of an encoding of an image or a line from a Shakespeare play, perhaps a fragment of a recording of Mozart's Jupiter Symphony ℃ anything. We cannot tell just by looking at the numbers what they stand for or represent. They mean nothing in themselves. In the jargon of computer science, they have no semantics, which Chambers Twentieth Century Dictionary(1998) defines as:

		
			
				semantics
				si-man-tiks, n sing: the meaning attached to words and symbols

		

		To humans, the words ‘I'm coming home tonight …’ have meaning. Vermeer's painting of the young lady has significance for us – it depicts things with which we are familiar. (And it contains hidden meanings, too. The picture of Cupid over the young woman's head hints at what she is thinking about.) Even a piece of music has meaning for us, in a more diffuse way. But when we take these things across the boundary, they are stripped of their meaning. They just become numbers, their human associations lost. If their meaning is to be regained, they must be transported back from the digital to the human world. How can this be done?

		5.3 Regaining meaning

		Suppose for a minute that the numbers I presented above were generated by a scanner as it produced a bitmap of a photograph. Clearly, the machine on which they are stored will have to get the image back to us by means of a device that can render it into a form meaningful to the human eye – an output device. I shall shortly review such devices. However, there is still work to be done before the computer can pass digitally-encoded data to such a device. For a start it will need to have information about which device is an appropriate one; then it will have to assemble the numbers into a form suitable for that device.

		
			
				
					Exercise 15

				

			

			Write down some ideas about what other information will be needed to present these numbers through an output device, such as a printer or a monitor. Think carefully about this.

			
				
					Show
 discussion
				

			

		

		Sending a digital representation back across the boundary is thus a three-stage process, consisting of:

		
				
				identifying the output device to be used;

			

				
				arranging the numbers into a form that can be handled by the output device;

			

				
				interpretation of the code by the output device.

			

		

		The first of these stages usually depends on a direct command from the computer user who is on the other side of the boundary. I can choose whether to send my digital image to a printer or to the screen. The final stage is carried out by specialised electronics in the output device, and need not worry us here. But what about stage 2? How does that happen?

		For a digital representation to be handled by an output device the numbers that it consists of must be organised in a suitable form. This can be a simple process, but is sometimes very complex, especially in cases where the information has been compressed. All I want to do here, however, is establish how, in general, such preparation is done. Since the digital encoding now exists inside the boundary, any direct manipulation from outside is not feasible. Practically, the digital world can only be manipulated from inside by other digital things. In this case, the necessary arrangements are made by a special class of digital encoding – a program.

		You will hear a lot more about programs as you progress through the course. I don't want to pre-empt any of this, so for the moment I'll just ask you to consider the following question.

		
			SAQ 20

			From what you've learned so far, what do you think programs consist of?

			
				
					Show
 answer
				

			

		

		Far more can be said about programs than this, but in the end they are just numbers. Inside the boundary, a program is a set of binary words. You will remember from Section 3 that a word is a group of bytes, usually four. Now, each word of the program has a special significance to the machine's central processor – it stands for an instruction. And when a computer's central processor (normally referred to as its CPU, central porocessing unit) reads one of these words it carries out the instruction that the word stands for. In this way the digital world can be manipulated by the digital world itself.

		Of course, programs can do much more than just prepare digital encodings for output. I'll say a lot about this in Section 6.

		5.4 The meaning of meaning

		I've spoken above as if the whole question of meaning was a simple one. I've used the word itself as if it presented no problems. This certainly isn't true. The whole issue of semantics is a matter of fierce debate among computer scientists and philosophers. What is meaning anyway? How is it possible for anything inside a computer to mean something? Exactly where does meaning return as we go back across the boundary – at the output device or in the human mind? Is the meaning of a picture somehow different from that of a line of text, and if so how?

		Fortunately for me (and for you), there's no need for us to get involved in this brawl. What I've said about the issue of meaning – that digital representations mean nothing in themselves – will do for now. Let's end the section on a less contentious note and look quickly at some output devices.

		5.5 Types of output devices

		We can make a start by appealing to your own general knowledge.

		
			
				
					Exercise 16

				

			

			You have a computer; list the output devices that it uses.

			
				
					Show
 discussion
				

			

		

		I'll now say a few words about each of these types of device and about one other, as it is rather a special case, a device called a plotter.

		5.5.1 Monitors

		Nearly all computers are supplied complete with a monitor which opens a window onto the machine's digital world. Without one we could have little idea about what the computer was doing, or even whether it was working at all.

		There are two main types of monitor: the CRT (cathode ray tube) and LCD (liquid crystal display). A CRT monitor looks like a television screen, and works in a similar way to a TV or a scanner. A beam of electrons is fired from a gun at the back of the tube onto a glass screen on the front. The beam sweeps across this screen in the same raster scanning pattern illustrated in Figure 25. The front of the tube is coated in a phosphorescent material that glows as the electron beam hits it. In this way the picture is built up.

		
			SAQ 21

			Do you think your monitor gives a digital or analogue image? Look closely at the image on your own monitor if need be.

			
				
					Show
 answer
				

			

		

		Usually this digital image is of high enough resolution to trick the eye into interpreting it as analogue. High-quality professional monitors can give resolutions of up to 1920×1440 pixels or more, although 1024×768 and 1280×1024 are the most common. However, watching even a good quality CRT monitor for a long time can be tiring, as the scanning of the electron beam gives a flickering sensation.

		You will probably have seen LCD monitors, though you may not own one. They are completely flat, because they have no electron gun. They work on the principle of passing light through a special material, the molecules of which change their orientation when an electrical voltage is applied to them. This is the same principle on which the screens of mobile phones and calculators work. On a computer LCD monitor, there is one tiny unit of such material for each pixel on the screen, so once again a digital picture is produced.

		Although professional graphic artists still favour CRT monitors for their colour accuracy, LCDs are to be preferred for general use. They use much less power than CRTs; they take up little space; and they are much less tiring to work on – every pixel is always on, so they do not flicker. Resolutions vary, but 1280×1024 pixels is common.

		Finally, though, note that the resolution actually displayed on the screen is not decided by the monitor itself, but by the program that prepares the digital encodings for display. This program allows a user to set the resolution to any one of a range of possibilities, depending on how much memory the computer has available. For example, the monitor I use at work can resolve up to a maximum of 1920×1440, but I usually opt for a lower resolution than this.

		5.5.2 Printers

		Colour models were dealt with in Subsection 4.7.

		You probably also own a printer. Many computers now come with them as part of a package. There are two main types in use today: inkjets and lasers.

		InkJet printers work, as their name suggests, by firing tiny droplets of ink at the paper from a moving print head. Such printers can print in both colour and black and white. You may have noticed that the colour cartridge comes in three parts: cyan, magenta and yellow, indicating the colour model (CMYK) that the printer uses.

		Laser printers produce very high quality print by firing a laser beam at a rotating, light-sensitive drum. They use a dry powder toner, rather than liquid ink and generally print only in black and white. Colour lasers are available, but are rather expensive for individual users. InkJet printers are now very cheap and so are favourites on the home market. However, ink cartridges are expensive to replace, so an inkjet is uneconomical if you have a lot of printing to do. Lasers are preferred in offices, where they are generally shared and can produce long print runs at low cost.

		Both types of printer produce a digital output, as they render graphics and text by firing the laser, or ink, through a square matrix of tiny holes, as illustrated in Figure 32.

		
			[image: Image of the outcome from a printer showing how a letter ‘R’ is formed]
		

		
			
				Figure 32: Printer matrix producing the character 'R’
		

		
			
				Show description
			

		

		5.5.3 Plotters

		A plotter is a special type of printing device mostly used by architects, engineers and map makers. Here the printed output is produced by moving a pen across the paper. Sometimes several differently coloured pens are available. Plotters are obviously most suitable for line drawings, which is why architects, for instance, use them. I've mentioned them here, however, because – in contrast with monitors and printers – they produce an analogue output directly.

		5.5.4 Loudspeakers

		Speakers also produce an analogue output. The audio program inside the boundary converts the digital encoding of the sound to a series of electrical pulses that are sent to the speaker, where they cause a cone of stiffened paper (or some synthetic material) to vibrate in and out. This makes the air vibrate in the characteristic sound wave.

		5.5.5 Summary

		In this section I've briefly considered the very contentious question of what digital representations mean, but this debate must be left to another course. I have also described some of the devices that take digital information back into the analogue world of sight and sound, presenting it in a form that is meaningful to human eyes and ears.

	
		6 What if? … changing the digital world

		6.1 Kings of infinite space?

		
			I could be bounded in a nutshell and count myself a king of infinite space, were it not that I have bad dreams.

			(Shakespeare, Hamlet)

		

		This section draws together the themes of the previous sections by:

		
				
				discussing how the digital world can be manipulated;

			

				
				explaining how this process has significant implications for science, politics and society.

			

		

		I want to stress at the start, however, that I'm not expecting you to gain a detailed understanding of the models I'm presenting here, still less of the mathematics behind them. My aim is to give you an appreciation of the awesome scope, power and significance of computer simulation.

		I ended Section 4 with two remarks. First, I noted that, in making digital representations, we are not restricted to the visual and sound information that we discussed there. Using our strategy of splitting and mapping, of sampling and quantisation, it is possible to encode any property of the world that interests us. Second, I stated that digital representations are perfectly flexible – once captured, programs can be written that will change them in any way that suits us.

		The discussion has really been rather dry up to this point. But now I want to try and pull together ideas from previous sections to illustrate just how exciting, momentous and far-reaching the concept of a digital representation can be. In Section 1 I referred to our human capacity to range over past, present and future worlds. Digital representations help us to do just this with complete freedom. That is my theme for this section.

		I have to be brief, but the investigation will take us from the whole planet, to the beginnings of the universe itself, and from there into worlds that have no existence except in fantasy.

		6.2 Mimicking and mastering nature: manipulating the digital world

		Encoding images and sound is all very well, and has had billion-dollar effects on the publishing, recording and film industries. But can we be more ambitious? How about capturing features of the wider world? From the many examples I could choose, I want to focus on two aspects of nature that are of particular significance to scientists, and of interest to the wider public:

		
				
				the earth's climate;

			

				
				the origin and evolution of the universe itself.

			

		

		The earth's climate matters. The weather affects us all. For some it is simply an inconvenience; but for others – sailors, farmers, pilots – it can be a matter of life and death. But there are also urgent questions we need answers to now. Is the climate heating up? Is the ozone layer being eroded and, if so, what effect will that have on the climate? What about greenhouse gases? What will happen to the polar ice caps? These are very grave issues, affecting everyone on the planet.

		The question of how the universe began and how it evolved may seem a less urgent matter than the future of our planet's weather systems, but it must surely be of some interest to everyone. How did we get here? Why is the cosmos we see today the way it is? How did it begin? How will it end? Everyone has asked themselves these questions at one time or another.

		How can such problems be studied? There are, of course, a number of ways but the advent of the modern digital computer has added an enormously powerful new weapon to the scientists’ armoury: simulation. We can create digital models of natural phenomena and then write programs to manipulate them.

		6.3 Models

		So how could one go about creating a model of our planet's climate, or (even more daunting) the universe itself? What exactly is a model anyway?

		We can start with an apparently trivial observation. The world we inhabit is complicated. Not only does it contain trillions and trillions of things, but these things also interact with each other in myriad relationships.

		
			SAQ 22

			Why would a perfectly accurate digital model of the world not be possible?

			
				
					Show
 answer
				

			

		

		So, every model has to be a simplification – computer scientists often call it an abstraction. The model builder must include only the features that have a direct bearing on the system being modelled – ignoring everything else. However, once the relevant elements have been identified, then our trusty tools of sampling and quantisation can be brought into play. To illustrate, let's look at our two examples again.

		6.3.1 The climate model

		We know that the weather is created by the interaction of earth's atmosphere with the land, the oceans and the energy of the sun. Therefore, the key factors are air pressure, temperature, humidity, wind speed, and so on. Any model will have to identify and represent these properties only, ignoring irrelevant ones such as the current government or the size of the Meteorological Office building. After this, the familiar process of splitting up things can begin.

		One successful type of atmospheric model is known as a General Circulation Model (GCM). In GCMs the earth's surface is split into a rectangular grid. Each rectangle is the base of an atmospheric column, extending from the surface to high in the atmosphere, and divided into layers which split the whole atmosphere into a network of 3-D boxes. Each box contains a number of points at which the temperature, pressure, humidity, wind speed and direction, and other features are recorded. The size of the grid, height of each column and number of layers in each column depend on the model and what it is being used for. The Goddard Institute for Space Studies Model II, for example, divides the atmosphere into 3312 columns with 9 to 31 layers in each column. The height of each column is about 80,000 feet.

		Does this look familiar? It really amounts to nothing other than the sampling and quantisation that we carried out in Section 4. The model divides up the atmosphere into boxes and each box into points (sampling). Then each point is mapped to a number – in this case a series of numbers (quantisation). But what is the point of building such an elaborate model? Let's leave that question for a moment and cast our net even wider.

		6.3.2 The cosmos

		Next time there is a clear dark night, look up at the sky. You will see the stars, of which the Sun is one, that make up our galaxy. Our galaxy, the Milky Way, contains about 100 billion stars and belongs to a cluster of similar galaxies we call the Local Group. The Local Group is an outlying part of a huge cluster of galactic groups called the Virgo Supercluster. On a larger scale still, the universe seems to consist of billions of superclusters strung out through space in huge filaments, with immense voids between them as depicted in Figure 33.

		
			[image: A map of the universe showing galactic clusters and superclusters]
		

		
			
				Figure 33: Map of the universe showing galactic clusters and superclusters
		

		
			
				Show description
			

		

		How did the universe get that way? How did all this arise?

		One approach to this problem is, again, through simulation. Cosmologists have good evidence that space, time, matter and energy began about 15 billion years ago in a gigantic explosion, the ‘Big Bang’. They also have a good idea of what conditions were like from a few seconds after the Big Bang to the time when the cosmos was about 300,000 years old. Things were quite simple then. The cosmos consisted of:

		
				
				matter (mostly hydrogen);

			

				
				‘dark’ matter (no one knows what this is yet – only that it is there);

			

				
				gravitational and radiation energy.

			

		

		In the 1990s, the US National Science Foundation's Grand Challenge Cosmology Consortium (GC3) produced a number of simulations of the early universe based on this understanding. All of them followed our familiar broad strategy: division into parts, measuring quantities in each part (sampling) and then mapping to numbers (quantisation). For example, a team led by Michael Norman at the NCSA modelled a cubic section of the universe 340 million light years wide, at about 1 billion years after the Big Bang. They divided the space up into over a hundred million cubes and assigned values for the density of matter, dark matter, the temperature, and so on to points inside each cube. Other models using the same strategy are of earlier eras, going back into the first three minutes of time.

		What do these models, of climate or of the cosmos, tell us? Well, nothing if they are just used as a static, simplified picture – inside the boundary – of how things are, or were. But if we set them into motion, they tell us about past, present and future.

		6.4 Setting models in motion – the power of simulation

		Our universe – everything about us – appears to obey laws, which govern how aspects of the world relate to one another. Scientists refer to these as natural laws, as they seem to be constants of nature, and to distinguish them from laws made by people.

		
			
				
					Exercise 17

				

			

			Write down any example of a natural law you can think of. What does the law tell us? Why do you think it is called a law?

			
				
					Show
 discussion
				

			

		

		The features included in both the classes of model I described above are also regulated by laws. For climate models, such laws include:

		
				
				the Navier-Stokes equations which relate the movement of air, up and down or east and west, to the earth's rotation, friction, turbulence and pressure;

			

				
				the thermodynamic equation which relates rises or falls in temperature to heat coming from the sun, from condensation and from other sources.

			

		

		Matter, dark matter and the energy of the early universe are similarly governed by laws, such as gravity and the three laws of thermodynamics.

		All these laws describe how things change in relation to one another over time – how air flows, how things warm up and cool, how matter clumps together. Now, if we write and run a program that applies the relevant laws to the model, we can show how things will change as time goes on. We can project the model forward into the future to predict what things will be like then. Of course, in our world time passes smoothly and continuously, in analogue fashion, so we will have to split it up into a series of intervals, rather as we did with the sampling of a waveform in Section 4. So, as we run the simulation forward in time, the picture looks like Figure 33.

		
			[image: An image to show how we can visualise the digital model by running a simulation]
		

		
			
				Figure 34: Running a simulation forward in a series of discrete steps
		

		
			
				Show description
			

		

		Finally, we need some means of visualising the digital model as it evolves over time. This is a difficult issue, beyond the scope of this course. There are examples of such visualisations below.

		Running climate simulations enables us to forecast the weather, in terms of future temperatures, winds, rainfall, and so on. Data gathered from weather stations and satellites is entered into the model and it is run forward in time to predict future weather patterns. Examples are shown in Figures 34a and b.

		
			[image: An image showing simulated weather patterns]
		

		
			
				Figure 35: Simulated predictions of weather patterns
		

		
			
				Show description
			

		

		Even more significantly, atmospheric simulations help with predictions about the long-term future of the climate. We can range over a number of possible futures, looking for answers to the sorts of questions I raised earlier.

		By contrast, cosmological models help our understanding of the past and the present. We know how things look now. If our simulation evolves from its beginning at a point early in time into a state resembling the present-day universe, then it means the model of the cosmos in those very early times is an adequate one. There are some visually stunning presentations of this in Figures 35a and b.

		
			[image: A simulation showing the early universe at firstly 500 million years after the Big Band and after about 1 billion years]
		

		
			
				Figure 36: Simulations of the early universe (a) about 500 million years after the Big Bang (b) after about 1 billion years
		

		
			
				Show description
			

		

		There are also cosmological models to range into the future. For example, one simulation probes the results of the collision between the Milky Way and the mighty Andromeda galaxy, one of our near neighbours in the Local Group (it is only about 9 million, million, million miles away). It might be premature to take out extra insurance, though. The crash is due to happen in about 3 billion years’ time.

		Unfortunately, your desktop PC will not be able to handle simulations like these. The application of very complex laws, over and over, requires immensely powerful computers called supercomputers. Supercomputers are specially designed to carry out billions of numerical calculations a second. Even at these speeds, simulations may take hours, or even days, to run.

		
			Other simulations

			The range of possible simulations is endless, and each one can tell us things about the past, present and future aspects of our world. Two that might interest you are:

			
					
					economic models;

				

					
					the Tierra model of artificial life.

				

			

		

		6.5 Imaginary worlds

		6.5.1 Virtual worlds

		Are you bored with your surroundings? Do you sometimes wish you were someone else? Help may be at hand. All the digital models we have looked at so far are based on our own world. But we needn't be limited by this. Why not create completely new worlds inside the computer and live in them whenever we wish? It has already been done.

		6.5.2 AlphaWorld

		Case study

		AlphaWorld does not exist in space. It is a purely digital world, existing in the memory of a powerful computer, or group of computers, somewhere in the physical world. In the jargon of computer science, it is a virtual world, where Virtual’ is a term used to describe any entity that does not really exist, but is simulated by the action of a computer.

		AlphaWorld is one of a set of many such worlds, known as Active Worlds, developed originally by Worlds Incorporated, but now hosted by Circle of Fire Studios and a consortium of users. Other companies and consortia also offer many such ‘worlds’.

		AlphaWorld provides a virtual world to visit, move around in, and even live in to an extent. Entrance is through a gate to a 'place' known as Ground Zero, and use of the arrow keys on a keyboard moves individuals around from there.

		Of course, individuals are not really moving. AlphaWorld is a digital model and movement among the objects is an illusion created by very clever programs, showing what a 3D landscape would look like from a certain position. And because it is all an illusion, an individual is not constrained by physical laws in AlphaWorld. It is possible to hover above the ground and fly hundreds of feet above the surface, looking down on the activity below.

		The inhabitants of AlphaWorld both are, and are not, an illusion too. They are not an illusion because they are real people like you and me, with ordinary lives, homes, friends, pets in the physical world. But how is it possible fora physical person to be an inhabitant of a digital ‘place’? We live outside the boundary in the analogue universe. How can I get inside a purely digital world that lies entirely inside the boundary?

		Of course, as my virtual point of view moves around AlphaWorld, with the illusion of a changing scene being created for me by programs, in a sense one could say I was there. But we can go further. I can select or create a digital representative of myself, called an avatar, (‘avatar’ is a Hindu word meaning, roughly, ‘an embodiment of the spirit in the flesh’) a word now used to refer to all sorts of digital being or agent, and send that into AlphaWorld. That is the illusion.

		Every avatar you see in AlphaWorld represents a real person, who is living an independent life somewhere. Avatars can meet and interact with one another in AlphaWorld. AlphaWorld is an enormous meeting place and community. And because so many people meet there, many of the same things happen as when people meet in real cities. There is crime in AlphaWorld and there is even a police force to combat it, composed of avatars belonging to ‘citizens’. There is romance (and marriage, believe it or not). There are even natural disasters like fires and meteor strikes.

		And AlphaWorld is enormous. (Notice how I am already dropping into realistic language. AlphaWorld has no real extension in space, only the appearance of it.) This is partly because it is not static. It started as a small collection of buildings’ around Ground Zero. Many individuals and groups have claimed ‘land’ and built ‘buildings’ over the years, leading to an enormous sprawl of development. AlphaWorld became now so large that it required teleport stations to move between distant areas.

		6.5.3 Virtual reality

		The virtual visitor to AlphaWorld may come away with a feeling of disappointment. The graphic representations of streets, buildings and avatars are quite impressive, but they are not reality.

		This is true, of course. Three-D modelling techniques are an active subject of research, and present-day commercial computers are still not powerful enough to construct truly realistic illusions of reality. However, developments already in the pipeline may move things on a stage further in the near future. The science of virtual reality (VR) is still in its infancy, but in its most ambitious form, immersive VR, it aims to dispense with the computer screen altogether and provide a completely realistic experience. Visual effects are supplied through goggles that give an impression of a surrounding world. Sound is supplied directly through earpieces. There are even special gloves that give an illusion of touch. Such techniques are still on the frontiers of research, but elements of immersive VR are already in use with the US military.

		6.6 Worlds without end

		I wish this section could have been longer and that I could have written about:

		
				
				
					mirror worlds which are exact digital representations of parts of our own world – cities, hospitals, and so on – and which are constantly fed data that keeps them up to date;

			

				
				
					autonomous robots that move through the real world, sensing it, responding to it and changing it;

			

				
				
					artificial life: worlds like Tierra, teeming with digital organisms;

			

				
				
					telepresence in which it is possible to interact with a virtual representation of some real scene, perhaps from thousands of miles away. For example, using telepresence, a surgeon can operate on a patient without being at the scene.

			

		

		But you may not share my wish, so I will just move to the final section, where I raise a few concluding questions.

		6.7 Summary

		This section has looked at simulations, in which digital models of key aspects of the real world can be manipulated by programs. The examples included models of the world's climate, the early cosmos, stock markets, biological evolution and fantasy worlds and personalities. I've offered the view that simulation has far reaching implications for science, politics and society and will invite you to question that view in the final section.

	
		7 Crossing the boundary – a final word

		
			The real question is not whether machines think but whether men do.

			(B.F. Skinner, Contingencies of Reinforcement)

		

		We feel the machine slipping from our hands

		As if someone else were steering;

		If we see light at the end of the tunnel,

		It's the light of the oncoming train

		(Robert Lowell, Since 1939)

		If you persist with your study of computing – and I hope you will – you will soon come across what I call the ‘gee-whizzer’. Gee-whizzers talk and write about computers in a special way. Their attitude seems to be approximately as follows. Everything to do with computers is endlessly ‘cool'; every advance in computer technology is a major breakthrough which will utterly change the world (and always for the better). People who even mildly question the value of certain technological innovations are considered reactionary.

		But I hope you will, as thoughtful people, read what I have written about in this unit with a more sceptical eye – as I do. Not every scientific advance is a benefit, and every new tool the human race has invented, since Neolithic times, has done some harm to the world, as well as good.

		
			
				
					Exercise 18

				

			

			You may wish to think about the following questions. There are no easy answers but you may like to post your thoughts onto the forums and talk about them with other people.

			
					
					The dangers of universal access to information.

				

					
					The social and political significance of virtual worlds.

				

					
					How far can we trust computer information?

				

			

			I don't, however, want to end on a negative note. This is an exciting time. Computers have opened windows on nature and on society that we could never have believed possible. They have genuinely revolutionised the world. And all through the power of the humble 1 and 0.

		

	
		8 Summary

		In this unit you have learned about the difference between the analogue world we inhabit and the digital world of the computer.

		I've described how features of our world can ‘cross the boundary’ and be represented or modelled in the digital world, and then brought back across the boundary to us.

		More excitingly, computer programs that manipulate digital representations of our world enable us to:

		
				
				simulate physical and social processes;

			

				
				explain current events;

			

				
				predict future events;

			

				
				create futuristic virtual worlds.

			

		

		Whether or not these technological wonders are a force for good was left as an open question.

		8.1 Key terms

		You should be able to define the following terms in your own words.

		
				
				agent

			

				
				amplitude

			

				
				analogue

			

				
				ASCII

			

				
				avatar

			

				
				base 10

			

				
				base 2

			

				
				binary system

			

				
				bit (binary digit)

			

				
				bitmap

			

				
				byte

			

				
				Cartesian coordinates

			

				
				CCD

			

				
				character

			

				
				charge-coupled device

			

				
				chrominance

			

				
				cross the boundary

			

				
				CRT monitor

			

				
				digital

			

				
				decimal system

			

				
				digit

			

				
				discrete

			

				
				drawing package

			

				
				frame

			

				
				frame rate

			

				
				frequency

			

				
				greyscale

			

				
				hexadecimal

			

				
				immersive VR

			

				
				inkjet printer

			

				
				laser printer

			

				
				LCD monitor

			

				
				luminance

			

				
				model

			

				
				MP3

			

				
				Napster

			

				
				octal

			

				
				output device

			

				
				painting package

			

				
				palette

			

				
				pixel

			

				
				pixel amplitude

			

				
				plotter

			

				
				quantisation

			

				
				raster graphics

			

				
				raster scanning

			

				
				resolution

			

				
				RGB model

			

				
				sampling

			

				
				sampling rate

			

				
				semantics

			

				
				simulation

			

				
				Unicode

			

				
				vector graphics

			

				
				virtual

			

				
				virtual reality (VR)

			

				
				word

			

		

	
		Acknowledgements

		All materials included in this unit are derived from content originated at the Open University.

		Figures

		
					Figure 5a: reproduced by permission, IBM Research, Almaden Research Center;

		
					Figure 5b: NASA;

		
					Figure 12: © Tate, London 2003;

		
					Figure 10: National Gallery, London;

		
					Figure 11: Musee de I'Annonciade, St. Tropez;

		
					Figure 24: Worcester Art Museum;

		
					Figure 33: Harvard-Smithsonian Center;

		
					Figure 35: High Altitude Observatory, www.hao.ucar.edu.

		Every effort has been made to contact copyright owners. If any have been inadvertently overlooked the publishers will be pleased to make the necessary arrangements at the first opportunity.

		Course team

	
		Version

		 ID: M150
			
 Build: 1.3.0
			
Stamp: 2010-10-26T01:42:34+01:00
		

		Copyright © 2010 The Open University

	OEBPS/js/jquery.cookie.js
/**
 * Cookie plugin
 *
 * Copyright (c) 2006 Klaus Hartl (stilbuero.de)
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */

/**
 * Create a cookie with the given name and value and other optional parameters.
 *
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Set the value of a cookie.
 * @example $.cookie('the_cookie', 'the_value', { expires: 7, path: '/', domain: 'jquery.com', secure: true });
 * @desc Create a cookie with all available options.
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Create a session cookie.
 * @example $.cookie('the_cookie', null);
 * @desc Delete a cookie by passing null as value. Keep in mind that you have to use the same path and domain
 * used when the cookie was set.
 *
 * @param String name The name of the cookie.
 * @param String value The value of the cookie.
 * @param Object options An object literal containing key/value pairs to provide optional cookie attributes.
 * @option Number|Date expires Either an integer specifying the expiration date from now on in days or a Date object.
 * If a negative value is specified (e.g. a date in the past), the cookie will be deleted.
 * If set to null or omitted, the cookie will be a session cookie and will not be retained
 * when the the browser exits.
 * @option String path The value of the path atribute of the cookie (default: path of page that created the cookie).
 * @option String domain The value of the domain attribute of the cookie (default: domain of page that created the cookie).
 * @option Boolean secure If true, the secure attribute of the cookie will be set and the cookie transmission will
 * require a secure protocol (like HTTPS).
 * @type undefined
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */

/**
 * Get the value of a cookie with the given name.
 *
 * @example $.cookie('the_cookie');
 * @desc Get the value of a cookie.
 *
 * @param String name The name of the cookie.
 * @return The value of the cookie.
 * @type String
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */
jQuery.cookie = function(name, value, options) {
 if (typeof value != 'undefined') { // name and value given, set cookie
 options = options || {};
 if (value === null) {
 value = '';
 options.expires = -1;
 }
 var expires = '';
 if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) {
 var date;
 if (typeof options.expires == 'number') {
 date = new Date();
 date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000));
 } else {
 date = options.expires;
 }
 expires = '; expires=' + date.toUTCString(); // use expires attribute, max-age is not supported by IE
 }
 // CAUTION: Needed to parenthesize options.path and options.domain
 // in the following expressions, otherwise they evaluate to undefined
 // in the packed version for some reason...
 var path = options.path ? '; path=' + (options.path) : '';
 var domain = options.domain ? '; domain=' + (options.domain) : '';
 var secure = options.secure ? '; secure' : '';
 document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join('');
 } else { // only name given, get cookie
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }
};

OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/titlepage.html
Crossing the boundary - analogue universe, digital worlds

	The Open University

OEBPS/copyright.html

		Copyright © 2010 The Open University
	

OEBPS/js/jquery.tablesorter.js
/*
 *
 * TableSorter 2.0 - Client-side table sorting with ease!
 * Version 2.0.3
 * @requires jQuery v1.2.3
 *
 * Copyright (c) 2007 Christian Bach
 * Examples and docs at: http://tablesorter.com
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */
/**
 *
 * @description Create a sortable table with multi-column sorting capabilitys
 *
 * @example $('table').tablesorter();
 * @desc Create a simple tablesorter interface.
 *
 * @example $('table').tablesorter({ sortList:[[0,0],[1,0]] });
 * @desc Create a tablesorter interface and sort on the first and secound column in ascending order.
 *
 * @example $('table').tablesorter({ headers: { 0: { sorter: false}, 1: {sorter: false} } });
 * @desc Create a tablesorter interface and disableing the first and secound column headers.
 *
 * @example $('table').tablesorter({ 0: {sorter:"integer"}, 1: {sorter:"currency"} });
 * @desc Create a tablesorter interface and set a column parser for the first and secound column.
 *
 *
 * @param Object settings An object literal containing key/value pairs to provide optional settings.
 *
 * @option String cssHeader (optional) 			A string of the class name to be appended to sortable tr elements in the thead of the table.
 * 												Default value: "header"
 *
 * @option String cssAsc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a ascending sort.
 * 												Default value: "headerSortUp"
 *
 * @option String cssDesc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a descending sort.
 * 												Default value: "headerSortDown"
 *
 * @option String sortInitialOrder (optional) 	A string of the inital sorting order can be asc or desc.
 * 												Default value: "asc"
 *
 * @option String sortMultisortKey (optional) 	A string of the multi-column sort key.
 * 												Default value: "shiftKey"
 *
 * @option String textExtraction (optional) 	A string of the text-extraction method to use.
 * 												For complex html structures inside td cell set this option to "complex",
 * 												on large tables the complex option can be slow.
 * 												Default value: "simple"
 *
 * @option Object headers (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortList (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortForce (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is prepended to user-selected rules.
 * 												Default value: null
 *
 * @option Array sortAppend (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is appended to user-selected rules.
 * 												Default value: null
 *
 * @option Boolean widthFixed (optional) 		Boolean flag indicating if tablesorter should apply fixed widths to the table columns.
 * 												This is usefull when using the pager companion plugin.
 * 												This options requires the dimension jquery plugin.
 * 												Default value: false
 *
 * @option Boolean cancelSelection (optional) 	Boolean flag indicating if tablesorter should cancel selection of the table headers text.
 * 												Default value: true
 *
 * @option Boolean debug (optional) 			Boolean flag indicating if tablesorter should display debuging information usefull for development.
 *
 * @type jQuery
 *
 * @name tablesorter
 *
 * @cat Plugins/Tablesorter
 *
 * @author Christian Bach/christian.bach@polyester.se
 */

(function($) {
	$.extend({
		tablesorter: new function() {
			
			var parsers = [], widgets = [];
			
			this.defaults = {
				cssHeader: "header",
				cssAsc: "headerSortUp",
				cssDesc: "headerSortDown",
				sortInitialOrder: "asc",
				sortMultiSortKey: "shiftKey",
				sortForce: null,
				sortAppend: null,
				textExtraction: "simple",
				parsers: {},
				widgets: [],		
				widgetZebra: {css: ["even","odd"]},
				headers: {},
				widthFixed: false,
				cancelSelection: true,
				sortList: [],
				headerList: [],
				dateFormat: "us",
				decimal: '.',
				debug: false
			};
			
			/* debuging utils */
			function benchmark(s,d) {
				log(s + "," + (new Date().getTime() - d.getTime()) + "ms");
			}
			
			this.benchmark = benchmark;
			
			function log(s) {
				if (typeof console != "undefined" && typeof console.debug != "undefined") {
					console.log(s);
				} else {
					alert(s);
				}
			}
						
			/* parsers utils */
			function buildParserCache(table,$headers) {
				
				if(table.config.debug) { var parsersDebug = ""; }
				
				var rows = table.tBodies[0].rows;
				
				if(table.tBodies[0].rows[0]) {

					var list = [], cells = rows[0].cells, l = cells.length;
					
					for (var i=0;i < l; i++) {
						var p = false;
						
						if($.metadata && ($($headers[i]).metadata() && $($headers[i]).metadata().sorter)) {
						
							p = getParserById($($headers[i]).metadata().sorter);	
						
						} else if((table.config.headers[i] && table.config.headers[i].sorter)) {
	
							p = getParserById(table.config.headers[i].sorter);
						}
						if(!p) {
							p = detectParserForColumn(table,cells[i]);
						}
	
						if(table.config.debug) { parsersDebug += "column:" + i + " parser:" +p.id + "\n"; }
	
						list.push(p);
					}
				}
				
				if(table.config.debug) { log(parsersDebug); }

				return list;
			};
			
			function detectParserForColumn(table,node) {
				var l = parsers.length;
				for(var i=1; i < l; i++) {
					if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)) {
						return parsers[i];
					}
				}
				// 0 is always the generic parser (text)
				return parsers[0];
			}
			
			function getParserById(name) {
				var l = parsers.length;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == name.toLowerCase()) {	
						return parsers[i];
					}
				}
				return false;
			}
			
			/* utils */
			function buildCache(table) {
				
				if(table.config.debug) { var cacheTime = new Date(); }
				
				
				var totalRows = (table.tBodies[0] && table.tBodies[0].rows.length) || 0,
					totalCells = (table.tBodies[0].rows[0] && table.tBodies[0].rows[0].cells.length) || 0,
					parsers = table.config.parsers,
					cache = {row: [], normalized: []};
				
					for (var i=0;i < totalRows; ++i) {
					
						/** Add the table data to main data array */
						var c = table.tBodies[0].rows[i], cols = [];
					
						cache.row.push($(c));
						
						for(var j=0; j < totalCells; ++j) {
							cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));	
						}
												
						cols.push(i); // add position for rowCache
						cache.normalized.push(cols);
						cols = null;
					};
				
				if(table.config.debug) { benchmark("Building cache for " + totalRows + " rows:", cacheTime); }
				
				return cache;
			};
			
			function getElementText(config,node) {
				
				if(!node) return "";
								
				var t = "";
				
				if(config.textExtraction == "simple") {
					if(node.childNodes[0] && node.childNodes[0].hasChildNodes()) {
						t = node.childNodes[0].innerHTML;
					} else {
						t = node.innerHTML;
					}
				} else {
					if(typeof(config.textExtraction) == "function") {
						t = config.textExtraction(node);
					} else {
						t = $(node).text();
					}	
				}
				return t;
			}
			
			function appendToTable(table,cache) {
				
				if(table.config.debug) {var appendTime = new Date()}
				
				var c = cache,
					r = c.row,
					n= c.normalized,
					totalRows = n.length,
					checkCell = (n[0].length-1),
					tableBody = $(table.tBodies[0]),
					rows = [];
				
				for (var i=0;i < totalRows; i++) {
					rows.push(r[n[i][checkCell]]);	
					if(!table.config.appender) {
						
						var o = r[n[i][checkCell]];
						var l = o.length;
						for(var j=0; j < l; j++) {
							
							tableBody[0].appendChild(o[j]);
						
						}
						
						//tableBody.append(r[n[i][checkCell]]);
					}
				}	
				
				if(table.config.appender) {
				
					table.config.appender(table,rows);	
				}
				
				rows = null;
				
				if(table.config.debug) { benchmark("Rebuilt table:", appendTime); }
								
				//apply table widgets
				applyWidget(table);
				
				// trigger sortend
				setTimeout(function() {
					$(table).trigger("sortEnd");	
				},0);
				
			};
			
			function buildHeaders(table) {
				
				if(table.config.debug) { var time = new Date(); }
				
				var meta = ($.metadata) ? true : false, tableHeadersRows = [];
			
				for(var i = 0; i < table.tHead.rows.length; i++) { tableHeadersRows[i]=0; };
				
				$tableHeaders = $("thead th",table);
		
				$tableHeaders.each(function(index) {
							
					this.count = 0;
					this.column = index;
					this.order = formatSortingOrder(table.config.sortInitialOrder);
					
					if(checkHeaderMetadata(this) || checkHeaderOptions(table,index)) this.sortDisabled = true;
					
					if(!this.sortDisabled) {
						$(this).addClass(table.config.cssHeader);
					}
					
					// add cell to headerList
					table.config.headerList[index]= this;
				});
				
				if(table.config.debug) { benchmark("Built headers:", time); log($tableHeaders); }
				
				return $tableHeaders;
				
			};
						
		 	function checkCellColSpan(table, rows, row) {
 var arr = [], r = table.tHead.rows, c = r[row].cells;
				
				for(var i=0; i < c.length; i++) {
					var cell = c[i];
					
					if (cell.colSpan > 1) {
						arr = arr.concat(checkCellColSpan(table, headerArr,row++));
					} else {
						if(table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row+1])) {
							arr.push(cell);
						}
						//headerArr[row] = (i+row);
					}
				}
				return arr;
			};
			
			function checkHeaderMetadata(cell) {
				if(($.metadata) && ($(cell).metadata().sorter === false)) { return true; };
				return false;
			}
			
			function checkHeaderOptions(table,i) {	
				if((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { return true; };
				return false;
			}
			
			function applyWidget(table) {
				var c = table.config.widgets;
				var l = c.length;
				for(var i=0; i < l; i++) {
					
					getWidgetById(c[i]).format(table);
				}
				
			}
			
			function getWidgetById(name) {
				var l = widgets.length;
				for(var i=0; i < l; i++) {
					if(widgets[i].id.toLowerCase() == name.toLowerCase()) {
						return widgets[i];
					}
				}
			};
			
			function formatSortingOrder(v) {
				
				if(typeof(v) != "Number") {
					i = (v.toLowerCase() == "desc") ? 1 : 0;
				} else {
					i = (v == (0 || 1)) ? v : 0;
				}
				return i;
			}
			
			function isValueInArray(v, a) {
				var l = a.length;
				for(var i=0; i < l; i++) {
					if(a[i][0] == v) {
						return true;	
					}
				}
				return false;
			}
				
			function setHeadersCss(table,$headers, list, css) {
				// remove all header information
				$headers.removeClass(css[0]).removeClass(css[1]);
				
				var h = [];
				$headers.each(function(offset) {
						if(!this.sortDisabled) {
							h[this.column] = $(this);					
						}
				});
				
				var l = list.length;
				for(var i=0; i < l; i++) {
					h[list[i][0]].addClass(css[list[i][1]]);
				}
			}
			
			function fixColumnWidth(table,$headers) {
				var c = table.config;
				if(c.widthFixed) {
					var colgroup = $('<colgroup>');
					$("tr:first td",table.tBodies[0]).each(function() {
						colgroup.append($('<col>').css('width',$(this).width()));
					});
					$(table).prepend(colgroup);
				};
			}
			
			function updateHeaderSortCount(table,sortList) {
				var c = table.config, l = sortList.length;
				for(var i=0; i < l; i++) {
					var s = sortList[i], o = c.headerList[s[0]];
					o.count = s[1];
					o.count++;
				}
			}
			
			/* sorting methods */
			function multisort(table,sortList,cache) {
				
				if(table.config.debug) { var sortTime = new Date(); }
				
				var dynamicExp = "var sortWrapper = function(a,b) {", l = sortList.length;
					
				for(var i=0; i < l; i++) {
					
					var c = sortList[i][0];
					var order = sortList[i][1];
					var s = (getCachedSortType(table.config.parsers,c) == "text") ? ((order == 0) ? "sortText" : "sortTextDesc") : ((order == 0) ? "sortNumeric" : "sortNumericDesc");
					
					var e = "e" + i;
					
					dynamicExp += "var " + e + " = " + s + "(a[" + c + "],b[" + c + "]); ";
					dynamicExp += "if(" + e + ") { return " + e + "; } ";
					dynamicExp += "else { ";
				}
				
				// if value is the same keep orignal order	
				var orgOrderCol = cache.normalized[0].length - 1;
				dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];";
						
				for(var i=0; i < l; i++) {
					dynamicExp += "}; ";
				}
				
				dynamicExp += "return 0; ";	
				dynamicExp += "}; ";	
				
				eval(dynamicExp);
				
				cache.normalized.sort(sortWrapper);
				
				if(table.config.debug) { benchmark("Sorting on " + sortList.toString() + " and dir " + order+ " time:", sortTime); }
				
				return cache;
			};
			
			function sortText(a,b) {
				return ((a < b) ? -1 : ((a > b) ? 1 : 0));
			};
			
			function sortTextDesc(a,b) {
				return ((b < a) ? -1 : ((b > a) ? 1 : 0));
			};	
			
	 		function sortNumeric(a,b) {
				return a-b;
			};
			
			function sortNumericDesc(a,b) {
				return b-a;
			};
			
			function getCachedSortType(parsers,i) {
				return parsers[i].type;
			};
			
			/* public methods */
			this.construct = function(settings) {

				return this.each(function() {
					
					if(!this.tHead || !this.tBodies) return;
					
					var $this, $document,$headers, cache, config, shiftDown = 0, sortOrder;
					
					this.config = {};
					
					config = $.extend(this.config, $.tablesorter.defaults, settings);
					
					// store common expression for speed					
					$this = $(this);
					
					// build headers
					$headers = buildHeaders(this);
					
					// try to auto detect column type, and store in tables config
					this.config.parsers = buildParserCache(this,$headers);
					
					
					// build the cache for the tbody cells
					cache = buildCache(this);
					
					// get the css class names, could be done else where.
					var sortCSS = [config.cssDesc,config.cssAsc];
					
					// fixate columns if the users supplies the fixedWidth option
					fixColumnWidth(this);
					
					// apply event handling to headers
					// this is to big, perhaps break it out?
					$headers.click(function(e) {
						
						$this.trigger("sortStart");
						
						var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0;
						
						if(!this.sortDisabled && totalRows > 0) {
							
							
							// store exp, for speed
							var $cell = $(this);
	
							// get current column index
							var i = this.column;
							
							// get current column sort order
							this.order = this.count++ % 2;
							
							// user only whants to sort on one column
							if(!e[config.sortMultiSortKey]) {
								
								// flush the sort list
								config.sortList = [];
								
								if(config.sortForce != null) {
									var a = config.sortForce;
									for(var j=0; j < a.length; j++) {
										if(a[j][0] != i) {
											config.sortList.push(a[j]);
										}
									}
								}
								
								// add column to sort list
								config.sortList.push([i,this.order]);
							
							// multi column sorting
							} else {
								// the user has clicked on an all ready sortet column.
								if(isValueInArray(i,config.sortList)) {	
									
									// revers the sorting direction for all tables.
									for(var j=0; j < config.sortList.length; j++) {
										var s = config.sortList[j], o = config.headerList[s[0]];
										if(s[0] == i) {
											o.count = s[1];
											o.count++;
											s[1] = o.count % 2;
										}
									}	
								} else {
									// add column to sort list array
									config.sortList.push([i,this.order]);
								}
							};
							setTimeout(function() {
								//set css for headers
								setHeadersCss($this[0],$headers,config.sortList,sortCSS);
								appendToTable($this[0],multisort($this[0],config.sortList,cache));
							},1);
							// stop normal event by returning false
							return false;
						}
					// cancel selection	
					}).mousedown(function() {
						if(config.cancelSelection) {
							this.onselectstart = function() {return false};
							return false;
						}
					});
					
					// apply easy methods that trigger binded events
					$this.bind("update",function() {
						
						// rebuild parsers.
						this.config.parsers = buildParserCache(this,$headers);
						
						// rebuild the cache map
						cache = buildCache(this);
						
					}).bind("sorton",function(e,list) {
						
						$(this).trigger("sortStart");
						
						config.sortList = list;
						
						// update and store the sortlist
						var sortList = config.sortList;
						
						// update header count index
						updateHeaderSortCount(this,sortList);
						
						//set css for headers
						setHeadersCss(this,$headers,sortList,sortCSS);
						
						
						// sort the table and append it to the dom
						appendToTable(this,multisort(this,sortList,cache));

					}).bind("appendCache",function() {
						
						appendToTable(this,cache);
					
					}).bind("applyWidgetId",function(e,id) {
						
						getWidgetById(id).format(this);
						
					}).bind("applyWidgets",function() {
						// apply widgets
						applyWidget(this);
					});
					
					if($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) {
						config.sortList = $(this).metadata().sortlist;
					}
					// if user has supplied a sort list to constructor.
					if(config.sortList.length > 0) {
						$this.trigger("sorton",[config.sortList]);	
					}
					
					// apply widgets
					applyWidget(this);
				});
			};
			
			this.addParser = function(parser) {
				var l = parsers.length, a = true;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == parser.id.toLowerCase()) {
						a = false;
					}
				}
				if(a) { parsers.push(parser); };
			};
			
			this.addWidget = function(widget) {
				widgets.push(widget);
			};
			
			this.formatFloat = function(s) {
				var i = parseFloat(s);
				return (isNaN(i)) ? 0 : i;
			};
			this.formatInt = function(s) {
				var i = parseInt(s);
				return (isNaN(i)) ? 0 : i;
			};
			
			this.isDigit = function(s,config) {
				var DECIMAL = '\\' + config.decimal;
				var exp = '/(^[+]?0(' + DECIMAL +'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)' + DECIMAL +'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*' + DECIMAL +'0+$)/';
				return RegExp(exp).test($.trim(s));
			};
			
			this.clearTableBody = function(table) {
				if($.browser.msie) {
					function empty() {
						while (this.firstChild) this.removeChild(this.firstChild);
					}
					empty.apply(table.tBodies[0]);
				} else {
					table.tBodies[0].innerHTML = "";
				}
			};
		}
	});
	
	// extend plugin scope
	$.fn.extend({
 tablesorter: $.tablesorter.construct
	});
	
	var ts = $.tablesorter;
	
	// add default parsers
	ts.addParser({
		id: "text",
		is: function(s) {
			return true;
		},
		format: function(s) {
			return $.trim(s.toLowerCase());
		},
		type: "text"
	});
	
	ts.addParser({
		id: "digit",
		is: function(s,table) {
			var c = table.config;
			return $.tablesorter.isDigit(s,c);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "currency",
		is: function(s) {
			return /^[Â£$â�¬?.]/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "ipAddress",
		is: function(s) {
			return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);
		},
		format: function(s) {
			var a = s.split("."), r = "", l = a.length;
			for(var i = 0; i < l; i++) {
				var item = a[i];
			 	if(item.length == 2) {
					r += "0" + item;
			 	} else {
					r += item;
			 	}
			}
			return $.tablesorter.formatFloat(r);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "url",
		is: function(s) {
			return /^(https?|ftp|file):\/\/$/.test(s);
		},
		format: function(s) {
			return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));
		},
		type: "text"
	});
	
	ts.addParser({
		id: "isoDate",
		is: function(s) {
			return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat((s != "") ? new Date(s.replace(new RegExp(/-/g),"/")).getTime() : "0");
		},
		type: "numeric"
	});
		
	ts.addParser({
		id: "percent",
		is: function(s) {
			return /\%$/.test($.trim(s));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));
		},
		type: "numeric"
	});

	ts.addParser({
		id: "usLongDate",
		is: function(s) {
			return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
		id: "shortDate",
		is: function(s) {
			return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);
		},
		format: function(s,table) {
			var c = table.config;
			s = s.replace(/\-/g,"/");
			if(c.dateFormat == "us") {
				// reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2");
			} else if(c.dateFormat == "uk") {
				//reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1");
			} else if(c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") {
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3");	
			}
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
	 id: "time",
	 is: function(s) {
	 return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);
	 },
	 format: function(s) {
	 return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime());
	 },
	 type: "numeric"
	});
	
	
	ts.addParser({
	 id: "metadata",
	 is: function(s) {
	 return false;
	 },
	 format: function(s,table,cell) {
			var c = table.config, p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName;
	 return $(cell).metadata()[p];
	 },
	 type: "numeric"
	});
	
	// add default widgets
	ts.addWidget({
		id: "zebra",
		format: function(table) {
			if(table.config.debug) { var time = new Date(); }
			$("tr:visible",table.tBodies[0])
	 .filter(':even')
	 .removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0])
	 .end().filter(':odd')
	 .removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);
			if(table.config.debug) { $.tablesorter.benchmark("Applying Zebra widget", time); }
		}
	});	
})(jQuery);

OEBPS/answer09.html

		
			

			
Answer

		
			

Because the same character can be presented in many different forms.

		

	

OEBPS/description16.html

		
			

			
Description

		The image of a church with a higher resolution grid (i.e. more lines)

	

OEBPS/answer06.html

		
			

			
Answer

		
			

Not quite, unfortunately. If I instruct the computer to translate what I've given it back into text, I'll see

			roughwindsdoshakethedarlingbudsofmay

			I forgot that there are spaces between the words, probably because I didn't even notice them. Moreover, the first letter of the line should be a capital and so should the first letter of the proper name ‘May’.

		

	

OEBPS/description15.html

		
			

			
Description

		The image represented as a series of ‘O’ and ‘I’ to represent white and black blocks

	

OEBPS/discussion13.html

		
			

			
Discussion

		
			

One approach relies on a fact I mentioned earlier – that frames are correlated.

			Consider a fragment from a Hollywood movie. The camera rests on Clint Eastwood's face. He narrows his eyes and growls, ‘Do you feel lucky … punk?' The fragment takes perhaps two seconds, or 48 frames. But nothing much is actually moving in that time – only his lips and eyes. If we simply encode every frame separately, we'll find that all of them are very similar to one another. We are simply capturing a lot of the same information over and over again. So, if we fully encode the first frame and then just record the differences between it and the next frame, and then differences between that frame and the next, and so on, we will save huge amounts of space.

		

	

OEBPS/description25.html

		
			

			
Description

		A diagram showing two points plotted on the graph by using their Cartesian coordinates

	

OEBPS/images/m150_1_010i.jpg

OEBPS/table08.html

		
			

			

		

		
			
				
							letter
							a
							b
							c
							d
							e
							f
							g
							h
							i
							j
							k
							l
							m
				

			
			
				
							number
							97
							98
							99
							100
							101
							102
							103
							104
							105
							106
							107
							108
							109
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/discussion12.html

		
			

			
Discussion

		
			

Each frame contains 243,200 pixels. At 3 bytes per pixel, we will need 729,600 bytes per frame. The video is two hours, or 7,200 seconds, which at 24 fps will be 172,800 frames. So we will need 729,600×172,800=126,074,880,000 bytes. Over 126GB! (Remember a gigabyte is a thousand million bytes.)

		

	

OEBPS/images/m150_1_009i.jpg

OEBPS/description21.html

		
			

			
Description

		The sequence of binary numbers to represent this picture

	

OEBPS/images/audiobook-cover.png

OEBPS/js/jquery.columnmanager.js
/*

 * jQuery columnManager plugin

 * Version: 0.2.5

 *

 * Copyright (c) 2007 Roman Weich

 * http://p.sohei.org

 *

 * Dual licensed under the MIT and GPL licenses

 * (This means that you can choose the license that best suits your project, and use it accordingly):

 * http://www.opensource.org/licenses/mit-license.php

 * http://www.gnu.org/licenses/gpl.html

 *

 * Changelog:

 * v 0.2.5 - 2008-01-17

 *	-change: added options "show" and "hide". with these functions the user can control the way to show or hide the cells

 *	-change: added $.fn.showColumns() and $.fn.hideColumns which allows to explicitely show or hide any given number of columns

 * v 0.2.4 - 2007-12-02

 *	-fix: a problem with the on/off css classes when manually toggling columns which were not in the column header list

 *	-fix: an error in the createColumnHeaderList function incorectly resetting the visibility state of the columns

 *	-change: restructured some of the code

 * v 0.2.3 - 2007-12-02

 *	-change: when a column header has no text but some html markup as content, the markup is used in the column header list instead of "undefined"

 * v 0.2.2 - 2007-11-27

 *	-change: added the ablity to change the on and off CSS classes in the column header list through $().toggleColumns()

 *	-change: to avoid conflicts with other plugins, the table-referencing data in the column header list is now stored as an expando and not in the class name as before

 * v 0.2.1 - 2007-08-14

 *	-fix: handling of colspans didn't work properly for the very first spanning column

 *	-change: altered the cookie handling routines for easier management

 * v 0.2.0 - 2007-04-14

 *	-change: supports tables with colspanned and rowspanned cells now

 * v 0.1.4 - 2007-04-11

 *	-change: added onToggle option to specify a custom callback function for the toggling over the column header list

 * v 0.1.3 - 2007-04-05

 *	-fix: bug when saving the value in a cookie

 *	-change: toggleColumns takes a number or an array of numbers as argument now

 * v 0.1.2 - 2007-04-02

 * 	-change: added jsDoc style documentation and examples

 * 	-change: the column index passed to toggleColumns() starts at 1 now (conforming to the values passed in the hideInList and colsHidden options)

 * v 0.1.1 - 2007-03-30

 * 	-change: changed hideInList and colsHidden options to hold integer values for the column indexes to be affected

 *	-change: made the toggleColumns function accessible through the jquery object, to toggle the state without the need for the column header list

 *	-fix: error when not finding the passed listTargetID in the dom

 * v 0.1.0 - 2007-03-27

 */

(function($)

{

	var defaults = {

		listTargetID : null,

		onClass : '',

		offClass : '',

		hideInList: [],

		colsHidden: [],

		saveState: false,

		onToggle: null,

		show: function(cell){

			showCell(cell);

		},

		hide: function(cell){

			hideCell(cell);

		}

	};

	

	var idCount = 0;

	var cookieName = 'columnManagerC';

	/**

	 * Saves the current state for the table in a cookie.

	 * @param {element} table	The table for which to save the current state.

	 */

	var saveCurrentValue = function(table)

	{

		var val = '', i = 0, colsVisible = table.cMColsVisible;

		if (table.cMSaveState && table.id && colsVisible && $.cookie)

		{

			for (; i < colsVisible.length; i++)

			{

				val += (colsVisible[i] == false) ? 0 : 1;

			}

			$.cookie(cookieName + table.id, val, {expires: 9999});

		}

	};

	

	/**

	 * Hides a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to hide.

	 */

	var hideCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(hideCell = function(c)

			{

				c.style.setAttribute('display', 'none');

			})(cell);

		}

		else

		{

			(hideCell = function(c)

			{

				c.style.display = 'none';

			})(cell);

		}

	};

	/**

	 * Makes a cell visible again.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to show.

	 */

	var showCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(showCell = function(c)

			{

				c.style.setAttribute('display', 'block');

			})(cell);

		}

		else

		{

			(showCell = function(c)

			{

				c.style.display = 'table-cell';

			})(cell);

		}

	};

	/**

	 * Returns the visible state of a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to test.

	 */

	var cellVisible = function(cell)

	{

		if (jQuery.browser.msie)

		{

			return (cellVisible = function(c)

			{

				return c.style.getAttribute('display') != 'none';

			})(cell);

		}

		else

		{

			return (cellVisible = function(c)

			{

				return c.style.display != 'none';

			})(cell);

		}

	};

	/**

	 * Returns the cell element which has the passed column index value.

	 * @param {element} table	The table element.

	 * @param {array} cells		The cells to loop through.

	 * @param {integer} col	The column index to look for.

	 */

	var getCell = function(table, cells, col)

	{

		for (var i = 0; i < cells.length; i++)

		{

			if (cells[i].realIndex === undefined) //the test is here, because rows/cells could get added after the first run

			{

				fixCellIndexes(table);

			}

			if (cells[i].realIndex == col)

			{

				return cells[i];

			}

		}

		return null;

	};

	/**

	 * Calculates the actual cellIndex value of all cells in the table and stores it in the realCell property of each cell.

	 * Thats done because the cellIndex value isn't correct when colspans or rowspans are used.

	 * Originally created by Matt Kruse for his table library - Big Thanks! (see http://www.javascripttoolbox.com/)

	 * @param {element} table	The table element.

	 */

	var fixCellIndexes = function(table)

	{

		var rows = table.rows;

		var len = rows.length;

		var matrix = [];

		for (var i = 0; i < len; i++)

		{

			var cells = rows[i].cells;

			var clen = cells.length;

			for (var j = 0; j < clen; j++)

			{

				var c = cells[j];

				var rowSpan = c.rowSpan || 1;

				var colSpan = c.colSpan || 1;

				var firstAvailCol = -1;

				if (!matrix[i])

				{

					matrix[i] = [];

				}

				var m = matrix[i];

				// Find first available column in the first row

				while (m[++firstAvailCol]) {}

				c.realIndex = firstAvailCol;

				for (var k = i; k < i + rowSpan; k++)

				{

					if (!matrix[k])

					{

						matrix[k] = [];

					}

					var matrixrow = matrix[k];

					for (var l = firstAvailCol; l < firstAvailCol + colSpan; l++)

					{

						matrixrow[l] = 1;

					}

				}

			}

		}

	};

	

	/**

	 * Manages the column display state for a table.

	 *

	 * Features:

	 * Saves the state and recreates it on the next visit of the site (requires cookie-plugin).

	 * Extracts all headers and builds an unordered() list out of them, where clicking an list element will show/hide the matching column.

	 *

	 * @param {map} options		An object for optional settings (options described below).

	 *

	 * @option {string} listTargetID	The ID attribute of the element the column header list will be added to.

	 *						Default value: null

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {array} hideInList	An array of numbers. Each column with the matching column index won't be displayed in the column header list.

	 *						Index starting at 1!

	 *						Default value: [] (all columns will be included in the list)

	 * @option {array} colsHidden	An array of numbers. Each column with the matching column index will get hidden by default.

	 *						The value is overwritten when saveState is true and a cookie is set for this table.

	 *						Index starting at 1!

	 *						Default value: []

	 * @option {boolean} saveState	Save a cookie with the sate information of each column.

	 *						Requires jQuery cookie plugin.

	 *						Default value: false

	 * @option {function} onToggle	Callback function which is triggered when the visibility state of a column was toggled through the column header list.

	 *						The passed parameters are: the column index(integer) and the visibility state(boolean).

	 *						Default value: null

	 *

	 * @option {function} show		Function which is called to show a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to block (visible)

	 *

	 * @option {function} hide		Function which is called to hide a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to none (invisible)

	 *

	 * @example $('#table').columnManager([listTargetID: "target", onClass: "on", offClass: "off"]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and sets the CSS classes for the visible("on") and hidden("off") states.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", hideInList: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" but without the first and fourth column.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", colsHidden: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and hides the first and fourth column by default.

	 *

	 * @example $('#table').columnManager([saveState: true]);

	 * @desc Enables the saving of visibility informations for the columns. Does not create a column header list! Toggle the columns visiblity through $('selector').toggleColumns().

	 *

	 * @type jQuery

	 *

	 * @name columnManager

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.columnManager = function(options)

	{

		var settings = $.extend({}, defaults, options);

		/**

		 * Creates the column header list.

		 * @param {element} table	The table element for which to create the list.

		 */

		var createColumnHeaderList = function(table)

		{

			if (!settings.listTargetID)

			{

				return;

			}

			var $target = $('#' + settings.listTargetID);

			if (!$target.length)

			{

				return;

			}

			//select headrow - when there is no thead-element, use the first row in the table

			var headRow = null;

			if (table.tHead && table.tHead.length)

			{

				headRow = table.tHead.rows[0];

			}

			else if (table.rows.length)

			{

				headRow = table.rows[0];

			}

			else

			{

				return; //no header - nothing to do

			}

			var cells = headRow.cells;

			if (!cells.length)

			{

				return; //no header - nothing to do

			}

			//create list in target element

			var $list = null;

			if ($target.get(0).nodeName.toUpperCase() == 'UL')

			{

				$list = $target;

			}

			else

			{

				$list = $('');

				$target.append($list);

			}

			var colsVisible = table.cMColsVisible;

			//create list elements from headers

			for (var i = 0; i < cells.length; i++)

			{

				if ($.inArray(i + 1, settings.hideInList) >= 0)

				{

					continue;

				}

				colsVisible[i] = (colsVisible[i] !== undefined) ? colsVisible[i] : true;

				var text = $(cells[i]).text(),

					addClass;

				if (!text.length)

				{

					text = $(cells[i]).html();

					if (!text.length) //still nothing?

					{

						text = 'No label'; // GNS - was: 'undefined'

					}

				}

				if (colsVisible[i] && settings.onClass)

				{

					addClass = settings.onClass;

				}

				else if (!colsVisible[i] && settings.offClass)

				{

					addClass = settings.offClass;

				}

				var $li = $('<li class="' + addClass + '">' + text + '').click(toggleClick);

				$li[0].cmData = {id: table.id, col: i};

				$list.append($li);

			}

			table.cMColsVisible = colsVisible;

		};

		/**

		 * called when an item in the column header list is clicked

		 */

		var toggleClick = function()

		{

			//get table id and column name

			var data = this.cmData;

			if (data && data.id && data.col >= 0)

			{

				var colNum = data.col,

					$table = $('#' + data.id);

				if ($table.length)

				{

					$table.toggleColumns([colNum + 1], settings);

					//set the appropriate classes to the column header list

					var colsVisible = $table.get(0).cMColsVisible;

					if (settings.onToggle)

					{

						settings.onToggle.apply($table.get(0), [colNum + 1, colsVisible[colNum]]);

					}

				}

			}

		};

		/**

		 * Reads the saved state from the cookie.

		 * @param {string} tableID	The ID attribute from the table.

		 */

		var getSavedValue = function(tableID)

		{

			var val = $.cookie(cookieName + tableID);

			if (val)

			{

				var ar = val.split('');

				for (var i = 0; i < ar.length; i++)

				{

					ar[i] &= 1;

				}

				return ar;

			}

			return false;

		};

 return this.each(function()

 {

			this.id = this.id || 'jQcM0O' + idCount++; //we need an id for the column header list stuff

			var i,

				colsHide = [],

				colsVisible = [];

			//fix cellIndex values

			fixCellIndexes(this);

			//some columns hidden by default?

			if (settings.colsHidden.length)

			{

				for (i = 0; i < settings.colsHidden.length; i++)

				{

					colsVisible[settings.colsHidden[i] - 1] = true;

					colsHide[settings.colsHidden[i] - 1] = true;

				}

			}

			//get saved state - and overwrite defaults

			if (settings.saveState)

			{

				var colsSaved = getSavedValue(this.id);

				if (colsSaved && colsSaved.length)

				{

					for (i = 0; i < colsSaved.length; i++)

					{

						colsVisible[i] = true;

						colsHide[i] = !colsSaved[i];

					}

				}

				this.cMSaveState = true;

			}

			//assign initial colsVisible var to the table (needed for toggling and saving the state)

			this.cMColsVisible = colsVisible;

			//something to hide already?

			if (colsHide.length)

			{

				var a = [];

				for (i = 0; i < colsHide.length; i++)

				{

					if (colsHide[i])

					{

						a[a.length] = i + 1;

					}

				}

				if (a.length)

				{

					$(this).toggleColumns(a);

				}

			}

			//create column header list

			createColumnHeaderList(this);

 });

	};

	/**

	 * Shows or hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. The display state(visible/hidden) for each column with the matching column index will get toggled.

	 *							Column index starts at 1! (see the example)

	 *

	 * @param {map} options		An object for optional settings to handle the on and off CSS classes in the column header list (options described below).

	 * @option {string} listTargetID	The ID attribute of the element with the column header.

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 * @option {function} show		Function which is called to show a table cell.

	 * @option {function} hide		Function which is called to hide a table cell.

	 *

	 * @example $('#table').toggleColumns([2, 4], {hide: function(cell) { $(cell).fadeOut("slow"); }});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for the columns "two" and "four". Use custom function to fade the cell out when hiding it.

	 *

	 * @example $('#table').toggleColumns(3, {listTargetID: 'theID', onClass: 'vis'});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for column "three" and sets or removes the CSS class 'vis' to the appropriate column header according to the visibility of the column.

	 *

	 * @type jQuery

	 *

	 * @name toggleColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.toggleColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i, toggle, di,

				rows = this.rows,

				colsVisible = this.cMColsVisible;

			if (!columns)

				return;

			if (columns.constructor == Number)

				columns = [columns];

			if (!colsVisible)

				colsVisible = this.cMColsVisible = [];

			//go through all rows in the table and hide the cells

			for (i = 0; i < rows.length; i++)

			{

				var cells = rows[i].cells;

				for (var k = 0; k < columns.length; k++)

				{

					var col = columns[k] - 1;

					if (col >= 0)

					{

						//find the cell with the correct index

						var c = getCell(this, cells, col);

						//cell not found - maybe a previous one has a colspan? - search it!

						if (!c)

						{

							var cco = col;

							while (cco > 0 && !(c = getCell(this, cells, --cco))) {} //find the previous cell

							if (!c)

							{

								continue;

							}

						}

						//set toggle direction

						if (colsVisible[col] == undefined)//not initialized yet

						{

							colsVisible[col] = true;

						}

						if (colsVisible[col])

						{

							toggle = cmo && cmo.hide ? cmo.hide : hideCell;

							di = -1;

						}

						else

						{

							toggle = cmo && cmo.show ? cmo.show : showCell;

							di = 1;

						}

						if (!c.chSpan)

						{

							c.chSpan = 0;

						}

						//the cell has a colspan - so dont show/hide - just change the colspan

						if (c.colSpan > 1 || (di == 1 && c.chSpan && cellVisible(c)))

						{

							//is the colspan even reaching this cell? if not we have a rowspan -> nothing to do

							if (c.realIndex + c.colSpan + c.chSpan - 1 < col)

							{

								continue;

							}

							c.colSpan += di;

							c.chSpan += di * -1;

						}

						else if (c.realIndex + c.chSpan < col)//a previous cell was found, but doesn't affect this one (rowspan)

						{

							continue;

						}

						else //toggle cell

						{

							toggle(c);

						}

					}

				}

			}

			//set the colsVisible var

			for (i = 0; i < columns.length; i++)

			{

				this.cMColsVisible[columns[i] - 1] = !colsVisible[columns[i] - 1];

				//set the appropriate classes to the column header list, if the options have been passed

				if (cmo && cmo.listTargetID && (cmo.onClass || cmo.offClass))

				{

					var onC = cmo.onClass, offC = cmo.offClass, $li;

					if (colsVisible[columns[i] - 1])

					{

						onC = offC;

						offC = cmo.onClass;

					}

					$li = $("#" + cmo.listTargetID + " li").filter(function(){return this.cmData && this.cmData.col == columns[i] - 1;});

					if (onC)

					{

						$li.removeClass(onC);

					}

					if (offC)

					{

						$li.addClass(offC);

					}

				}

			}

			saveCurrentValue(this);

		});

	};

	/**

	 * Shows all table columns.

	 * When columns are passed through the parameter only the passed ones become visible.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will become visible.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').showColumns();

	 * @desc Sets the visibility state of all hidden columns to visible.

	 *

	 * @example $('#table').showColumns(3);

	 * @desc Show column number three.

	 *

	 * @type jQuery

	 *

	 * @name showColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.showColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = [],

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns && columns.constructor == Number)

					columns = [columns];

				for (i = 0; i < cV.length; i++)

				{

					//if there were no columns passed, show all - or else show only the columns the user wants to see

					if (!cV[i] && (!columns || $.inArray(i + 1, columns) > -1))

						cols.push(i + 1);

				}

				

				$(this).toggleColumns(cols, cmo);

			}

		});

	};

	/**

	 * Hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will get hidden.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').hideColumns(3);

	 * @desc Hide column number three.

	 *

	 * @type jQuery

	 *

	 * @name hideColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.hideColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = columns,

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns.constructor == Number)

					columns = [columns];

				cols = [];

				for (i = 0; i < columns.length; i++)

				{

					if (cV[columns[i] - 1] || cV[columns[i] - 1] == undefined)

						cols.push(columns[i]);

				}

				

			}

			$(this).toggleColumns(cols, cmo);

		});

	};

})(jQuery);

OEBPS/favicon.ico

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/description19.html

		
			

			
Description

		Image of the jetplane with a grid overlaid

	

OEBPS/answer12.html

		
			

			
Answer

		
			

Counting black as 11 and white as 00, we can have two shades of grey in between – 01 (light grey) and 10 (dark grey). So, four shades in all.

		

	

OEBPS/answer10.html

		
			

			
Answer

		
			

One obvious way is to increase the number of squares and to make each square smaller.

		

	

OEBPS/description31.html

		
			

			
Description

		The sample from the previous image shown as a graph

	

OEBPS/description27.html

		
			

			
Description

		Image showing the characteristic pattern of a raster scan

	

OEBPS/answer18.html

		
			

			
Answer

		
			

Remember that after we had divided an image into pixels, we then mapped each pixel to a number. We need to carry out the same process in the case of the waveform.

		

	

OEBPS/images/m150_1_027i.jpg
2
:

displacement

OEBPS/images/cover.png
OpenLearn ®

The Open
University

Crossing the boundary:
analogue universe,
digital worlds

Computing and ICT

OEBPS/description33.html

		
			

			
Description

		Graph of the amplitude from the previous image which looks more like the original waveform because it is more detailed

	

OEBPS/discussion14.html

		
			

			
Discussion

		
			

In a way the answer is similar to the question on how to transform a picture into numbers that I posed in Subsection 4.3. We have to find some way to split up the waveform. We split up images by dividing them into very small spaces (pixels). We can split a sound wave up by dividing it into very small time intervals.

		

	

OEBPS/description28.html

		
			

			
Description

		An image showing the pattern of peaks and troughs in air particle displacement over time by vibrating a tuning fork

	

OEBPS/discussion15.html

		
			

			
Discussion

		
			

For a start, there must be some indication of what the numbers represent – text, image, sound?

			Assuming that they are part of an image, information is needed on such features as:

			
						
					the height and width of the image (in pixels);

				

						
					the colour scheme used;

				

						
					whether the image is compressed and, if so, how. Probably other valid ideas also occurred to you.

				

			

		

	

OEBPS/toc.html
Contents

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	

OEBPS/answer20.html

		
			

			
Answer

		
			

There's no need for a complicated answer here. Programs inhabit the digital world, so, ultimately, they are made up of binary numbers.

		

	

OEBPS/images/m150_1_032i.jpg

OEBPS/description34.html

		
			

			
Description

		Image of the outcome from a printer showing how a letter ‘R’ is formed

	

OEBPS/discussion16.html

		
			

			
Discussion

		
			

Obviously this depends on the exact set-up you have, but your computer will be equipped at least with some of the following:

			
						
					a monitor (screen)

				

						
					a printer

				

						
					speakers.

				

			

		

	

OEBPS/images/m150_1_016i.jpg

OEBPS/answer21.html

		
			

			
Answer

		
			

If you look very closely at your screen while it is displaying an image, you will see the pixels. So the monitor supplies a digital display.

		

	

OEBPS/description04.html

		
			

			
Description

		Image of a simple circle volume control with a ‘lo’ and ‘hi’ position.

	

OEBPS/description03.html

		
			

			
Description

		Image showing the scale on a simple analogue thermometer.

	

OEBPS/description37.html

		
			

			
Description

		An image showing simulated weather patterns

	

OEBPS/discussion10.html

		
			

			
Discussion

		
			

The image is 62 pixels wide by 44 pixels high, so we need 2728 bits to store it. As you will remember, there are 8 bits in a byte, so we will need 341 bytes to store this very simple image.

		

	

OEBPS/answer22.html

		
			

			
Answer

		
			

First, because our world is analogue and the digital realm is discrete. But also because the world is simply too varied and complex. We would need a computer as large as the world itself.

		

	

OEBPS/images/m150_1_028i.jpg

OEBPS/table09.html

		
			

			

		

		
			
				
							letter
							n
							o
							P
							q
							r
							s
							t
							u
							V
							w
							X
							y
							z
				

			
			
				
							number
							110
							111
							112
							113
							114
							115
							116
							117
							118
							119
							120
							121
							122
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/m150_1_029i.jpg
05 10 15 z;u 25 3

£
E
2
5
£
8
a
-
3

I
o

OEBPS/answer14.html

		
			

			
Answer

		
			

An easy one. It's black, which is what we see when there's no light at all.

		

	

OEBPS/titlepage.html
Crossing the boundary - analogue universe, digital worlds

	The Open University

OEBPS/images/m150_1_i002i.jpg
00000000000000000000000000000000
00000000000000000000000000100000
00000000000000000000000000110000
00000000000000000000000001111000
00000000000000000000000011111000
00000000000000000000000011111100
00000000000000000000000010000100
00000000000000000000000010110100
00000000000000000000000010110100
00000000000000000000000010110100
00000011111111111111111110110100
00001111111111111111111110000100
00011111111111111111111110000100
00111111111111111111111110000100
00100000000000000000000010000100
00100000000000000000000010000100
00100000000000000000000010000100
00100000000000000000000010000100
00100000000000000000000010000100
00111111111111111111111111111100
00000000000000000000000000000000

00000000000000000000000000000000

OEBPS/answer08.html

		
			

			
Answer

		
			

The most obvious device we have at hand is our friend (or enemy) the keyboard. Other devices include scanners (which produce an image of a page) and optical character recognisers (OCRs). OCRs are now often built into scanners.

		

	

OEBPS/images/m150_1_034i.jpg
s N mmylans N amylaws N

timeT, timeT; timeT, timeTs
how things are how things are how things are how things are
at the start after the first after the second after the third

time interval time interval €ime interval

OEBPS/description38.html

		
			

			
Description

		A simulation showing the early universe at firstly 500 million years after the Big Band and after about 1 billion years

	

OEBPS/images/m150_1_036i.jpg

OEBPS/discussion17.html

		
			

			
Discussion

		
			

One of the most obvious is the law of gravity. This tells us that any two bodies will be attracted to one another by a force that depends on their masses and their distance from one another. Gravity is a law because it applies to every mass, always and everywhere.

		

	

OEBPS/description36.html

		
			

			
Description

		An image to show how we can visualise the digital model by running a simulation

	

OEBPS/images/m150_1_035i.jpg
1995 290 00:10 height-integrated
Difference in Total Electron Content (in TECU)

12
10 14 5.00400]
e 16
6 1818 0.00+00|
4 20
2 2 50040}
0

LOGAL TIME
125

1995 290 00:00 height-integrated
Difference in Total Electron Content (in TECU)

o 8 88

LATTUOE (0EG)
s

]
LonGutE (og)

77
LocaL T ()
[—]

3000 4500

OEBPS/description17.html

		
			

			
Description

		The image mapped to the higher resolution grid, i.e. with more, smaller blocks representing the image.

	

OEBPS/images/m150_1_033i.jpg

OEBPS/images/m150_1_020i.jpg

OEBPS/description35.html

		
			

			
Description

		A map of the universe showing galactic clusters and superclusters

	

OEBPS/description32.html

		
			

			
Description

		Image showing the amplitude every 0.1 second

	

OEBPS/images/m150_1_021i.jpg
the way out

OEBPS/images/m150_1_012i.jpg

OEBPS/description30.html

		
			

			
Description

		An image showing the sampling rate for the tuning fork at an interval of 0.5 seconds

	

OEBPS/images/m150_1_030i.jpg
SIS
05 1.0 15 20025 B0 35
111117 Tl4 time/s

£
£
>
2
g
£
g
8
3
£

iy
S

OEBPS/images/m150_1_022i.jpg
origin

OEBPS/images/m150_1_i001i.jpg

OEBPS/answer16.html

		
			

			
Answer

		
			

You may have thought of scanners again, which can be used for images as well as text. You may also have identified digital cameras and camcorders.

		

	

OEBPS/images/m150_1_014i.jpg

OEBPS/answer17.html

		
			

			
Answer

		
			

Again, the problem is similar to the one we faced with the bitmapped image. In that case we decreased our spatial division of the image by making the pixel size smaller. In this case we can decrease our temporal splitting up of the waveform, by making the sampling interval smaller.

		

	

OEBPS/images/m150_1_i003i.jpg
010 011 000 000 100 000 000
011 011 100 100 000 100 000
010 001 010 100 100 100 100
001 001 010 001 100 100 100
001 001 010 001 100 100 100
100 100 010 010 001 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100
100 100 100 100 100 100 100

000 000 000 000
000 000 000 000
100 000 000 000
100 000 000 000
100 101 101 101
101 101 101 000
100 101 101 000
100 100 100 000
101 101 000 000

OEBPS/discussion08.html

		
			

			
Discussion

		
			

You may have been thinking along the following lines. Pick one number to represent each letter – 1 for ‘a’, 2 for ‘b’, …, – and then simply substitute the number for that letter in the line.

		

	

OEBPS/images/m150_1_025i.jpg

OEBPS/table11.html

		
			

			

		

		
			
				
							82
							111
							117
							103
							104
							32
							119
							105
							110
							100
							115
							32
							100
							111
							32
				

			
			
				
							115
							104
							97
							107
							101
							32
							116
							104
							101
							32
							100
							97
							114
							108
							105
				

				
							110
							103
							32
							98
							117
							100
							32
							115
							111
							32
							77
							97
							121
							
							
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/description10.html

		
			

			
Description

		Painting – A Young Woman standing at a Virginal by Jan (Johannes) Vermeer

	

OEBPS/images/m150_1_013i.jpg

OEBPS/description07.html

		
			

			
Description

		A drawing of a digital thermometer

	

OEBPS/discussion11.html

		
			

			
Discussion

		
			

The image has 647×735=475,545 pixels. Each pixel will require 24 bits – that is, 3 bytes. So the image will require 11,413,080 bits, or 1,426,635 bytes which is nearly 1.5MB.

		

	

OEBPS/table05.html

		
			

			

		

		
			
				
							bit 8
							bit 7
							bit 6
							bit 5
							bit 4
							bit 3
							bit 2
							bit 1
				

			
			
				
							
							
							
							
							
							
							
							
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/discussion09.html

		
			

			
Discussion

		
			

						
					Few people actually like using keyboards.

				

						
					There has been concern recently about the damage they can cause to long-term users in the form of repetitive strain injury (RSI).

				

						
					It takes special training to get the best out of them.

				

						
					A keyboard is a pretty inefficient way of getting text into a computer. It is limited by the speed of its operator, and humans are slow and clunky compared with electronic machines. Computers have a phenomenal capacity to store information. A typical hard disk could store hundreds of full-length novels and encyclopaedias. But who is going to type all these in? And how long would it take?

				

			

		

	

OEBPS/table07.html

		
			

			

		

		
			
				
							bit 8
							bit 7
							bit 6
							bit 5
							bit 4
							bit 3
							bit 2
							bit 1
				

			
			
				
							0
							0
							0
							0
							0
							0
							0
							0
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/m150_1_004i.jpg
Lo

Volume

HI

OEBPS/description05.html

		
			

			
Description

		Computer assisted images. The first shows red iron atoms on a blue copper background forming the kanji character for ‘atom’ and the second shows galaxies.

	

OEBPS/answer01.html

		
			

			
Answer

		
			

A trick question, as you probably guessed. There will be an infinite number of possible temperatures between the two values, or any other two values. No matter how small the gap between two temperatures, it is always possible to find a temperature value between them.

		

	

OEBPS/description18.html

		
			

			
Description

		A series of more detailed pictures – a jetplane and a church with trees and people running

	

OEBPS/table02.html

		
			

			

		

		
			
				
							Groups of 10000
							Groups of 1000
							Groups of 100
							Groups of 10
							Ones
				

			
			
				
							104
					
							103
					
							102
					
							101
					
							1s
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/answer04.html

		
			

			
Answer

		
			

How about the number of people who will come to my party tonight? Or the number of bricks in a house?

		

	

OEBPS/images/m150_1_005i.jpg

OEBPS/discussion02.html

		
			

			
Discussion

		
			

I would say that items 2, 3, 4 and 6 were definitely analogue, although we might choose to measure them with discrete instruments. Items 1 and 5 are discrete.

		

	

OEBPS/description24.html

		
			

			
Description

		A diagram showing the x and y axes plotted for a graph

	

OEBPS/answer11.html

		
			

			
Answer

		
			

The most obvious point is that we have as yet no way of handling colour. Slightly less obvious, but just as important, is that plain black and white won't allow us to represent subtleties of light and shade shown on the picture of the aircraft.

		

	

OEBPS/description23.html

		
			

			
Description

		A simple diagram with a rectangle and a circle and two arrows

	

OEBPS/images/m150_1_026i.jpg
displacement

cycle |

(one |
| wave) |

time

OEBPS/description11.html

		
			

			
Description

		Painting – The Port at St Tropez by Paul Signac

	

OEBPS/description22.html

		
			

			
Description

		An image showing the spectrum of light

	

OEBPS/answer19.html

		
			

			
Answer

		
			

I hope you didn't struggle too long before replying. There is simply no way to tell what they represent.

		

	

OEBPS/description06.html

		
			

			
Description

		A discrete volume control which increases volume in steps not incrementally.

	

OEBPS/description20.html

		
			

			
Description

		A greyscale representation of the jetplane using six shades of grey

	

OEBPS/images/m150_1_007i.jpg

OEBPS/answer13.html

		
			

			
Answer

		
			

One colour merges smoothly into the next. There are no sudden transitions from, say, green to blue, or blue to violet. This is a perfect example of smooth analogue change.

		

	

OEBPS/table03.html

		
			

			

		

		
			
				
							Groups of 4096
							Groups of 512
							Groups of 64
							Groups of 8
							Ones
				

			
			
				
							84
					
							83
					
							82
					
							81
					
							1s
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/description09.html

		
			

			
Description

		Figure 9: Newton by William Blake.

	

OEBPS/images/m150_1_006i.jpg

OEBPS/images/m150_1_003i.jpg

OEBPS/discussion07.html

		
			

			
Discussion

		
			

00000000 = decimal 0

			11111111 = decimal 255 (one group of 128, plus one group of sixty-four, plus one group of thirty-two, plus one group of sixteen, plus one group of eight, plus one group of four, plus one group of two plus one)

		

	

OEBPS/table06.html

		
			

			

		

		
			
				
							bit 8
							bit 7
							bit 6
							bit 5
							bit 4
							bit 3
							bit 2
							bit 1
				

			
			
				
							1
							1
							1
							1
							1
							1
							1
							1
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/m150_1_008i.jpg

OEBPS/answer03.html

		
			

			
Answer

		
			

The list is endless: radar, gas sniffers, sonar, ultrasonic probes, X-ray devices, hearing aids, and many more.

		

	

OEBPS/discussion04.html

		
			

			
Discussion

		
			

						
					5 (one group of four, plus no groups of two plus one).

				

						
					7 (one group of four, plus one group of two plus one).

				

			

		

	

OEBPS/images/m150_1_017i.jpg

OEBPS/description12.html

		
			

			
Description

		A simple line drawing of a church with a spire

	

OEBPS/description29.html

		
			

			
Description

		Typical waveforms from a clarinet playing a note and a plate being dropped

	

OEBPS/description14.html

		
			

			
Description

		The church image mapped to the grid by using black/white blocks

	

OEBPS/cover.html

		
			[image: cover image]
		

	

OEBPS/description26.html

		
			

			
Description

		The sequence of pictures of a cantering horse which comprised one of the earliest ‘flip book’ animations

	

OEBPS/copyright-full.html

		
			

			
Copyright notice

		Unless otherwise stated, this ebook is released under the terms of the “Creative Commons
 Licence”. In short, this allows you to use the ebook throughout the world
 without payment for non-commercial purposes only. Please read the Creative Commons Licence in
 full before making use of the ebook.

		You must however read these rights subject to any restrictions on use applying to the ebook
 or any part of it.

		When using the ebook you must attribute us and any identified author in accordance with the
 terms of the Creative Commons License. Each ebook has an
 “Acknowledgements” section which will identify the author/owner(s) and any
 Special Restriction(s) applying. You must take account of and abide by any restrictions set
 out in this section when using the ebook.

		This ebook also contains proprietary content which is owned by or licensed to us and which is
 not subject to the Creative Commons Licence. This content, which will be identified as
 “PROPRIETARY” include, but are not limited to, our logos and trading
 names, certain photographic and video images and sound recordings. This proprietary content is
 protected by intellectual property rights and should remain in context at all times.
 Unauthorised use of this content may constitute intellectual property infringement.

		Copyright and rights falling outside the terms of the Creative Commons Licence are retained
 or controlled by The Open University.

		Cover photograph © Pgiam.

	

OEBPS/images/m150_1_018i.jpg

OEBPS/js/jquery-latest.js
/*!
 * jQuery JavaScript Library v1.4.2
 * http://jquery.com/
 *
 * Copyright 2010, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2010, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Sat Feb 13 22:33:48 2010 -0500
 */
(function(window, undefined) {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
		// The jQuery object is actually just the init constructor 'enhanced'
		return new jQuery.fn.init(selector, context);
	},

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$,

	// Use the correct document accordingly with window argument (sandbox)
	document = window.document,

	// A central reference to the root jQuery(document)
	rootjQuery,

	// A simple way to check for HTML strings or ID strings
	// (both of which we optimize for)
	quickExpr = /^[^<]*(<[\w\W]+>)[^>]*$|^#([\w-]+)$/,

	// Is it a simple selector
	isSimple = /^.[^:#\[\.,]*$/,

	// Check if a string has a non-whitespace character in it
	rnotwhite = /\S/,

	// Used for trimming whitespace
	rtrim = /^(\s|\u00A0)+|(\s|\u00A0)+$/g,

	// Match a standalone tag
	rsingleTag = /^<(\w+)\s*\/?>(?:<\/\1>)?$/,

	// Keep a UserAgent string for use with jQuery.browser
	userAgent = navigator.userAgent,

	// For matching the engine and version of the browser
	browserMatch,
	
	// Has the ready events already been bound?
	readyBound = false,
	
	// The functions to execute on DOM ready
	readyList = [],

	// The ready event handler
	DOMContentLoaded,

	// Save a reference to some core methods
	toString = Object.prototype.toString,
	hasOwnProperty = Object.prototype.hasOwnProperty,
	push = Array.prototype.push,
	slice = Array.prototype.slice,
	indexOf = Array.prototype.indexOf;

jQuery.fn = jQuery.prototype = {
	init: function(selector, context) {
		var match, elem, ret, doc;

		// Handle $(""), $(null), or $(undefined)
		if (!selector) {
			return this;
		}

		// Handle $(DOMElement)
		if (selector.nodeType) {
			this.context = this[0] = selector;
			this.length = 1;
			return this;
		}
		
		// The body element only exists once, optimize finding it
		if (selector === "body" && !context) {
			this.context = document;
			this[0] = document.body;
			this.selector = "body";
			this.length = 1;
			return this;
		}

		// Handle HTML strings
		if (typeof selector === "string") {
			// Are we dealing with HTML string or an ID?
			match = quickExpr.exec(selector);

			// Verify a match, and that no context was specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					doc = (context ? context.ownerDocument || context : document);

					// If a single string is passed in and it's a single tag
					// just do a createElement and skip the rest
					ret = rsingleTag.exec(selector);

					if (ret) {
						if (jQuery.isPlainObject(context)) {
							selector = [document.createElement(ret[1])];
							jQuery.fn.attr.call(selector, context, true);

						} else {
							selector = [doc.createElement(ret[1])];
						}

					} else {
						ret = buildFragment([match[1]], [doc]);
						selector = (ret.cacheable ? ret.fragment.cloneNode(true) : ret.fragment).childNodes;
					}
					
					return jQuery.merge(this, selector);
					
				// HANDLE: $("#id")
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {
						// Handle the case where IE and Opera return items
						// by name instead of ID
						if (elem.id !== match[2]) {
							return rootjQuery.find(selector);
						}

						// Otherwise, we inject the element directly into the jQuery object
						this.length = 1;
						this[0] = elem;
					}

					this.context = document;
					this.selector = selector;
					return this;
				}

			// HANDLE: $("TAG")
			} else if (!context && /^\w+$/.test(selector)) {
				this.selector = selector;
				this.context = document;
				selector = document.getElementsByTagName(selector);
				return jQuery.merge(this, selector);

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || rootjQuery).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return jQuery(context).find(selector);
			}

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return rootjQuery.ready(selector);
		}

		if (selector.selector !== undefined) {
			this.selector = selector.selector;
			this.context = selector.context;
		}

		return jQuery.makeArray(selector, this);
	},

	// Start with an empty selector
	selector: "",

	// The current version of jQuery being used
	jquery: "1.4.2",

	// The default length of a jQuery object is 0
	length: 0,

	// The number of elements contained in the matched element set
	size: function() {
		return this.length;
	},

	toArray: function() {
		return slice.call(this, 0);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {
		return num == null ?

			// Return a 'clean' array
			this.toArray() :

			// Return just the object
			(num < 0 ? this.slice(num)[0] : this[num]);
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems, name, selector) {
		// Build a new jQuery matched element set
		var ret = jQuery();

		if (jQuery.isArray(elems)) {
			push.apply(ret, elems);
		
		} else {
			jQuery.merge(ret, elems);
		}

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		ret.context = this.context;

		if (name === "find") {
			ret.selector = this.selector + (this.selector ? " " : "") + selector;
		} else if (name) {
			ret.selector = this.selector + "." + name + "(" + selector + ")";
		}

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	// (You can seed the arguments with an array of args, but this is
	// only used internally.)
	each: function(callback, args) {
		return jQuery.each(this, callback, args);
	},
	
	ready: function(fn) {
		// Attach the listeners
		jQuery.bindReady();

		// If the DOM is already ready
		if (jQuery.isReady) {
			// Execute the function immediately
			fn.call(document, jQuery);

		// Otherwise, remember the function for later
		} else if (readyList) {
			// Add the function to the wait list
			readyList.push(fn);
		}

		return this;
	},
	
	eq: function(i) {
		return i === -1 ?
			this.slice(i) :
			this.slice(i, +i + 1);
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments),
			"slice", slice.call(arguments).join(","));
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},
	
	end: function() {
		return this.prevObject || jQuery(null);
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: [].sort,
	splice: [].splice
};

// Give the init function the jQuery prototype for later instantiation
jQuery.fn.init.prototype = jQuery.fn;

jQuery.extend = jQuery.fn.extend = function() {
	// copy reference to target object
	var target = arguments[0] || {}, i = 1, length = arguments.length, deep = false, options, name, src, copy;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;
		target = arguments[1] || {};
		// skip the boolean and the target
		i = 2;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// extend jQuery itself if only one argument is passed
	if (length === i) {
		target = this;
		--i;
	}

	for (; i < length; i++) {
		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {
			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging object literal values or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) || jQuery.isArray(copy))) {
					var clone = src && (jQuery.isPlainObject(src) || jQuery.isArray(src)) ? src
						: jQuery.isArray(copy) ? [] : {};

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({
	noConflict: function(deep) {
		window.$ = _$;

		if (deep) {
			window.jQuery = _jQuery;
		}

		return jQuery;
	},
	
	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,
	
	// Handle when the DOM is ready
	ready: function() {
		// Make sure that the DOM is not already loaded
		if (!jQuery.isReady) {
			// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
			if (!document.body) {
				return setTimeout(jQuery.ready, 13);
			}

			// Remember that the DOM is ready
			jQuery.isReady = true;

			// If there are functions bound, to execute
			if (readyList) {
				// Execute all of them
				var fn, i = 0;
				while ((fn = readyList[i++])) {
					fn.call(document, jQuery);
				}

				// Reset the list of functions
				readyList = null;
			}

			// Trigger any bound ready events
			if (jQuery.fn.triggerHandler) {
				jQuery(document).triggerHandler("ready");
			}
		}
	},
	
	bindReady: function() {
		if (readyBound) {
			return;
		}

		readyBound = true;

		// Catch cases where $(document).ready() is called after the
		// browser event has already occurred.
		if (document.readyState === "complete") {
			return jQuery.ready();
		}

		// Mozilla, Opera and webkit nightlies currently support this event
		if (document.addEventListener) {
			// Use the handy event callback
			document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
			
			// A fallback to window.onload, that will always work
			window.addEventListener("load", jQuery.ready, false);

		// If IE event model is used
		} else if (document.attachEvent) {
			// ensure firing before onload,
			// maybe late but safe also for iframes
			document.attachEvent("onreadystatechange", DOMContentLoaded);
			
			// A fallback to window.onload, that will always work
			window.attachEvent("onload", jQuery.ready);

			// If IE and not a frame
			// continually check to see if the document is ready
			var toplevel = false;

			try {
				toplevel = window.frameElement == null;
			} catch(e) {}

			if (document.documentElement.doScroll && toplevel) {
				doScrollCheck();
			}
		}
	},

	// See test/unit/core.js for details concerning isFunction.
	// Since version 1.3, DOM methods and functions like alert
	// aren't supported. They return false on IE (#2968).
	isFunction: function(obj) {
		return toString.call(obj) === "[object Function]";
	},

	isArray: function(obj) {
		return toString.call(obj) === "[object Array]";
	},

	isPlainObject: function(obj) {
		// Must be an Object.
		// Because of IE, we also have to check the presence of the constructor property.
		// Make sure that DOM nodes and window objects don't pass through, as well
		if (!obj || toString.call(obj) !== "[object Object]" || obj.nodeType || obj.setInterval) {
			return false;
		}
		
		// Not own constructor property must be Object
		if (obj.constructor
			&& !hasOwnProperty.call(obj, "constructor")
			&& !hasOwnProperty.call(obj.constructor.prototype, "isPrototypeOf")) {
			return false;
		}
		
		// Own properties are enumerated firstly, so to speed up,
		// if last one is own, then all properties are own.
	
		var key;
		for (key in obj) {}
		
		return key === undefined || hasOwnProperty.call(obj, key);
	},

	isEmptyObject: function(obj) {
		for (var name in obj) {
			return false;
		}
		return true;
	},
	
	error: function(msg) {
		throw msg;
	},
	
	parseJSON: function(data) {
		if (typeof data !== "string" || !data) {
			return null;
		}

		// Make sure leading/trailing whitespace is removed (IE can't handle it)
		data = jQuery.trim(data);
		
		// Make sure the incoming data is actual JSON
		// Logic borrowed from http://json.org/json2.js
		if (/^[\],:{}\s]*$/.test(data.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, "@")
			.replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, "]")
			.replace(/(?:^|:|,)(?:\s*\[)+/g, ""))) {

			// Try to use the native JSON parser first
			return window.JSON && window.JSON.parse ?
				window.JSON.parse(data) :
				(new Function("return " + data))();

		} else {
			jQuery.error("Invalid JSON: " + data);
		}
	},

	noop: function() {},

	// Evalulates a script in a global context
	globalEval: function(data) {
		if (data && rnotwhite.test(data)) {
			// Inspired by code by Andrea Giammarchi
			// http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
			var head = document.getElementsByTagName("head")[0] || document.documentElement,
				script = document.createElement("script");

			script.type = "text/javascript";

			if (jQuery.support.scriptEval) {
				script.appendChild(document.createTextNode(data));
			} else {
				script.text = data;
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709).
			head.insertBefore(script, head.firstChild);
			head.removeChild(script);
		}
	},

	nodeName: function(elem, name) {
		return elem.nodeName && elem.nodeName.toUpperCase() === name.toUpperCase();
	},

	// args is for internal usage only
	each: function(object, callback, args) {
		var name, i = 0,
			length = object.length,
			isObj = length === undefined || jQuery.isFunction(object);

		if (args) {
			if (isObj) {
				for (name in object) {
					if (callback.apply(object[name], args) === false) {
						break;
					}
				}
			} else {
				for (; i < length;) {
					if (callback.apply(object[i++], args) === false) {
						break;
					}
				}
			}

		// A special, fast, case for the most common use of each
		} else {
			if (isObj) {
				for (name in object) {
					if (callback.call(object[name], name, object[name]) === false) {
						break;
					}
				}
			} else {
				for (var value = object[0];
					i < length && callback.call(value, i, value) !== false; value = object[++i]) {}
			}
		}

		return object;
	},

	trim: function(text) {
		return (text || "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(array, results) {
		var ret = results || [];

		if (array != null) {
			// The window, strings (and functions) also have 'length'
			// The extra typeof function check is to prevent crashes
			// in Safari 2 (See: #3039)
			if (array.length == null || typeof array === "string" || jQuery.isFunction(array) || (typeof array !== "function" && array.setInterval)) {
				push.call(ret, array);
			} else {
				jQuery.merge(ret, array);
			}
		}

		return ret;
	},

	inArray: function(elem, array) {
		if (array.indexOf) {
			return array.indexOf(elem);
		}

		for (var i = 0, length = array.length; i < length; i++) {
			if (array[i] === elem) {
				return i;
			}
		}

		return -1;
	},

	merge: function(first, second) {
		var i = first.length, j = 0;

		if (typeof second.length === "number") {
			for (var l = second.length; j < l; j++) {
				first[i++] = second[j];
			}
		
		} else {
			while (second[j] !== undefined) {
				first[i++] = second[j++];
			}
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, inv) {
		var ret = [];

		// Go through the array, only saving the items
		// that pass the validator function
		for (var i = 0, length = elems.length; i < length; i++) {
			if (!inv !== !callback(elems[i], i)) {
				ret.push(elems[i]);
			}
		}

		return ret;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var ret = [], value;

		// Go through the array, translating each of the items to their
		// new value (or values).
		for (var i = 0, length = elems.length; i < length; i++) {
			value = callback(elems[i], i, arg);

			if (value != null) {
				ret[ret.length] = value;
			}
		}

		return ret.concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	proxy: function(fn, proxy, thisObject) {
		if (arguments.length === 2) {
			if (typeof proxy === "string") {
				thisObject = fn;
				fn = thisObject[proxy];
				proxy = undefined;

			} else if (proxy && !jQuery.isFunction(proxy)) {
				thisObject = proxy;
				proxy = undefined;
			}
		}

		if (!proxy && fn) {
			proxy = function() {
				return fn.apply(thisObject || this, arguments);
			};
		}

		// Set the guid of unique handler to the same of original handler, so it can be removed
		if (fn) {
			proxy.guid = fn.guid = fn.guid || proxy.guid || jQuery.guid++;
		}

		// So proxy can be declared as an argument
		return proxy;
	},

	// Use of jQuery.browser is frowned upon.
	// More details: http://docs.jquery.com/Utilities/jQuery.browser
	uaMatch: function(ua) {
		ua = ua.toLowerCase();

		var match = /(webkit)[\/]([\w.]+)/.exec(ua) ||
			/(opera)(?:.*version)?[\/]([\w.]+)/.exec(ua) ||
			/(msie) ([\w.]+)/.exec(ua) ||
			!/compatible/.test(ua) && /(mozilla)(?:.*? rv:([\w.]+))?/.exec(ua) ||
		 	[];

		return { browser: match[1] || "", version: match[2] || "0" };
	},

	browser: {}
});

browserMatch = jQuery.uaMatch(userAgent);
if (browserMatch.browser) {
	jQuery.browser[browserMatch.browser] = true;
	jQuery.browser.version = browserMatch.version;
}

// Deprecated, use jQuery.browser.webkit instead
if (jQuery.browser.webkit) {
	jQuery.browser.safari = true;
}

if (indexOf) {
	jQuery.inArray = function(elem, array) {
		return indexOf.call(array, elem);
	};
}

// All jQuery objects should point back to these
rootjQuery = jQuery(document);

// Cleanup functions for the document ready method
if (document.addEventListener) {
	DOMContentLoaded = function() {
		document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
		jQuery.ready();
	};

} else if (document.attachEvent) {
	DOMContentLoaded = function() {
		// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
		if (document.readyState === "complete") {
			document.detachEvent("onreadystatechange", DOMContentLoaded);
			jQuery.ready();
		}
	};
}

// The DOM ready check for Internet Explorer
function doScrollCheck() {
	if (jQuery.isReady) {
		return;
	}

	try {
		// If IE is used, use the trick by Diego Perini
		// http://javascript.nwbox.com/IEContentLoaded/
		document.documentElement.doScroll("left");
	} catch(error) {
		setTimeout(doScrollCheck, 1);
		return;
	}

	// and execute any waiting functions
	jQuery.ready();
}

function evalScript(i, elem) {
	if (elem.src) {
		jQuery.ajax({
			url: elem.src,
			async: false,
			dataType: "script"
		});
	} else {
		jQuery.globalEval(elem.text || elem.textContent || elem.innerHTML || "");
	}

	if (elem.parentNode) {
		elem.parentNode.removeChild(elem);
	}
}

// Mutifunctional method to get and set values to a collection
// The value/s can be optionally by executed if its a function
function access(elems, key, value, exec, fn, pass) {
	var length = elems.length;
	
	// Setting many attributes
	if (typeof key === "object") {
		for (var k in key) {
			access(elems, k, key[k], exec, fn, value);
		}
		return elems;
	}
	
	// Setting one attribute
	if (value !== undefined) {
		// Optionally, function values get executed if exec is true
		exec = !pass && exec && jQuery.isFunction(value);
		
		for (var i = 0; i < length; i++) {
			fn(elems[i], key, exec ? value.call(elems[i], i, fn(elems[i], key)) : value, pass);
		}
		
		return elems;
	}
	
	// Getting an attribute
	return length ? fn(elems[0], key) : undefined;
}

function now() {
	return (new Date).getTime();
}
(function() {

	jQuery.support = {};

	var root = document.documentElement,
		script = document.createElement("script"),
		div = document.createElement("div"),
		id = "script" + now();

	div.style.display = "none";
	div.innerHTML = " <link/><table></table>a<input type='checkbox'/>";

	var all = div.getElementsByTagName("*"),
		a = div.getElementsByTagName("a")[0];

	// Can't get basic test support
	if (!all || !all.length || !a) {
		return;
	}

	jQuery.support = {
		// IE strips leading whitespace when .innerHTML is used
		leadingWhitespace: div.firstChild.nodeType === 3,

		// Make sure that tbody elements aren't automatically inserted
		// IE will insert them into empty tables
		tbody: !div.getElementsByTagName("tbody").length,

		// Make sure that link elements get serialized correctly by innerHTML
		// This requires a wrapper element in IE
		htmlSerialize: !!div.getElementsByTagName("link").length,

		// Get the style information from getAttribute
		// (IE uses .cssText insted)
		style: /red/.test(a.getAttribute("style")),

		// Make sure that URLs aren't manipulated
		// (IE normalizes it by default)
		hrefNormalized: a.getAttribute("href") === "/a",

		// Make sure that element opacity exists
		// (IE uses filter instead)
		// Use a regex to work around a WebKit issue. See #5145
		opacity: /^0.55$/.test(a.style.opacity),

		// Verify style float existence
		// (IE uses styleFloat instead of cssFloat)
		cssFloat: !!a.style.cssFloat,

		// Make sure that if no value is specified for a checkbox
		// that it defaults to "on".
		// (WebKit defaults to "" instead)
		checkOn: div.getElementsByTagName("input")[0].value === "on",

		// Make sure that a selected-by-default option has a working selected property.
		// (WebKit defaults to false instead of true, IE too, if it's in an optgroup)
		optSelected: document.createElement("select").appendChild(document.createElement("option")).selected,

		parentNode: div.removeChild(div.appendChild(document.createElement("div"))).parentNode === null,

		// Will be defined later
		deleteExpando: true,
		checkClone: false,
		scriptEval: false,
		noCloneEvent: true,
		boxModel: null
	};

	script.type = "text/javascript";
	try {
		script.appendChild(document.createTextNode("window." + id + "=1;"));
	} catch(e) {}

	root.insertBefore(script, root.firstChild);

	// Make sure that the execution of code works by injecting a script
	// tag with appendChild/createTextNode
	// (IE doesn't support this, fails, and uses .text instead)
	if (window[id]) {
		jQuery.support.scriptEval = true;
		delete window[id];
	}

	// Test to see if it's possible to delete an expando from an element
	// Fails in Internet Explorer
	try {
		delete script.test;
	
	} catch(e) {
		jQuery.support.deleteExpando = false;
	}

	root.removeChild(script);

	if (div.attachEvent && div.fireEvent) {
		div.attachEvent("onclick", function click() {
			// Cloning a node shouldn't copy over any
			// bound event handlers (IE does this)
			jQuery.support.noCloneEvent = false;
			div.detachEvent("onclick", click);
		});
		div.cloneNode(true).fireEvent("onclick");
	}

	div = document.createElement("div");
	div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

	var fragment = document.createDocumentFragment();
	fragment.appendChild(div.firstChild);

	// WebKit doesn't clone checked state correctly in fragments
	jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true).lastChild.checked;

	// Figure out if the W3C box model works as expected
	// document.body must exist before we can do this
	jQuery(function() {
		var div = document.createElement("div");
		div.style.width = div.style.paddingLeft = "1px";

		document.body.appendChild(div);
		jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
		document.body.removeChild(div).style.display = 'none';

		div = null;
	});

	// Technique from Juriy Zaytsev
	// http://thinkweb2.com/projects/prototype/detecting-event-support-without-browser-sniffing/
	var eventSupported = function(eventName) {
		var el = document.createElement("div");
		eventName = "on" + eventName;

		var isSupported = (eventName in el);
		if (!isSupported) {
			el.setAttribute(eventName, "return;");
			isSupported = typeof el[eventName] === "function";
		}
		el = null;

		return isSupported;
	};
	
	jQuery.support.submitBubbles = eventSupported("submit");
	jQuery.support.changeBubbles = eventSupported("change");

	// release memory in IE
	root = script = div = all = a = null;
})();

jQuery.props = {
	"for": "htmlFor",
	"class": "className",
	readonly: "readOnly",
	maxlength: "maxLength",
	cellspacing: "cellSpacing",
	rowspan: "rowSpan",
	colspan: "colSpan",
	tabindex: "tabIndex",
	usemap: "useMap",
	frameborder: "frameBorder"
};
var expando = "jQuery" + now(), uuid = 0, windowData = {};

jQuery.extend({
	cache: {},
	
	expando:expando,

	// The following elements throw uncatchable exceptions if you
	// attempt to add expando properties to them.
	noData: {
		"embed": true,
		"object": true,
		"applet": true
	},

	data: function(elem, name, data) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache;

		if (!id && typeof name === "string" && data === undefined) {
			return null;
		}

		// Compute a unique ID for the element
		if (!id) {
			id = ++uuid;
		}

		// Avoid generating a new cache unless none exists and we
		// want to manipulate it.
		if (typeof name === "object") {
			elem[expando] = id;
			thisCache = cache[id] = jQuery.extend(true, {}, name);

		} else if (!cache[id]) {
			elem[expando] = id;
			cache[id] = {};
		}

		thisCache = cache[id];

		// Prevent overriding the named cache with undefined values
		if (data !== undefined) {
			thisCache[name] = data;
		}

		return typeof name === "string" ? thisCache[name] : thisCache;
	},

	removeData: function(elem, name) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache = cache[id];

		// If we want to remove a specific section of the element's data
		if (name) {
			if (thisCache) {
				// Remove the section of cache data
				delete thisCache[name];

				// If we've removed all the data, remove the element's cache
				if (jQuery.isEmptyObject(thisCache)) {
					jQuery.removeData(elem);
				}
			}

		// Otherwise, we want to remove all of the element's data
		} else {
			if (jQuery.support.deleteExpando) {
				delete elem[jQuery.expando];

			} else if (elem.removeAttribute) {
				elem.removeAttribute(jQuery.expando);
			}

			// Completely remove the data cache
			delete cache[id];
		}
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		if (typeof key === "undefined" && this.length) {
			return jQuery.data(this[0]);

		} else if (typeof key === "object") {
			return this.each(function() {
				jQuery.data(this, key);
			});
		}

		var parts = key.split(".");
		parts[1] = parts[1] ? "." + parts[1] : "";

		if (value === undefined) {
			var data = this.triggerHandler("getData" + parts[1] + "!", [parts[0]]);

			if (data === undefined && this.length) {
				data = jQuery.data(this[0], key);
			}
			return data === undefined && parts[1] ?
				this.data(parts[0]) :
				data;
		} else {
			return this.trigger("setData" + parts[1] + "!", [parts[0], value]).each(function() {
				jQuery.data(this, key, value);
			});
		}
	},

	removeData: function(key) {
		return this.each(function() {
			jQuery.removeData(this, key);
		});
	}
});
jQuery.extend({
	queue: function(elem, type, data) {
		if (!elem) {
			return;
		}

		type = (type || "fx") + "queue";
		var q = jQuery.data(elem, type);

		// Speed up dequeue by getting out quickly if this is just a lookup
		if (!data) {
			return q || [];
		}

		if (!q || jQuery.isArray(data)) {
			q = jQuery.data(elem, type, jQuery.makeArray(data));

		} else {
			q.push(data);
		}

		return q;
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type), fn = queue.shift();

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
		}

		if (fn) {
			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			fn.call(elem, function() {
				jQuery.dequeue(elem, type);
			});
		}
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		if (typeof type !== "string") {
			data = type;
			type = "fx";
		}

		if (data === undefined) {
			return jQuery.queue(this[0], type);
		}
		return this.each(function(i, elem) {
			var queue = jQuery.queue(this, type, data);

			if (type === "fx" && queue[0] !== "inprogress") {
				jQuery.dequeue(this, type);
			}
		});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},

	// Based off of the plugin by Clint Helfers, with permission.
	// http://blindsignals.com/index.php/2009/07/jquery-delay/
	delay: function(time, type) {
		time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
		type = type || "fx";

		return this.queue(type, function() {
			var elem = this;
			setTimeout(function() {
				jQuery.dequeue(elem, type);
			}, time);
		});
	},

	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	}
});
var rclass = /[\n\t]/g,
	rspace = /\s+/,
	rreturn = /\r/g,
	rspecialurl = /href|src|style/,
	rtype = /(button|input)/i,
	rfocusable = /(button|input|object|select|textarea)/i,
	rclickable = /^(a|area)$/i,
	rradiocheck = /radio|checkbox/;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, name, value, true, jQuery.attr);
	},

	removeAttr: function(name, fn) {
		return this.each(function(){
			jQuery.attr(this, name, "");
			if (this.nodeType === 1) {
				this.removeAttribute(name);
			}
		});
	},

	addClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.addClass(value.call(this, i, self.attr("class")));
			});
		}

		if (value && typeof value === "string") {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1) {
					if (!elem.className) {
						elem.className = value;

					} else {
						var className = " " + elem.className + " ", setClass = elem.className;
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							if (className.indexOf(" " + classNames[c] + " ") < 0) {
								setClass += " " + classNames[c];
							}
						}
						elem.className = jQuery.trim(setClass);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.removeClass(value.call(this, i, self.attr("class")));
			});
		}

		if ((value && typeof value === "string") || value === undefined) {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1 && elem.className) {
					if (value) {
						var className = (" " + elem.className + " ").replace(rclass, " ");
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							className = className.replace(" " + classNames[c] + " ", " ");
						}
						elem.className = jQuery.trim(className);

					} else {
						elem.className = "";
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value, isBool = typeof stateVal === "boolean";

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.toggleClass(value.call(this, i, self.attr("class"), stateVal), stateVal);
			});
		}

		return this.each(function() {
			if (type === "string") {
				// toggle individual class names
				var className, i = 0, self = jQuery(this),
					state = stateVal,
					classNames = value.split(rspace);

				while ((className = classNames[i++])) {
					// check each className given, space seperated list
					state = isBool ? state : !self.hasClass(className);
					self[state ? "addClass" : "removeClass"](className);
				}

			} else if (type === "undefined" || type === "boolean") {
				if (this.className) {
					// store className if set
					jQuery.data(this, "__className__", this.className);
				}

				// toggle whole className
				this.className = this.className || value === false ? "" : jQuery.data(this, "__className__") || "";
			}
		});
	},

	hasClass: function(selector) {
		var className = " " + selector + " ";
		for (var i = 0, l = this.length; i < l; i++) {
			if ((" " + this[i].className + " ").replace(rclass, " ").indexOf(className) > -1) {
				return true;
			}
		}

		return false;
	},

	val: function(value) {
		if (value === undefined) {
			var elem = this[0];

			if (elem) {
				if (jQuery.nodeName(elem, "option")) {
					return (elem.attributes.value || {}).specified ? elem.value : elem.text;
				}

				// We need to handle select boxes special
				if (jQuery.nodeName(elem, "select")) {
					var index = elem.selectedIndex,
						values = [],
						options = elem.options,
						one = elem.type === "select-one";

					// Nothing was selected
					if (index < 0) {
						return null;
					}

					// Loop through all the selected options
					for (var i = one ? index : 0, max = one ? index + 1 : options.length; i < max; i++) {
						var option = options[i];

						if (option.selected) {
							// Get the specifc value for the option
							value = jQuery(option).val();

							// We don't need an array for one selects
							if (one) {
								return value;
							}

							// Multi-Selects return an array
							values.push(value);
						}
					}

					return values;
				}

				// Handle the case where in Webkit "" is returned instead of "on" if a value isn't specified
				if (rradiocheck.test(elem.type) && !jQuery.support.checkOn) {
					return elem.getAttribute("value") === null ? "on" : elem.value;
				}
				

				// Everything else, we just grab the value
				return (elem.value || "").replace(rreturn, "");

			}

			return undefined;
		}

		var isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var self = jQuery(this), val = value;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, self.val());
			}

			// Typecast each time if the value is a Function and the appended
			// value is therefore different each time.
			if (typeof val === "number") {
				val += "";
			}

			if (jQuery.isArray(val) && rradiocheck.test(this.type)) {
				this.checked = jQuery.inArray(self.val(), val) >= 0;

			} else if (jQuery.nodeName(this, "select")) {
				var values = jQuery.makeArray(val);

				jQuery("option", this).each(function() {
					this.selected = jQuery.inArray(jQuery(this).val(), values) >= 0;
				});

				if (!values.length) {
					this.selectedIndex = -1;
				}

			} else {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	attrFn: {
		val: true,
		css: true,
		html: true,
		text: true,
		data: true,
		width: true,
		height: true,
		offset: true
	},
		
	attr: function(elem, name, value, pass) {
		// don't set attributes on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		if (pass && name in jQuery.attrFn) {
			return jQuery(elem)[name](value);
		}

		var notxml = elem.nodeType !== 1 || !jQuery.isXMLDoc(elem),
			// Whether we are setting (or getting)
			set = value !== undefined;

		// Try to normalize/fix the name
		name = notxml && jQuery.props[name] || name;

		// Only do all the following if this is a node (faster for style)
		if (elem.nodeType === 1) {
			// These attributes require special treatment
			var special = rspecialurl.test(name);

			// Safari mis-reports the default selected property of an option
			// Accessing the parent's selectedIndex property fixes it
			if (name === "selected" && !jQuery.support.optSelected) {
				var parent = elem.parentNode;
				if (parent) {
					parent.selectedIndex;
	
					// Make sure that it also works with optgroups, see #5701
					if (parent.parentNode) {
						parent.parentNode.selectedIndex;
					}
				}
			}

			// If applicable, access the attribute via the DOM 0 way
			if (name in elem && notxml && !special) {
				if (set) {
					// We can't allow the type property to be changed (since it causes problems in IE)
					if (name === "type" && rtype.test(elem.nodeName) && elem.parentNode) {
						jQuery.error("type property can't be changed");
					}

					elem[name] = value;
				}

				// browsers index elements by id/name on forms, give priority to attributes.
				if (jQuery.nodeName(elem, "form") && elem.getAttributeNode(name)) {
					return elem.getAttributeNode(name).nodeValue;
				}

				// elem.tabIndex doesn't always return the correct value when it hasn't been explicitly set
				// http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				if (name === "tabIndex") {
					var attributeNode = elem.getAttributeNode("tabIndex");

					return attributeNode && attributeNode.specified ?
						attributeNode.value :
						rfocusable.test(elem.nodeName) || rclickable.test(elem.nodeName) && elem.href ?
							0 :
							undefined;
				}

				return elem[name];
			}

			if (!jQuery.support.style && notxml && name === "style") {
				if (set) {
					elem.style.cssText = "" + value;
				}

				return elem.style.cssText;
			}

			if (set) {
				// convert the value to a string (all browsers do this but IE) see #1070
				elem.setAttribute(name, "" + value);
			}

			var attr = !jQuery.support.hrefNormalized && notxml && special ?
					// Some attributes require a special call on IE
					elem.getAttribute(name, 2) :
					elem.getAttribute(name);

			// Non-existent attributes return null, we normalize to undefined
			return attr === null ? undefined : attr;
		}

		// elem is actually elem.style ... set the style
		// Using attr for specific style information is now deprecated. Use style instead.
		return jQuery.style(elem, name, value);
	}
});
var rnamespaces = /\.(.*)$/,
	fcleanup = function(nm) {
		return nm.replace(/[^\w\s\.\|`]/g, function(ch) {
			return "\\" + ch;
		});
	};

/*
 * A number of helper functions used for managing events.
 * Many of the ideas behind this code originated from
 * Dean Edwards' addEvent library.
 */
jQuery.event = {

	// Bind an event to an element
	// Original by Dean Edwards
	add: function(elem, types, handler, data) {
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// For whatever reason, IE has trouble passing the window object
		// around, causing it to be cloned in the process
		if (elem.setInterval && (elem !== window && !elem.frameElement)) {
			elem = window;
		}

		var handleObjIn, handleObj;

		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
		}

		// Make sure that the function being executed has a unique ID
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure
		var elemData = jQuery.data(elem);

		// If no elemData is found then we must be trying to bind to one of the
		// banned noData elements
		if (!elemData) {
			return;
		}

		var events = elemData.events = elemData.events || {},
			eventHandle = elemData.handle, eventHandle;

		if (!eventHandle) {
			elemData.handle = eventHandle = function() {
				// Handle the second event of a trigger and when
				// an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && !jQuery.event.triggered ?
					jQuery.event.handle.apply(eventHandle.elem, arguments) :
					undefined;
			};
		}

		// Add elem as a property of the handle function
		// This is to prevent a memory leak with non-native events in IE.
		eventHandle.elem = elem;

		// Handle multiple events separated by a space
		// jQuery(...).bind("mouseover mouseout", fn);
		types = types.split(" ");

		var type, i = 0, namespaces;

		while ((type = types[i++])) {
			handleObj = handleObjIn ?
				jQuery.extend({}, handleObjIn) :
				{ handler: handler, data: data };

			// Namespaced event handlers
			if (type.indexOf(".") > -1) {
				namespaces = type.split(".");
				type = namespaces.shift();
				handleObj.namespace = namespaces.slice(0).sort().join(".");

			} else {
				namespaces = [];
				handleObj.namespace = "";
			}

			handleObj.type = type;
			handleObj.guid = handler.guid;

			// Get the current list of functions bound to this event
			var handlers = events[type],
				special = jQuery.event.special[type] || {};

			// Init the event handler queue
			if (!handlers) {
				handlers = events[type] = [];

				// Check for a special event handler
				// Only use addEventListener/attachEvent if the special
				// events handler returns false
				if (!special.setup || special.setup.call(elem, data, namespaces, eventHandle) === false) {
					// Bind the global event handler to the element
					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle, false);

					} else if (elem.attachEvent) {
						elem.attachEvent("on" + type, eventHandle);
					}
				}
			}
			
			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add the function to the element's handler list
			handlers.push(handleObj);

			// Keep track of which events have been used, for global triggering
			jQuery.event.global[type] = true;
		}

		// Nullify elem to prevent memory leaks in IE
		elem = null;
	},

	global: {},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, pos) {
		// don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		var ret, type, fn, i = 0, all, namespaces, namespace, special, eventType, handleObj, origType,
			elemData = jQuery.data(elem),
			events = elemData && elemData.events;

		if (!elemData || !events) {
			return;
		}

		// types is actually an event object here
		if (types && types.type) {
			handler = types.handler;
			types = types.type;
		}

		// Unbind all events for the element
		if (!types || typeof types === "string" && types.charAt(0) === ".") {
			types = types || "";

			for (type in events) {
				jQuery.event.remove(elem, type + types);
			}

			return;
		}

		// Handle multiple events separated by a space
		// jQuery(...).unbind("mouseover mouseout", fn);
		types = types.split(" ");

		while ((type = types[i++])) {
			origType = type;
			handleObj = null;
			all = type.indexOf(".") < 0;
			namespaces = [];

			if (!all) {
				// Namespaced event handlers
				namespaces = type.split(".");
				type = namespaces.shift();

				namespace = new RegExp("(^|\\.)" +
					jQuery.map(namespaces.slice(0).sort(), fcleanup).join("\\.(?:.*\\.)?") + "(\\.|$)")
			}

			eventType = events[type];

			if (!eventType) {
				continue;
			}

			if (!handler) {
				for (var j = 0; j < eventType.length; j++) {
					handleObj = eventType[j];

					if (all || namespace.test(handleObj.namespace)) {
						jQuery.event.remove(elem, origType, handleObj.handler, j);
						eventType.splice(j--, 1);
					}
				}

				continue;
			}

			special = jQuery.event.special[type] || {};

			for (var j = pos || 0; j < eventType.length; j++) {
				handleObj = eventType[j];

				if (handler.guid === handleObj.guid) {
					// remove the given handler for the given type
					if (all || namespace.test(handleObj.namespace)) {
						if (pos == null) {
							eventType.splice(j--, 1);
						}

						if (special.remove) {
							special.remove.call(elem, handleObj);
						}
					}

					if (pos != null) {
						break;
					}
				}
			}

			// remove generic event handler if no more handlers exist
			if (eventType.length === 0 || pos != null && eventType.length === 1) {
				if (!special.teardown || special.teardown.call(elem, namespaces) === false) {
					removeEvent(elem, type, elemData.handle);
				}

				ret = null;
				delete events[type];
			}
		}

		// Remove the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			var handle = elemData.handle;
			if (handle) {
				handle.elem = null;
			}

			delete elemData.events;
			delete elemData.handle;

			if (jQuery.isEmptyObject(elemData)) {
				jQuery.removeData(elem);
			}
		}
	},

	// bubbling is internal
	trigger: function(event, data, elem /*, bubbling */) {
		// Event object or event type
		var type = event.type || event,
			bubbling = arguments[3];

		if (!bubbling) {
			event = typeof event === "object" ?
				// jQuery.Event object
				event[expando] ? event :
				// Object literal
				jQuery.extend(jQuery.Event(type), event) :
				// Just the event type (string)
				jQuery.Event(type);

			if (type.indexOf("!") >= 0) {
				event.type = type = type.slice(0, -1);
				event.exclusive = true;
			}

			// Handle a global trigger
			if (!elem) {
				// Don't bubble custom events when global (to avoid too much overhead)
				event.stopPropagation();

				// Only trigger if we've ever bound an event for it
				if (jQuery.event.global[type]) {
					jQuery.each(jQuery.cache, function() {
						if (this.events && this.events[type]) {
							jQuery.event.trigger(event, data, this.handle.elem);
						}
					});
				}
			}

			// Handle triggering a single element

			// don't do events on text and comment nodes
			if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
				return undefined;
			}

			// Clean up in case it is reused
			event.result = undefined;
			event.target = elem;

			// Clone the incoming data, if any
			data = jQuery.makeArray(data);
			data.unshift(event);
		}

		event.currentTarget = elem;

		// Trigger the event, it is assumed that "handle" is a function
		var handle = jQuery.data(elem, "handle");
		if (handle) {
			handle.apply(elem, data);
		}

		var parent = elem.parentNode || elem.ownerDocument;

		// Trigger an inline bound script
		try {
			if (!(elem && elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()])) {
				if (elem["on" + type] && elem["on" + type].apply(elem, data) === false) {
					event.result = false;
				}
			}

		// prevent IE from throwing an error for some elements with some event types, see #3533
		} catch (e) {}

		if (!event.isPropagationStopped() && parent) {
			jQuery.event.trigger(event, data, parent, true);

		} else if (!event.isDefaultPrevented()) {
			var target = event.target, old,
				isClick = jQuery.nodeName(target, "a") && type === "click",
				special = jQuery.event.special[type] || {};

			if ((!special._default || special._default.call(elem, event) === false) &&
				!isClick && !(target && target.nodeName && jQuery.noData[target.nodeName.toLowerCase()])) {

				try {
					if (target[type]) {
						// Make sure that we don't accidentally re-trigger the onFOO events
						old = target["on" + type];

						if (old) {
							target["on" + type] = null;
						}

						jQuery.event.triggered = true;
						target[type]();
					}

				// prevent IE from throwing an error for some elements with some event types, see #3533
				} catch (e) {}

				if (old) {
					target["on" + type] = old;
				}

				jQuery.event.triggered = false;
			}
		}
	},

	handle: function(event) {
		var all, handlers, namespaces, namespace, events;

		event = arguments[0] = jQuery.event.fix(event || window.event);
		event.currentTarget = this;

		// Namespaced event handlers
		all = event.type.indexOf(".") < 0 && !event.exclusive;

		if (!all) {
			namespaces = event.type.split(".");
			event.type = namespaces.shift();
			namespace = new RegExp("(^|\\.)" + namespaces.slice(0).sort().join("\\.(?:.*\\.)?") + "(\\.|$)");
		}

		var events = jQuery.data(this, "events"), handlers = events[event.type];

		if (events && handlers) {
			// Clone the handlers to prevent manipulation
			handlers = handlers.slice(0);

			for (var j = 0, l = handlers.length; j < l; j++) {
				var handleObj = handlers[j];

				// Filter the functions by class
				if (all || namespace.test(handleObj.namespace)) {
					// Pass in a reference to the handler function itself
					// So that we can later remove it
					event.handler = handleObj.handler;
					event.data = handleObj.data;
					event.handleObj = handleObj;
	
					var ret = handleObj.handler.apply(this, arguments);

					if (ret !== undefined) {
						event.result = ret;
						if (ret === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}

					if (event.isImmediatePropagationStopped()) {
						break;
					}
				}
			}
		}

		return event.result;
	},

	props: "altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY originalTarget pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),

	fix: function(event) {
		if (event[expando]) {
			return event;
		}

		// store a copy of the original event object
		// and "clone" to set read-only properties
		var originalEvent = event;
		event = jQuery.Event(originalEvent);

		for (var i = this.props.length, prop; i;) {
			prop = this.props[--i];
			event[prop] = originalEvent[prop];
		}

		// Fix target property, if necessary
		if (!event.target) {
			event.target = event.srcElement || document; // Fixes #1925 where srcElement might not be defined either
		}

		// check if target is a textnode (safari)
		if (event.target.nodeType === 3) {
			event.target = event.target.parentNode;
		}

		// Add relatedTarget, if necessary
		if (!event.relatedTarget && event.fromElement) {
			event.relatedTarget = event.fromElement === event.target ? event.toElement : event.fromElement;
		}

		// Calculate pageX/Y if missing and clientX/Y available
		if (event.pageX == null && event.clientX != null) {
			var doc = document.documentElement, body = document.body;
			event.pageX = event.clientX + (doc && doc.scrollLeft || body && body.scrollLeft || 0) - (doc && doc.clientLeft || body && body.clientLeft || 0);
			event.pageY = event.clientY + (doc && doc.scrollTop || body && body.scrollTop || 0) - (doc && doc.clientTop || body && body.clientTop || 0);
		}

		// Add which for key events
		if (!event.which && ((event.charCode || event.charCode === 0) ? event.charCode : event.keyCode)) {
			event.which = event.charCode || event.keyCode;
		}

		// Add metaKey to non-Mac browsers (use ctrl for PC's and Meta for Macs)
		if (!event.metaKey && event.ctrlKey) {
			event.metaKey = event.ctrlKey;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		// Note: button is not normalized, so don't use it
		if (!event.which && event.button !== undefined) {
			event.which = (event.button & 1 ? 1 : (event.button & 2 ? 3 : (event.button & 4 ? 2 : 0)));
		}

		return event;
	},

	// Deprecated, use jQuery.guid instead
	guid: 1E8,

	// Deprecated, use jQuery.proxy instead
	proxy: jQuery.proxy,

	special: {
		ready: {
			// Make sure the ready event is setup
			setup: jQuery.bindReady,
			teardown: jQuery.noop
		},

		live: {
			add: function(handleObj) {
				jQuery.event.add(this, handleObj.origType, jQuery.extend({}, handleObj, {handler: liveHandler}));
			},

			remove: function(handleObj) {
				var remove = true,
					type = handleObj.origType.replace(rnamespaces, "");
				
				jQuery.each(jQuery.data(this, "events").live || [], function() {
					if (type === this.origType.replace(rnamespaces, "")) {
						remove = false;
						return false;
					}
				});

				if (remove) {
					jQuery.event.remove(this, handleObj.origType, liveHandler);
				}
			}

		},

		beforeunload: {
			setup: function(data, namespaces, eventHandle) {
				// We only want to do this special case on windows
				if (this.setInterval) {
					this.onbeforeunload = eventHandle;
				}

				return false;
			},
			teardown: function(namespaces, eventHandle) {
				if (this.onbeforeunload === eventHandle) {
					this.onbeforeunload = null;
				}
			}
		}
	}
};

var removeEvent = document.removeEventListener ?
	function(elem, type, handle) {
		elem.removeEventListener(type, handle, false);
	} :
	function(elem, type, handle) {
		elem.detachEvent("on" + type, handle);
	};

jQuery.Event = function(src) {
	// Allow instantiation without the 'new' keyword
	if (!this.preventDefault) {
		return new jQuery.Event(src);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;
	// Event type
	} else {
		this.type = src;
	}

	// timeStamp is buggy for some events on Firefox(#3843)
	// So we won't rely on the native value
	this.timeStamp = now();

	// Mark it as fixed
	this[expando] = true;
};

function returnFalse() {
	return false;
}
function returnTrue() {
	return true;
}

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	preventDefault: function() {
		this.isDefaultPrevented = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		
		// if preventDefault exists run it on the original event
		if (e.preventDefault) {
			e.preventDefault();
		}
		// otherwise set the returnValue property of the original event to false (IE)
		e.returnValue = false;
	},
	stopPropagation: function() {
		this.isPropagationStopped = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		// if stopPropagation exists run it on the original event
		if (e.stopPropagation) {
			e.stopPropagation();
		}
		// otherwise set the cancelBubble property of the original event to true (IE)
		e.cancelBubble = true;
	},
	stopImmediatePropagation: function() {
		this.isImmediatePropagationStopped = returnTrue;
		this.stopPropagation();
	},
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse
};

// Checks if an event happened on an element within another element
// Used in jQuery.event.special.mouseenter and mouseleave handlers
var withinElement = function(event) {
	// Check if mouse(over|out) are still within the same parent element
	var parent = event.relatedTarget;

	// Firefox sometimes assigns relatedTarget a XUL element
	// which we cannot access the parentNode property of
	try {
		// Traverse up the tree
		while (parent && parent !== this) {
			parent = parent.parentNode;
		}

		if (parent !== this) {
			// set the correct event type
			event.type = event.data;

			// handle event if we actually just moused on to a non sub-element
			jQuery.event.handle.apply(this, arguments);
		}

	// assuming we've left the element since we most likely mousedover a xul element
	} catch(e) { }
},

// In case of event delegation, we only need to rename the event.type,
// liveHandler will take care of the rest.
delegate = function(event) {
	event.type = event.data;
	jQuery.event.handle.apply(this, arguments);
};

// Create mouseenter and mouseleave events
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		setup: function(data) {
			jQuery.event.add(this, fix, data && data.selector ? delegate : withinElement, orig);
		},
		teardown: function(data) {
			jQuery.event.remove(this, fix, data && data.selector ? delegate : withinElement);
		}
	};
});

// submit delegation
if (!jQuery.support.submitBubbles) {

	jQuery.event.special.submit = {
		setup: function(data, namespaces) {
			if (this.nodeName.toLowerCase() !== "form") {
				jQuery.event.add(this, "click.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "submit" || type === "image") && jQuery(elem).closest("form").length) {
						return trigger("submit", this, arguments);
					}
				});
	
				jQuery.event.add(this, "keypress.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "text" || type === "password") && jQuery(elem).closest("form").length && e.keyCode === 13) {
						return trigger("submit", this, arguments);
					}
				});

			} else {
				return false;
			}
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialSubmit");
		}
	};

}

// change delegation, happens here so we have bind.
if (!jQuery.support.changeBubbles) {

	var formElems = /textarea|input|select/i,

	changeFilters,

	getVal = function(elem) {
		var type = elem.type, val = elem.value;

		if (type === "radio" || type === "checkbox") {
			val = elem.checked;

		} else if (type === "select-multiple") {
			val = elem.selectedIndex > -1 ?
				jQuery.map(elem.options, function(elem) {
					return elem.selected;
				}).join("-") :
				"";

		} else if (elem.nodeName.toLowerCase() === "select") {
			val = elem.selectedIndex;
		}

		return val;
	},

	testChange = function testChange(e) {
		var elem = e.target, data, val;

		if (!formElems.test(elem.nodeName) || elem.readOnly) {
			return;
		}

		data = jQuery.data(elem, "_change_data");
		val = getVal(elem);

		// the current data will be also retrieved by beforeactivate
		if (e.type !== "focusout" || elem.type !== "radio") {
			jQuery.data(elem, "_change_data", val);
		}
		
		if (data === undefined || val === data) {
			return;
		}

		if (data != null || val) {
			e.type = "change";
			return jQuery.event.trigger(e, arguments[1], elem);
		}
	};

	jQuery.event.special.change = {
		filters: {
			focusout: testChange,

			click: function(e) {
				var elem = e.target, type = elem.type;

				if (type === "radio" || type === "checkbox" || elem.nodeName.toLowerCase() === "select") {
					return testChange.call(this, e);
				}
			},

			// Change has to be called before submit
			// Keydown will be called before keypress, which is used in submit-event delegation
			keydown: function(e) {
				var elem = e.target, type = elem.type;

				if ((e.keyCode === 13 && elem.nodeName.toLowerCase() !== "textarea") ||
					(e.keyCode === 32 && (type === "checkbox" || type === "radio")) ||
					type === "select-multiple") {
					return testChange.call(this, e);
				}
			},

			// Beforeactivate happens also before the previous element is blurred
			// with this event you can't trigger a change event, but you can store
			// information/focus[in] is not needed anymore
			beforeactivate: function(e) {
				var elem = e.target;
				jQuery.data(elem, "_change_data", getVal(elem));
			}
		},

		setup: function(data, namespaces) {
			if (this.type === "file") {
				return false;
			}

			for (var type in changeFilters) {
				jQuery.event.add(this, type + ".specialChange", changeFilters[type]);
			}

			return formElems.test(this.nodeName);
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialChange");

			return formElems.test(this.nodeName);
		}
	};

	changeFilters = jQuery.event.special.change.filters;
}

function trigger(type, elem, args) {
	args[0].type = type;
	return jQuery.event.handle.apply(elem, args);
}

// Create "bubbling" focus and blur events
if (document.addEventListener) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {
		jQuery.event.special[fix] = {
			setup: function() {
				this.addEventListener(orig, handler, true);
			},
			teardown: function() {
				this.removeEventListener(orig, handler, true);
			}
		};

		function handler(e) {
			e = jQuery.event.fix(e);
			e.type = fix;
			return jQuery.event.handle.call(this, e);
		}
	});
}

jQuery.each(["bind", "one"], function(i, name) {
	jQuery.fn[name] = function(type, data, fn) {
		// Handle object literals
		if (typeof type === "object") {
			for (var key in type) {
				this[name](key, data, type[key], fn);
			}
			return this;
		}
		
		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		var handler = name === "one" ? jQuery.proxy(fn, function(event) {
			jQuery(this).unbind(event, handler);
			return fn.apply(this, arguments);
		}) : fn;

		if (type === "unload" && name !== "one") {
			this.one(type, data, fn);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.add(this[i], type, handler, data);
			}
		}

		return this;
	};
});

jQuery.fn.extend({
	unbind: function(type, fn) {
		// Handle object literals
		if (typeof type === "object" && !type.preventDefault) {
			for (var key in type) {
				this.unbind(key, type[key]);
			}

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.remove(this[i], type, fn);
			}
		}

		return this;
	},
	
	delegate: function(selector, types, data, fn) {
		return this.live(types, data, fn, selector);
	},
	
	undelegate: function(selector, types, fn) {
		if (arguments.length === 0) {
				return this.unbind("live");
		
		} else {
			return this.die(types, null, fn, selector);
		}
	},
	
	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},

	triggerHandler: function(type, data) {
		if (this[0]) {
			var event = jQuery.Event(type);
			event.preventDefault();
			event.stopPropagation();
			jQuery.event.trigger(event, data, this[0]);
			return event.result;
		}
	},

	toggle: function(fn) {
		// Save reference to arguments for access in closure
		var args = arguments, i = 1;

		// link all the functions, so any of them can unbind this click handler
		while (i < args.length) {
			jQuery.proxy(fn, args[i++]);
		}

		return this.click(jQuery.proxy(fn, function(event) {
			// Figure out which function to execute
			var lastToggle = (jQuery.data(this, "lastToggle" + fn.guid) || 0) % i;
			jQuery.data(this, "lastToggle" + fn.guid, lastToggle + 1);

			// Make sure that clicks stop
			event.preventDefault();

			// and execute the function
			return args[lastToggle].apply(this, arguments) || false;
		}));
	},

	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

var liveMap = {
	focus: "focusin",
	blur: "focusout",
	mouseenter: "mouseover",
	mouseleave: "mouseout"
};

jQuery.each(["live", "die"], function(i, name) {
	jQuery.fn[name] = function(types, data, fn, origSelector /* Internal Use Only */) {
		var type, i = 0, match, namespaces, preType,
			selector = origSelector || this.selector,
			context = origSelector ? this : jQuery(this.context);

		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		types = (types || "").split(" ");

		while ((type = types[i++]) != null) {
			match = rnamespaces.exec(type);
			namespaces = "";

			if (match) {
				namespaces = match[0];
				type = type.replace(rnamespaces, "");
			}

			if (type === "hover") {
				types.push("mouseenter" + namespaces, "mouseleave" + namespaces);
				continue;
			}

			preType = type;

			if (type === "focus" || type === "blur") {
				types.push(liveMap[type] + namespaces);
				type = type + namespaces;

			} else {
				type = (liveMap[type] || type) + namespaces;
			}

			if (name === "live") {
				// bind live handler
				context.each(function(){
					jQuery.event.add(this, liveConvert(type, selector),
						{ data: data, selector: selector, handler: fn, origType: type, origHandler: fn, preType: preType });
				});

			} else {
				// unbind live handler
				context.unbind(liveConvert(type, selector), fn);
			}
		}
		
		return this;
	}
});

function liveHandler(event) {
	var stop, elems = [], selectors = [], args = arguments,
		related, match, handleObj, elem, j, i, l, data,
		events = jQuery.data(this, "events");

	// Make sure we avoid non-left-click bubbling in Firefox (#3861)
	if (event.liveFired === this || !events || !events.live || event.button && event.type === "click") {
		return;
	}

	event.liveFired = this;

	var live = events.live.slice(0);

	for (j = 0; j < live.length; j++) {
		handleObj = live[j];

		if (handleObj.origType.replace(rnamespaces, "") === event.type) {
			selectors.push(handleObj.selector);

		} else {
			live.splice(j--, 1);
		}
	}

	match = jQuery(event.target).closest(selectors, event.currentTarget);

	for (i = 0, l = match.length; i < l; i++) {
		for (j = 0; j < live.length; j++) {
			handleObj = live[j];

			if (match[i].selector === handleObj.selector) {
				elem = match[i].elem;
				related = null;

				// Those two events require additional checking
				if (handleObj.preType === "mouseenter" || handleObj.preType === "mouseleave") {
					related = jQuery(event.relatedTarget).closest(handleObj.selector)[0];
				}

				if (!related || related !== elem) {
					elems.push({ elem: elem, handleObj: handleObj });
				}
			}
		}
	}

	for (i = 0, l = elems.length; i < l; i++) {
		match = elems[i];
		event.currentTarget = match.elem;
		event.data = match.handleObj.data;
		event.handleObj = match.handleObj;

		if (match.handleObj.origHandler.apply(match.elem, args) === false) {
			stop = false;
			break;
		}
	}

	return stop;
}

function liveConvert(type, selector) {
	return "live." + (type && type !== "*" ? type + "." : "") + selector.replace(/\./g, "`").replace(/ /g, "&");
}

jQuery.each(("blur focus focusin focusout load resize scroll unload click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup error").split(" "), function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(fn) {
		return fn ? this.bind(name, fn) : this.trigger(name);
	};

	if (jQuery.attrFn) {
		jQuery.attrFn[name] = true;
	}
});

// Prevent memory leaks in IE
// Window isn't included so as not to unbind existing unload events
// More info:
// - http://isaacschlueter.com/2006/10/msie-memory-leaks/
if (window.attachEvent && !window.addEventListener) {
	window.attachEvent("onunload", function() {
		for (var id in jQuery.cache) {
			if (jQuery.cache[id].handle) {
				// Try/Catch is to handle iframes being unloaded, see #4280
				try {
					jQuery.event.remove(jQuery.cache[id].handle.elem);
				} catch(e) {}
			}
		}
	});
}
/*!
 * Sizzle CSS Selector Engine - v1.0
 * Copyright 2009, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 * More information: http://sizzlejs.com/
 */
(function(){

var chunker = /((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^[\]]*\]|['"][^'"]*['"]|[^[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,
	done = 0,
	toString = Object.prototype.toString,
	hasDuplicate = false,
	baseHasDuplicate = true;

// Here we check if the JavaScript engine is using some sort of
// optimization where it does not always call our comparision
// function. If that is the case, discard the hasDuplicate value.
// Thus far that includes Google Chrome.
[0, 0].sort(function(){
	baseHasDuplicate = false;
	return 0;
});

var Sizzle = function(selector, context, results, seed) {
	results = results || [];
	var origContext = context = context || document;

	if (context.nodeType !== 1 && context.nodeType !== 9) {
		return [];
	}
	
	if (!selector || typeof selector !== "string") {
		return results;
	}

	var parts = [], m, set, checkSet, extra, prune = true, contextXML = isXML(context),
		soFar = selector;
	
	// Reset the position of the chunker regexp (start from head)
	while ((chunker.exec(""), m = chunker.exec(soFar)) !== null) {
		soFar = m[3];
		
		parts.push(m[1]);
		
		if (m[2]) {
			extra = m[3];
			break;
		}
	}

	if (parts.length > 1 && origPOS.exec(selector)) {
		if (parts.length === 2 && Expr.relative[parts[0]]) {
			set = posProcess(parts[0] + parts[1], context);
		} else {
			set = Expr.relative[parts[0]] ?
				[context] :
				Sizzle(parts.shift(), context);

			while (parts.length) {
				selector = parts.shift();

				if (Expr.relative[selector]) {
					selector += parts.shift();
				}
				
				set = posProcess(selector, set);
			}
		}
	} else {
		// Take a shortcut and set the context if the root selector is an ID
		// (but not if it'll be faster if the inner selector is an ID)
		if (!seed && parts.length > 1 && context.nodeType === 9 && !contextXML &&
				Expr.match.ID.test(parts[0]) && !Expr.match.ID.test(parts[parts.length - 1])) {
			var ret = Sizzle.find(parts.shift(), context, contextXML);
			context = ret.expr ? Sizzle.filter(ret.expr, ret.set)[0] : ret.set[0];
		}

		if (context) {
			var ret = seed ?
				{ expr: parts.pop(), set: makeArray(seed) } :
				Sizzle.find(parts.pop(), parts.length === 1 && (parts[0] === "~" || parts[0] === "+") && context.parentNode ? context.parentNode : context, contextXML);
			set = ret.expr ? Sizzle.filter(ret.expr, ret.set) : ret.set;

			if (parts.length > 0) {
				checkSet = makeArray(set);
			} else {
				prune = false;
			}

			while (parts.length) {
				var cur = parts.pop(), pop = cur;

				if (!Expr.relative[cur]) {
					cur = "";
				} else {
					pop = parts.pop();
				}

				if (pop == null) {
					pop = context;
				}

				Expr.relative[cur](checkSet, pop, contextXML);
			}
		} else {
			checkSet = parts = [];
		}
	}

	if (!checkSet) {
		checkSet = set;
	}

	if (!checkSet) {
		Sizzle.error(cur || selector);
	}

	if (toString.call(checkSet) === "[object Array]") {
		if (!prune) {
			results.push.apply(results, checkSet);
		} else if (context && context.nodeType === 1) {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && (checkSet[i] === true || checkSet[i].nodeType === 1 && contains(context, checkSet[i]))) {
					results.push(set[i]);
				}
			}
		} else {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && checkSet[i].nodeType === 1) {
					results.push(set[i]);
				}
			}
		}
	} else {
		makeArray(checkSet, results);
	}

	if (extra) {
		Sizzle(extra, origContext, results, seed);
		Sizzle.uniqueSort(results);
	}

	return results;
};

Sizzle.uniqueSort = function(results){
	if (sortOrder) {
		hasDuplicate = baseHasDuplicate;
		results.sort(sortOrder);

		if (hasDuplicate) {
			for (var i = 1; i < results.length; i++) {
				if (results[i] === results[i-1]) {
					results.splice(i--, 1);
				}
			}
		}
	}

	return results;
};

Sizzle.matches = function(expr, set){
	return Sizzle(expr, null, null, set);
};

Sizzle.find = function(expr, context, isXML){
	var set, match;

	if (!expr) {
		return [];
	}

	for (var i = 0, l = Expr.order.length; i < l; i++) {
		var type = Expr.order[i], match;
		
		if ((match = Expr.leftMatch[type].exec(expr))) {
			var left = match[1];
			match.splice(1,1);

			if (left.substr(left.length - 1) !== "\\") {
				match[1] = (match[1] || "").replace(/\\/g, "");
				set = Expr.find[type](match, context, isXML);
				if (set != null) {
					expr = expr.replace(Expr.match[type], "");
					break;
				}
			}
		}
	}

	if (!set) {
		set = context.getElementsByTagName("*");
	}

	return {set: set, expr: expr};
};

Sizzle.filter = function(expr, set, inplace, not){
	var old = expr, result = [], curLoop = set, match, anyFound,
		isXMLFilter = set && set[0] && isXML(set[0]);

	while (expr && set.length) {
		for (var type in Expr.filter) {
			if ((match = Expr.leftMatch[type].exec(expr)) != null && match[2]) {
				var filter = Expr.filter[type], found, item, left = match[1];
				anyFound = false;

				match.splice(1,1);

				if (left.substr(left.length - 1) === "\\") {
					continue;
				}

				if (curLoop === result) {
					result = [];
				}

				if (Expr.preFilter[type]) {
					match = Expr.preFilter[type](match, curLoop, inplace, result, not, isXMLFilter);

					if (!match) {
						anyFound = found = true;
					} else if (match === true) {
						continue;
					}
				}

				if (match) {
					for (var i = 0; (item = curLoop[i]) != null; i++) {
						if (item) {
							found = filter(item, match, i, curLoop);
							var pass = not ^ !!found;

							if (inplace && found != null) {
								if (pass) {
									anyFound = true;
								} else {
									curLoop[i] = false;
								}
							} else if (pass) {
								result.push(item);
								anyFound = true;
							}
						}
					}
				}

				if (found !== undefined) {
					if (!inplace) {
						curLoop = result;
					}

					expr = expr.replace(Expr.match[type], "");

					if (!anyFound) {
						return [];
					}

					break;
				}
			}
		}

		// Improper expression
		if (expr === old) {
			if (anyFound == null) {
				Sizzle.error(expr);
			} else {
				break;
			}
		}

		old = expr;
	}

	return curLoop;
};

Sizzle.error = function(msg) {
	throw "Syntax error, unrecognized expression: " + msg;
};

var Expr = Sizzle.selectors = {
	order: ["ID", "NAME", "TAG"],
	match: {
		ID: /#((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		CLASS: /\.((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		NAME: /\[name=['"]*((?:[\w\u00c0-\uFFFF-]|\\.)+)['"]*\]/,
		ATTR: /\[\s*((?:[\w\u00c0-\uFFFF-]|\\.)+)\s*(?:(\S?=)\s*(['"]*)(.*?)\3|)\s*\]/,
		TAG: /^((?:[\w\u00c0-\uFFFF*-]|\\.)+)/,
		CHILD: /:(only|nth|last|first)-child(?:\((even|odd|[\dn+-]*)\))?/,
		POS: /:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^-]|$)/,
		PSEUDO: /:((?:[\w\u00c0-\uFFFF-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/
	},
	leftMatch: {},
	attrMap: {
		"class": "className",
		"for": "htmlFor"
	},
	attrHandle: {
		href: function(elem){
			return elem.getAttribute("href");
		}
	},
	relative: {
		"+": function(checkSet, part){
			var isPartStr = typeof part === "string",
				isTag = isPartStr && !/\W/.test(part),
				isPartStrNotTag = isPartStr && !isTag;

			if (isTag) {
				part = part.toLowerCase();
			}

			for (var i = 0, l = checkSet.length, elem; i < l; i++) {
				if ((elem = checkSet[i])) {
					while ((elem = elem.previousSibling) && elem.nodeType !== 1) {}

					checkSet[i] = isPartStrNotTag || elem && elem.nodeName.toLowerCase() === part ?
						elem || false :
						elem === part;
				}
			}

			if (isPartStrNotTag) {
				Sizzle.filter(part, checkSet, true);
			}
		},
		">": function(checkSet, part){
			var isPartStr = typeof part === "string";

			if (isPartStr && !/\W/.test(part)) {
				part = part.toLowerCase();

				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						var parent = elem.parentNode;
						checkSet[i] = parent.nodeName.toLowerCase() === part ? parent : false;
					}
				}
			} else {
				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						checkSet[i] = isPartStr ?
							elem.parentNode :
							elem.parentNode === part;
					}
				}

				if (isPartStr) {
					Sizzle.filter(part, checkSet, true);
				}
			}
		},
		"": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("parentNode", part, doneName, checkSet, nodeCheck, isXML);
		},
		"~": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("previousSibling", part, doneName, checkSet, nodeCheck, isXML);
		}
	},
	find: {
		ID: function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? [m] : [];
			}
		},
		NAME: function(match, context){
			if (typeof context.getElementsByName !== "undefined") {
				var ret = [], results = context.getElementsByName(match[1]);

				for (var i = 0, l = results.length; i < l; i++) {
					if (results[i].getAttribute("name") === match[1]) {
						ret.push(results[i]);
					}
				}

				return ret.length === 0 ? null : ret;
			}
		},
		TAG: function(match, context){
			return context.getElementsByTagName(match[1]);
		}
	},
	preFilter: {
		CLASS: function(match, curLoop, inplace, result, not, isXML){
			match = " " + match[1].replace(/\\/g, "") + " ";

			if (isXML) {
				return match;
			}

			for (var i = 0, elem; (elem = curLoop[i]) != null; i++) {
				if (elem) {
					if (not ^ (elem.className && (" " + elem.className + " ").replace(/[\t\n]/g, " ").indexOf(match) >= 0)) {
						if (!inplace) {
							result.push(elem);
						}
					} else if (inplace) {
						curLoop[i] = false;
					}
				}
			}

			return false;
		},
		ID: function(match){
			return match[1].replace(/\\/g, "");
		},
		TAG: function(match, curLoop){
			return match[1].toLowerCase();
		},
		CHILD: function(match){
			if (match[1] === "nth") {
				// parse equations like 'even', 'odd', '5', '2n', '3n+2', '4n-1', '-n+6'
				var test = /(-?)(\d*)n((?:\+|-)?\d*)/.exec(
					match[2] === "even" && "2n" || match[2] === "odd" && "2n+1" ||
					!/\D/.test(match[2]) && "0n+" + match[2] || match[2]);

				// calculate the numbers (first)n+(last) including if they are negative
				match[2] = (test[1] + (test[2] || 1)) - 0;
				match[3] = test[3] - 0;
			}

			// TODO: Move to normal caching system
			match[0] = done++;

			return match;
		},
		ATTR: function(match, curLoop, inplace, result, not, isXML){
			var name = match[1].replace(/\\/g, "");
			
			if (!isXML && Expr.attrMap[name]) {
				match[1] = Expr.attrMap[name];
			}

			if (match[2] === "~=") {
				match[4] = " " + match[4] + " ";
			}

			return match;
		},
		PSEUDO: function(match, curLoop, inplace, result, not){
			if (match[1] === "not") {
				// If we're dealing with a complex expression, or a simple one
				if ((chunker.exec(match[3]) || "").length > 1 || /^\w/.test(match[3])) {
					match[3] = Sizzle(match[3], null, null, curLoop);
				} else {
					var ret = Sizzle.filter(match[3], curLoop, inplace, true ^ not);
					if (!inplace) {
						result.push.apply(result, ret);
					}
					return false;
				}
			} else if (Expr.match.POS.test(match[0]) || Expr.match.CHILD.test(match[0])) {
				return true;
			}
			
			return match;
		},
		POS: function(match){
			match.unshift(true);
			return match;
		}
	},
	filters: {
		enabled: function(elem){
			return elem.disabled === false && elem.type !== "hidden";
		},
		disabled: function(elem){
			return elem.disabled === true;
		},
		checked: function(elem){
			return elem.checked === true;
		},
		selected: function(elem){
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			elem.parentNode.selectedIndex;
			return elem.selected === true;
		},
		parent: function(elem){
			return !!elem.firstChild;
		},
		empty: function(elem){
			return !elem.firstChild;
		},
		has: function(elem, i, match){
			return !!Sizzle(match[3], elem).length;
		},
		header: function(elem){
			return /h\d/i.test(elem.nodeName);
		},
		text: function(elem){
			return "text" === elem.type;
		},
		radio: function(elem){
			return "radio" === elem.type;
		},
		checkbox: function(elem){
			return "checkbox" === elem.type;
		},
		file: function(elem){
			return "file" === elem.type;
		},
		password: function(elem){
			return "password" === elem.type;
		},
		submit: function(elem){
			return "submit" === elem.type;
		},
		image: function(elem){
			return "image" === elem.type;
		},
		reset: function(elem){
			return "reset" === elem.type;
		},
		button: function(elem){
			return "button" === elem.type || elem.nodeName.toLowerCase() === "button";
		},
		input: function(elem){
			return /input|select|textarea|button/i.test(elem.nodeName);
		}
	},
	setFilters: {
		first: function(elem, i){
			return i === 0;
		},
		last: function(elem, i, match, array){
			return i === array.length - 1;
		},
		even: function(elem, i){
			return i % 2 === 0;
		},
		odd: function(elem, i){
			return i % 2 === 1;
		},
		lt: function(elem, i, match){
			return i < match[3] - 0;
		},
		gt: function(elem, i, match){
			return i > match[3] - 0;
		},
		nth: function(elem, i, match){
			return match[3] - 0 === i;
		},
		eq: function(elem, i, match){
			return match[3] - 0 === i;
		}
	},
	filter: {
		PSEUDO: function(elem, match, i, array){
			var name = match[1], filter = Expr.filters[name];

			if (filter) {
				return filter(elem, i, match, array);
			} else if (name === "contains") {
				return (elem.textContent || elem.innerText || getText([elem]) || "").indexOf(match[3]) >= 0;
			} else if (name === "not") {
				var not = match[3];

				for (var i = 0, l = not.length; i < l; i++) {
					if (not[i] === elem) {
						return false;
					}
				}

				return true;
			} else {
				Sizzle.error("Syntax error, unrecognized expression: " + name);
			}
		},
		CHILD: function(elem, match){
			var type = match[1], node = elem;
			switch (type) {
				case 'only':
				case 'first':
					while ((node = node.previousSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					if (type === "first") {
						return true;
					}
					node = elem;
				case 'last':
					while ((node = node.nextSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					return true;
				case 'nth':
					var first = match[2], last = match[3];

					if (first === 1 && last === 0) {
						return true;
					}
					
					var doneName = match[0],
						parent = elem.parentNode;
	
					if (parent && (parent.sizcache !== doneName || !elem.nodeIndex)) {
						var count = 0;
						for (node = parent.firstChild; node; node = node.nextSibling) {
							if (node.nodeType === 1) {
								node.nodeIndex = ++count;
							}
						}
						parent.sizcache = doneName;
					}
					
					var diff = elem.nodeIndex - last;
					if (first === 0) {
						return diff === 0;
					} else {
						return (diff % first === 0 && diff / first >= 0);
					}
			}
		},
		ID: function(elem, match){
			return elem.nodeType === 1 && elem.getAttribute("id") === match;
		},
		TAG: function(elem, match){
			return (match === "*" && elem.nodeType === 1) || elem.nodeName.toLowerCase() === match;
		},
		CLASS: function(elem, match){
			return (" " + (elem.className || elem.getAttribute("class")) + " ")
				.indexOf(match) > -1;
		},
		ATTR: function(elem, match){
			var name = match[1],
				result = Expr.attrHandle[name] ?
					Expr.attrHandle[name](elem) :
					elem[name] != null ?
						elem[name] :
						elem.getAttribute(name),
				value = result + "",
				type = match[2],
				check = match[4];

			return result == null ?
				type === "!=" :
				type === "=" ?
				value === check :
				type === "*=" ?
				value.indexOf(check) >= 0 :
				type === "~=" ?
				(" " + value + " ").indexOf(check) >= 0 :
				!check ?
				value && result !== false :
				type === "!=" ?
				value !== check :
				type === "^=" ?
				value.indexOf(check) === 0 :
				type === "$=" ?
				value.substr(value.length - check.length) === check :
				type === "|=" ?
				value === check || value.substr(0, check.length + 1) === check + "-" :
				false;
		},
		POS: function(elem, match, i, array){
			var name = match[2], filter = Expr.setFilters[name];

			if (filter) {
				return filter(elem, i, match, array);
			}
		}
	}
};

var origPOS = Expr.match.POS;

for (var type in Expr.match) {
	Expr.match[type] = new RegExp(Expr.match[type].source + /(?![^\[]*\])(?![^\(]*\))/.source);
	Expr.leftMatch[type] = new RegExp(/(^(?:.|\r|\n)*?)/.source + Expr.match[type].source.replace(/\\(\d+)/g, function(all, num){
		return "\\" + (num - 0 + 1);
	}));
}

var makeArray = function(array, results) {
	array = Array.prototype.slice.call(array, 0);

	if (results) {
		results.push.apply(results, array);
		return results;
	}
	
	return array;
};

// Perform a simple check to determine if the browser is capable of
// converting a NodeList to an array using builtin methods.
// Also verifies that the returned array holds DOM nodes
// (which is not the case in the Blackberry browser)
try {
	Array.prototype.slice.call(document.documentElement.childNodes, 0)[0].nodeType;

// Provide a fallback method if it does not work
} catch(e){
	makeArray = function(array, results) {
		var ret = results || [];

		if (toString.call(array) === "[object Array]") {
			Array.prototype.push.apply(ret, array);
		} else {
			if (typeof array.length === "number") {
				for (var i = 0, l = array.length; i < l; i++) {
					ret.push(array[i]);
				}
			} else {
				for (var i = 0; array[i]; i++) {
					ret.push(array[i]);
				}
			}
		}

		return ret;
	};
}

var sortOrder;

if (document.documentElement.compareDocumentPosition) {
	sortOrder = function(a, b) {
		if (!a.compareDocumentPosition || !b.compareDocumentPosition) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.compareDocumentPosition ? -1 : 1;
		}

		var ret = a.compareDocumentPosition(b) & 4 ? -1 : a === b ? 0 : 1;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if ("sourceIndex" in document.documentElement) {
	sortOrder = function(a, b) {
		if (!a.sourceIndex || !b.sourceIndex) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.sourceIndex ? -1 : 1;
		}

		var ret = a.sourceIndex - b.sourceIndex;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if (document.createRange) {
	sortOrder = function(a, b) {
		if (!a.ownerDocument || !b.ownerDocument) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.ownerDocument ? -1 : 1;
		}

		var aRange = a.ownerDocument.createRange(), bRange = b.ownerDocument.createRange();
		aRange.setStart(a, 0);
		aRange.setEnd(a, 0);
		bRange.setStart(b, 0);
		bRange.setEnd(b, 0);
		var ret = aRange.compareBoundaryPoints(Range.START_TO_END, bRange);
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
}

// Utility function for retreiving the text value of an array of DOM nodes
function getText(elems) {
	var ret = "", elem;

	for (var i = 0; elems[i]; i++) {
		elem = elems[i];

		// Get the text from text nodes and CDATA nodes
		if (elem.nodeType === 3 || elem.nodeType === 4) {
			ret += elem.nodeValue;

		// Traverse everything else, except comment nodes
		} else if (elem.nodeType !== 8) {
			ret += getText(elem.childNodes);
		}
	}

	return ret;
}

// Check to see if the browser returns elements by name when
// querying by getElementById (and provide a workaround)
(function(){
	// We're going to inject a fake input element with a specified name
	var form = document.createElement("div"),
		id = "script" + (new Date).getTime();
	form.innerHTML = "";

	// Inject it into the root element, check its status, and remove it quickly
	var root = document.documentElement;
	root.insertBefore(form, root.firstChild);

	// The workaround has to do additional checks after a getElementById
	// Which slows things down for other browsers (hence the branching)
	if (document.getElementById(id)) {
		Expr.find.ID = function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? m.id === match[1] || typeof m.getAttributeNode !== "undefined" && m.getAttributeNode("id").nodeValue === match[1] ? [m] : undefined : [];
			}
		};

		Expr.filter.ID = function(elem, match){
			var node = typeof elem.getAttributeNode !== "undefined" && elem.getAttributeNode("id");
			return elem.nodeType === 1 && node && node.nodeValue === match;
		};
	}

	root.removeChild(form);
	root = form = null; // release memory in IE
})();

(function(){
	// Check to see if the browser returns only elements
	// when doing getElementsByTagName("*")

	// Create a fake element
	var div = document.createElement("div");
	div.appendChild(document.createComment(""));

	// Make sure no comments are found
	if (div.getElementsByTagName("*").length > 0) {
		Expr.find.TAG = function(match, context){
			var results = context.getElementsByTagName(match[1]);

			// Filter out possible comments
			if (match[1] === "*") {
				var tmp = [];

				for (var i = 0; results[i]; i++) {
					if (results[i].nodeType === 1) {
						tmp.push(results[i]);
					}
				}

				results = tmp;
			}

			return results;
		};
	}

	// Check to see if an attribute returns normalized href attributes
	div.innerHTML = "";
	if (div.firstChild && typeof div.firstChild.getAttribute !== "undefined" &&
			div.firstChild.getAttribute("href") !== "#") {
		Expr.attrHandle.href = function(elem){
			return elem.getAttribute("href", 2);
		};
	}

	div = null; // release memory in IE
})();

if (document.querySelectorAll) {
	(function(){
		var oldSizzle = Sizzle, div = document.createElement("div");
		div.innerHTML = "<p class='TEST'></p>";

		// Safari can't handle uppercase or unicode characters when
		// in quirks mode.
		if (div.querySelectorAll && div.querySelectorAll(".TEST").length === 0) {
			return;
		}
	
		Sizzle = function(query, context, extra, seed){
			context = context || document;

			// Only use querySelectorAll on non-XML documents
			// (ID selectors don't work in non-HTML documents)
			if (!seed && context.nodeType === 9 && !isXML(context)) {
				try {
					return makeArray(context.querySelectorAll(query), extra);
				} catch(e){}
			}
		
			return oldSizzle(query, context, extra, seed);
		};

		for (var prop in oldSizzle) {
			Sizzle[prop] = oldSizzle[prop];
		}

		div = null; // release memory in IE
	})();
}

(function(){
	var div = document.createElement("div");

	div.innerHTML = "<div class='test e'></div><div class='test'></div>";

	// Opera can't find a second classname (in 9.6)
	// Also, make sure that getElementsByClassName actually exists
	if (!div.getElementsByClassName || div.getElementsByClassName("e").length === 0) {
		return;
	}

	// Safari caches class attributes, doesn't catch changes (in 3.2)
	div.lastChild.className = "e";

	if (div.getElementsByClassName("e").length === 1) {
		return;
	}
	
	Expr.order.splice(1, 0, "CLASS");
	Expr.find.CLASS = function(match, context, isXML) {
		if (typeof context.getElementsByClassName !== "undefined" && !isXML) {
			return context.getElementsByClassName(match[1]);
		}
	};

	div = null; // release memory in IE
})();

function dirNodeCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1 && !isXML){
					elem.sizcache = doneName;
					elem.sizset = i;
				}

				if (elem.nodeName.toLowerCase() === cur) {
					match = elem;
					break;
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

function dirCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1) {
					if (!isXML) {
						elem.sizcache = doneName;
						elem.sizset = i;
					}
					if (typeof cur !== "string") {
						if (elem === cur) {
							match = true;
							break;
						}

					} else if (Sizzle.filter(cur, [elem]).length > 0) {
						match = elem;
						break;
					}
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

var contains = document.compareDocumentPosition ? function(a, b){
	return !!(a.compareDocumentPosition(b) & 16);
} : function(a, b){
	return a !== b && (a.contains ? a.contains(b) : true);
};

var isXML = function(elem){
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = (elem ? elem.ownerDocument || elem : 0).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

var posProcess = function(selector, context){
	var tmpSet = [], later = "", match,
		root = context.nodeType ? [context] : context;

	// Position selectors must be done after the filter
	// And so must :not(positional) so we move all PSEUDOs to the end
	while ((match = Expr.match.PSEUDO.exec(selector))) {
		later += match[0];
		selector = selector.replace(Expr.match.PSEUDO, "");
	}

	selector = Expr.relative[selector] ? selector + "*" : selector;

	for (var i = 0, l = root.length; i < l; i++) {
		Sizzle(selector, root[i], tmpSet);
	}

	return Sizzle.filter(later, tmpSet);
};

// EXPOSE
jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;
jQuery.expr[":"] = jQuery.expr.filters;
jQuery.unique = Sizzle.uniqueSort;
jQuery.text = getText;
jQuery.isXMLDoc = isXML;
jQuery.contains = contains;

return;

window.Sizzle = Sizzle;

})();
var runtil = /Until$/,
	rparentsprev = /^(?:parents|prevUntil|prevAll)/,
	// Note: This RegExp should be improved, or likely pulled from Sizzle
	rmultiselector = /,/,
	slice = Array.prototype.slice;

// Implement the identical functionality for filter and not
var winnow = function(elements, qualifier, keep) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) === keep;
		});

	} else if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem, i) {
			return (elem === qualifier) === keep;
		});

	} else if (typeof qualifier === "string") {
		var filtered = jQuery.grep(elements, function(elem) {
			return elem.nodeType === 1;
		});

		if (isSimple.test(qualifier)) {
			return jQuery.filter(qualifier, filtered, !keep);
		} else {
			qualifier = jQuery.filter(qualifier, filtered);
		}
	}

	return jQuery.grep(elements, function(elem, i) {
		return (jQuery.inArray(elem, qualifier) >= 0) === keep;
	});
};

jQuery.fn.extend({
	find: function(selector) {
		var ret = this.pushStack("", "find", selector), length = 0;

		for (var i = 0, l = this.length; i < l; i++) {
			length = ret.length;
			jQuery.find(selector, this[i], ret);

			if (i > 0) {
				// Make sure that the results are unique
				for (var n = length; n < ret.length; n++) {
					for (var r = 0; r < length; r++) {
						if (ret[r] === ret[n]) {
							ret.splice(n--, 1);
							break;
						}
					}
				}
			}
		}

		return ret;
	},

	has: function(target) {
		var targets = jQuery(target);
		return this.filter(function() {
			for (var i = 0, l = targets.length; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	not: function(selector) {
		return this.pushStack(winnow(this, selector, false), "not", selector);
	},

	filter: function(selector) {
		return this.pushStack(winnow(this, selector, true), "filter", selector);
	},
	
	is: function(selector) {
		return !!selector && jQuery.filter(selector, this).length > 0;
	},

	closest: function(selectors, context) {
		if (jQuery.isArray(selectors)) {
			var ret = [], cur = this[0], match, matches = {}, selector;

			if (cur && selectors.length) {
				for (var i = 0, l = selectors.length; i < l; i++) {
					selector = selectors[i];

					if (!matches[selector]) {
						matches[selector] = jQuery.expr.match.POS.test(selector) ?
							jQuery(selector, context || this.context) :
							selector;
					}
				}

				while (cur && cur.ownerDocument && cur !== context) {
					for (selector in matches) {
						match = matches[selector];

						if (match.jquery ? match.index(cur) > -1 : jQuery(cur).is(match)) {
							ret.push({ selector: selector, elem: cur });
							delete matches[selector];
						}
					}
					cur = cur.parentNode;
				}
			}

			return ret;
		}

		var pos = jQuery.expr.match.POS.test(selectors) ?
			jQuery(selectors, context || this.context) : null;

		return this.map(function(i, cur) {
			while (cur && cur.ownerDocument && cur !== context) {
				if (pos ? pos.index(cur) > -1 : jQuery(cur).is(selectors)) {
					return cur;
				}
				cur = cur.parentNode;
			}
			return null;
		});
	},
	
	// Determine the position of an element within
	// the matched set of elements
	index: function(elem) {
		if (!elem || typeof elem === "string") {
			return jQuery.inArray(this[0],
				// If it receives a string, the selector is used
				// If it receives nothing, the siblings are used
				elem ? jQuery(elem) : this.parent().children());
		}
		// Locate the position of the desired element
		return jQuery.inArray(
			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem, this);
	},

	add: function(selector, context) {
		var set = typeof selector === "string" ?
				jQuery(selector, context || this.context) :
				jQuery.makeArray(selector),
			all = jQuery.merge(this.get(), set);

		return this.pushStack(isDisconnected(set[0]) || isDisconnected(all[0]) ?
			all :
			jQuery.unique(all));
	},

	andSelf: function() {
		return this.add(this.prevObject);
	}
});

// A painfully simple check to see if an element is disconnected
// from a document (should be improved, where feasible).
function isDisconnected(node) {
	return !node || !node.parentNode || node.parentNode.nodeType === 11;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return jQuery.dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return jQuery.dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return jQuery.nth(elem, 2, "nextSibling");
	},
	prev: function(elem) {
		return jQuery.nth(elem, 2, "previousSibling");
	},
	nextAll: function(elem) {
		return jQuery.dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return jQuery.dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return jQuery.dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return jQuery.dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return jQuery.sibling(elem.parentNode.firstChild, elem);
	},
	children: function(elem) {
		return jQuery.sibling(elem.firstChild);
	},
	contents: function(elem) {
		return jQuery.nodeName(elem, "iframe") ?
			elem.contentDocument || elem.contentWindow.document :
			jQuery.makeArray(elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var ret = jQuery.map(this, fn, until);
		
		if (!runtil.test(name)) {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			ret = jQuery.filter(selector, ret);
		}

		ret = this.length > 1 ? jQuery.unique(ret) : ret;

		if ((this.length > 1 || rmultiselector.test(selector)) && rparentsprev.test(name)) {
			ret = ret.reverse();
		}

		return this.pushStack(ret, name, slice.call(arguments).join(","));
	};
});

jQuery.extend({
	filter: function(expr, elems, not) {
		if (not) {
			expr = ":not(" + expr + ")";
		}

		return jQuery.find.matches(expr, elems);
	},
	
	dir: function(elem, dir, until) {
		var matched = [], cur = elem[dir];
		while (cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery(cur).is(until))) {
			if (cur.nodeType === 1) {
				matched.push(cur);
			}
			cur = cur[dir];
		}
		return matched;
	},

	nth: function(cur, result, dir, elem) {
		result = result || 1;
		var num = 0;

		for (; cur; cur = cur[dir]) {
			if (cur.nodeType === 1 && ++num === result) {
				break;
			}
		}

		return cur;
	},

	sibling: function(n, elem) {
		var r = [];

		for (; n; n = n.nextSibling) {
			if (n.nodeType === 1 && n !== elem) {
				r.push(n);
			}
		}

		return r;
	}
});
var rinlinejQuery = / jQuery\d+="(?:\d+|null)"/g,
	rleadingWhitespace = /^\s+/,
	rxhtmlTag = /(<([\w:]+)[^>]*?)\/>/g,
	rselfClosing = /^(?:area|br|col|embed|hr|img|input|link|meta|param)$/i,
	rtagName = /<([\w:]+)/,
	rtbody = /<tbody/i,
	rhtml = /<|&#?\w+;/,
	rnocache = /<script|<object|<embed|<option|<style/i,
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i, // checked="checked" or checked (html5)
	fcloseTag = function(all, front, tag) {
		return rselfClosing.test(tag) ?
			all :
			front + "></" + tag + ">";
	},
	wrapMap = {
		option: [1, "<select multiple='multiple'>", "</select>"],
		legend: [1, "<fieldset>", "</fieldset>"],
		thead: [1, "<table>", "</table>"],
		tr: [2, "<table><tbody>", "</tbody></table>"],
		td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],
		col: [2, "<table><tbody></tbody><colgroup>", "</colgroup></table>"],
		area: [1, "<map>", "</map>"],
		_default: [0, "", ""]
	};

wrapMap.optgroup = wrapMap.option;
wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

// IE can't serialize <link> and <script> tags normally
if (!jQuery.support.htmlSerialize) {
	wrapMap._default = [1, "div<div>", "</div>"];
}

jQuery.fn.extend({
	text: function(text) {
		if (jQuery.isFunction(text)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.text(text.call(this, i, self.text()));
			});
		}

		if (typeof text !== "object" && text !== undefined) {
			return this.empty().append((this[0] && this[0].ownerDocument || document).createTextNode(text));
		}

		return jQuery.text(this);
	},

	wrapAll: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapAll(html.call(this, i));
			});
		}

		if (this[0]) {
			// The elements to wrap the target around
			var wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstChild && elem.firstChild.nodeType === 1) {
					elem = elem.firstChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this), contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		return this.each(function() {
			jQuery(this).wrapAll(html);
		});
	},

	unwrap: function() {
		return this.parent().each(function() {
			if (!jQuery.nodeName(this, "body")) {
				jQuery(this).replaceWith(this.childNodes);
			}
		}).end();
	},

	append: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.insertBefore(elem, this.firstChild);
			}
		});
	},

	before: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this);
			});
		} else if (arguments.length) {
			var set = jQuery(arguments[0]);
			set.push.apply(set, this.toArray());
			return this.pushStack(set, "before", arguments);
		}
	},

	after: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			});
		} else if (arguments.length) {
			var set = this.pushStack(this, "after", arguments);
			set.push.apply(set, jQuery(arguments[0]).toArray());
			return set;
		}
	},
	
	// keepData is for internal use only--do not document
	remove: function(selector, keepData) {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			if (!selector || jQuery.filter(selector, [elem]).length) {
				if (!keepData && elem.nodeType === 1) {
					jQuery.cleanData(elem.getElementsByTagName("*"));
					jQuery.cleanData([elem]);
				}

				if (elem.parentNode) {
					 elem.parentNode.removeChild(elem);
				}
			}
		}
		
		return this;
	},

	empty: function() {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			// Remove element nodes and prevent memory leaks
			if (elem.nodeType === 1) {
				jQuery.cleanData(elem.getElementsByTagName("*"));
			}

			// Remove any remaining nodes
			while (elem.firstChild) {
				elem.removeChild(elem.firstChild);
			}
		}
		
		return this;
	},

	clone: function(events) {
		// Do the clone
		var ret = this.map(function() {
			if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
				// IE copies events bound via attachEvent when
				// using cloneNode. Calling detachEvent on the
				// clone will also remove the events from the orignal
				// In order to get around this, we use innerHTML.
				// Unfortunately, this means some modifications to
				// attributes in IE that are actually only stored
				// as properties will not be copied (such as the
				// the name attribute on an input).
				var html = this.outerHTML, ownerDocument = this.ownerDocument;
				if (!html) {
					var div = ownerDocument.createElement("div");
					div.appendChild(this.cloneNode(true));
					html = div.innerHTML;
				}

				return jQuery.clean([html.replace(rinlinejQuery, "")
					// Handle the case in IE 8 where action=/test/> self-closes a tag
					.replace(/=([^="'>\s]+\/)>/g, '="$1">')
					.replace(rleadingWhitespace, "")], ownerDocument)[0];
			} else {
				return this.cloneNode(true);
			}
		});

		// Copy the events from the original to the clone
		if (events === true) {
			cloneCopyEvent(this, ret);
			cloneCopyEvent(this.find("*"), ret.find("*"));
		}

		// Return the cloned set
		return ret;
	},

	html: function(value) {
		if (value === undefined) {
			return this[0] && this[0].nodeType === 1 ?
				this[0].innerHTML.replace(rinlinejQuery, "") :
				null;

		// See if we can take a shortcut and just use innerHTML
		} else if (typeof value === "string" && !rnocache.test(value) &&
			(jQuery.support.leadingWhitespace || !rleadingWhitespace.test(value)) &&
			!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

			value = value.replace(rxhtmlTag, fcloseTag);

			try {
				for (var i = 0, l = this.length; i < l; i++) {
					// Remove element nodes and prevent memory leaks
					if (this[i].nodeType === 1) {
						jQuery.cleanData(this[i].getElementsByTagName("*"));
						this[i].innerHTML = value;
					}
				}

			// If using innerHTML throws an exception, use the fallback method
			} catch(e) {
				this.empty().append(value);
			}

		} else if (jQuery.isFunction(value)) {
			this.each(function(i){
				var self = jQuery(this), old = self.html();
				self.empty().append(function(){
					return value.call(this, i, old);
				});
			});

		} else {
			this.empty().append(value);
		}

		return this;
	},

	replaceWith: function(value) {
		if (this[0] && this[0].parentNode) {
			// Make sure that the elements are removed from the DOM before they are inserted
			// this can help fix replacing a parent with child elements
			if (jQuery.isFunction(value)) {
				return this.each(function(i) {
					var self = jQuery(this), old = self.html();
					self.replaceWith(value.call(this, i, old));
				});
			}

			if (typeof value !== "string") {
				value = jQuery(value).detach();
			}

			return this.each(function() {
				var next = this.nextSibling, parent = this.parentNode;

				jQuery(this).remove();

				if (next) {
					jQuery(next).before(value);
				} else {
					jQuery(parent).append(value);
				}
			});
		} else {
			return this.pushStack(jQuery(jQuery.isFunction(value) ? value() : value), "replaceWith", value);
		}
	},

	detach: function(selector) {
		return this.remove(selector, true);
	},

	domManip: function(args, table, callback) {
		var results, first, value = args[0], scripts = [], fragment, parent;

		// We can't cloneNode fragments that contain checked, in WebKit
		if (!jQuery.support.checkClone && arguments.length === 3 && typeof value === "string" && rchecked.test(value)) {
			return this.each(function() {
				jQuery(this).domManip(args, table, callback, true);
			});
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				args[0] = value.call(this, i, table ? self.html() : undefined);
				self.domManip(args, table, callback);
			});
		}

		if (this[0]) {
			parent = value && value.parentNode;

			// If we're in a fragment, just use that instead of building a new one
			if (jQuery.support.parentNode && parent && parent.nodeType === 11 && parent.childNodes.length === this.length) {
				results = { fragment: parent };

			} else {
				results = buildFragment(args, this, scripts);
			}
			
			fragment = results.fragment;
			
			if (fragment.childNodes.length === 1) {
				first = fragment = fragment.firstChild;
			} else {
				first = fragment.firstChild;
			}

			if (first) {
				table = table && jQuery.nodeName(first, "tr");

				for (var i = 0, l = this.length; i < l; i++) {
					callback.call(
						table ?
							root(this[i], first) :
							this[i],
						i > 0 || results.cacheable || this.length > 1 ?
							fragment.cloneNode(true) :
							fragment
);
				}
			}

			if (scripts.length) {
				jQuery.each(scripts, evalScript);
			}
		}

		return this;

		function root(elem, cur) {
			return jQuery.nodeName(elem, "table") ?
				(elem.getElementsByTagName("tbody")[0] ||
				elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
				elem;
		}
	}
});

function cloneCopyEvent(orig, ret) {
	var i = 0;

	ret.each(function() {
		if (this.nodeName !== (orig[i] && orig[i].nodeName)) {
			return;
		}

		var oldData = jQuery.data(orig[i++]), curData = jQuery.data(this, oldData), events = oldData && oldData.events;

		if (events) {
			delete curData.handle;
			curData.events = {};

			for (var type in events) {
				for (var handler in events[type]) {
					jQuery.event.add(this, type, events[type][handler], events[type][handler].data);
				}
			}
		}
	});
}

function buildFragment(args, nodes, scripts) {
	var fragment, cacheable, cacheresults,
		doc = (nodes && nodes[0] ? nodes[0].ownerDocument || nodes[0] : document);

	// Only cache "small" (1/2 KB) strings that are associated with the main document
	// Cloning options loses the selected state, so don't cache them
	// IE 6 doesn't like it when you put <object> or <embed> elements in a fragment
	// Also, WebKit does not clone 'checked' attributes on cloneNode, so don't cache
	if (args.length === 1 && typeof args[0] === "string" && args[0].length < 512 && doc === document &&
		!rnocache.test(args[0]) && (jQuery.support.checkClone || !rchecked.test(args[0]))) {

		cacheable = true;
		cacheresults = jQuery.fragments[args[0]];
		if (cacheresults) {
			if (cacheresults !== 1) {
				fragment = cacheresults;
			}
		}
	}

	if (!fragment) {
		fragment = doc.createDocumentFragment();
		jQuery.clean(args, doc, fragment, scripts);
	}

	if (cacheable) {
		jQuery.fragments[args[0]] = cacheresults ? fragment : 1;
	}

	return { fragment: fragment, cacheable: cacheable };
}

jQuery.fragments = {};

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var ret = [], insert = jQuery(selector),
			parent = this.length === 1 && this[0].parentNode;
		
		if (parent && parent.nodeType === 11 && parent.childNodes.length === 1 && insert.length === 1) {
			insert[original](this[0]);
			return this;
			
		} else {
			for (var i = 0, l = insert.length; i < l; i++) {
				var elems = (i > 0 ? this.clone(true) : this).get();
				jQuery.fn[original].apply(jQuery(insert[i]), elems);
				ret = ret.concat(elems);
			}
		
			return this.pushStack(ret, name, insert.selector);
		}
	};
});

jQuery.extend({
	clean: function(elems, context, fragment, scripts) {
		context = context || document;

		// !context.createElement fails in IE with an error but returns typeof 'object'
		if (typeof context.createElement === "undefined") {
			context = context.ownerDocument || context[0] && context[0].ownerDocument || document;
		}

		var ret = [];

		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			if (typeof elem === "number") {
				elem += "";
			}

			if (!elem) {
				continue;
			}

			// Convert html string into DOM nodes
			if (typeof elem === "string" && !rhtml.test(elem)) {
				elem = context.createTextNode(elem);

			} else if (typeof elem === "string") {
				// Fix "XHTML"-style tags in all browsers
				elem = elem.replace(rxhtmlTag, fcloseTag);

				// Trim whitespace, otherwise indexOf won't work as expected
				var tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase(),
					wrap = wrapMap[tag] || wrapMap._default,
					depth = wrap[0],
					div = context.createElement("div");

				// Go to html and back, then peel off extra wrappers
				div.innerHTML = wrap[1] + elem + wrap[2];

				// Move to the right depth
				while (depth--) {
					div = div.lastChild;
				}

				// Remove IE's autoinserted <tbody> from table fragments
				if (!jQuery.support.tbody) {

					// String was a <table>, *may* have spurious <tbody>
					var hasBody = rtbody.test(elem),
						tbody = tag === "table" && !hasBody ?
							div.firstChild && div.firstChild.childNodes :

							// String was a bare <thead> or <tfoot>
							wrap[1] === "<table>" && !hasBody ?
								div.childNodes :
								[];

					for (var j = tbody.length - 1; j >= 0 ; --j) {
						if (jQuery.nodeName(tbody[j], "tbody") && !tbody[j].childNodes.length) {
							tbody[j].parentNode.removeChild(tbody[j]);
						}
					}

				}

				// IE completely kills leading whitespace when innerHTML is used
				if (!jQuery.support.leadingWhitespace && rleadingWhitespace.test(elem)) {
					div.insertBefore(context.createTextNode(rleadingWhitespace.exec(elem)[0]), div.firstChild);
				}

				elem = div.childNodes;
			}

			if (elem.nodeType) {
				ret.push(elem);
			} else {
				ret = jQuery.merge(ret, elem);
			}
		}

		if (fragment) {
			for (var i = 0; ret[i]; i++) {
				if (scripts && jQuery.nodeName(ret[i], "script") && (!ret[i].type || ret[i].type.toLowerCase() === "text/javascript")) {
					scripts.push(ret[i].parentNode ? ret[i].parentNode.removeChild(ret[i]) : ret[i]);
				
				} else {
					if (ret[i].nodeType === 1) {
						ret.splice.apply(ret, [i + 1, 0].concat(jQuery.makeArray(ret[i].getElementsByTagName("script"))));
					}
					fragment.appendChild(ret[i]);
				}
			}
		}

		return ret;
	},
	
	cleanData: function(elems) {
		var data, id, cache = jQuery.cache,
			special = jQuery.event.special,
			deleteExpando = jQuery.support.deleteExpando;
		
		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			id = elem[jQuery.expando];
			
			if (id) {
				data = cache[id];
				
				if (data.events) {
					for (var type in data.events) {
						if (special[type]) {
							jQuery.event.remove(elem, type);

						} else {
							removeEvent(elem, type, data.handle);
						}
					}
				}
				
				if (deleteExpando) {
					delete elem[jQuery.expando];

				} else if (elem.removeAttribute) {
					elem.removeAttribute(jQuery.expando);
				}
				
				delete cache[id];
			}
		}
	}
});
// exclude the following css properties to add px
var rexclude = /z-?index|font-?weight|opacity|zoom|line-?height/i,
	ralpha = /alpha\([^)]*\)/,
	ropacity = /opacity=([^)]*)/,
	rfloat = /float/i,
	rdashAlpha = /-([a-z])/ig,
	rupper = /([A-Z])/g,
	rnumpx = /^-?\d+(?:px)?$/i,
	rnum = /^-?\d/,

	cssShow = { position: "absolute", visibility: "hidden", display:"block" },
	cssWidth = ["Left", "Right"],
	cssHeight = ["Top", "Bottom"],

	// cache check for defaultView.getComputedStyle
	getComputedStyle = document.defaultView && document.defaultView.getComputedStyle,
	// normalize float css property
	styleFloat = jQuery.support.cssFloat ? "cssFloat" : "styleFloat",
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn.css = function(name, value) {
	return access(this, name, value, true, function(elem, name, value) {
		if (value === undefined) {
			return jQuery.curCSS(elem, name);
		}
		
		if (typeof value === "number" && !rexclude.test(name)) {
			value += "px";
		}

		jQuery.style(elem, name, value);
	});
};

jQuery.extend({
	style: function(elem, name, value) {
		// don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		// ignore negative width and height values #1599
		if ((name === "width" || name === "height") && parseFloat(value) < 0) {
			value = undefined;
		}

		var style = elem.style || elem, set = value !== undefined;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity") {
			if (set) {
				// IE has trouble with opacity if it does not have layout
				// Force it by setting the zoom level
				style.zoom = 1;

				// Set the alpha filter to set the opacity
				var opacity = parseInt(value, 10) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")";
				var filter = style.filter || jQuery.curCSS(elem, "filter") || "";
				style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity;
			}

			return style.filter && style.filter.indexOf("opacity=") >= 0 ?
				(parseFloat(ropacity.exec(style.filter)[1]) / 100) + "":
				"";
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		name = name.replace(rdashAlpha, fcamelCase);

		if (set) {
			style[name] = value;
		}

		return style[name];
	},

	css: function(elem, name, force, extra) {
		if (name === "width" || name === "height") {
			var val, props = cssShow, which = name === "width" ? cssWidth : cssHeight;

			function getWH() {
				val = name === "width" ? elem.offsetWidth : elem.offsetHeight;

				if (extra === "border") {
					return;
				}

				jQuery.each(which, function() {
					if (!extra) {
						val -= parseFloat(jQuery.curCSS(elem, "padding" + this, true)) || 0;
					}

					if (extra === "margin") {
						val += parseFloat(jQuery.curCSS(elem, "margin" + this, true)) || 0;
					} else {
						val -= parseFloat(jQuery.curCSS(elem, "border" + this + "Width", true)) || 0;
					}
				});
			}

			if (elem.offsetWidth !== 0) {
				getWH();
			} else {
				jQuery.swap(elem, props, getWH);
			}

			return Math.max(0, Math.round(val));
		}

		return jQuery.curCSS(elem, name, force);
	},

	curCSS: function(elem, name, force) {
		var ret, style = elem.style, filter;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity" && elem.currentStyle) {
			ret = ropacity.test(elem.currentStyle.filter || "") ?
				(parseFloat(RegExp.$1) / 100) + "" :
				"";

			return ret === "" ?
				"1" :
				ret;
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		if (!force && style && style[name]) {
			ret = style[name];

		} else if (getComputedStyle) {

			// Only "float" is needed here
			if (rfloat.test(name)) {
				name = "float";
			}

			name = name.replace(rupper, "-$1").toLowerCase();

			var defaultView = elem.ownerDocument.defaultView;

			if (!defaultView) {
				return null;
			}

			var computedStyle = defaultView.getComputedStyle(elem, null);

			if (computedStyle) {
				ret = computedStyle.getPropertyValue(name);
			}

			// We should always get a number back from opacity
			if (name === "opacity" && ret === "") {
				ret = "1";
			}

		} else if (elem.currentStyle) {
			var camelCase = name.replace(rdashAlpha, fcamelCase);

			ret = elem.currentStyle[name] || elem.currentStyle[camelCase];

			// From the awesome hack by Dean Edwards
			// http://erik.eae.net/archives/2007/07/27/18.54.15/#comment-102291

			// If we're not dealing with a regular pixel number
			// but a number that has a weird ending, we need to convert it to pixels
			if (!rnumpx.test(ret) && rnum.test(ret)) {
				// Remember the original values
				var left = style.left, rsLeft = elem.runtimeStyle.left;

				// Put in the new values to get a computed value out
				elem.runtimeStyle.left = elem.currentStyle.left;
				style.left = camelCase === "fontSize" ? "1em" : (ret || 0);
				ret = style.pixelLeft + "px";

				// Revert the changed values
				style.left = left;
				elem.runtimeStyle.left = rsLeft;
			}
		}

		return ret;
	},

	// A method for quickly swapping in/out CSS properties to get correct calculations
	swap: function(elem, options, callback) {
		var old = {};

		// Remember the old values, and insert the new ones
		for (var name in options) {
			old[name] = elem.style[name];
			elem.style[name] = options[name];
		}

		callback.call(elem);

		// Revert the old values
		for (var name in options) {
			elem.style[name] = old[name];
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.hidden = function(elem) {
		var width = elem.offsetWidth, height = elem.offsetHeight,
			skip = elem.nodeName.toLowerCase() === "tr";

		return width === 0 && height === 0 && !skip ?
			true :
			width > 0 && height > 0 && !skip ?
				false :
				jQuery.curCSS(elem, "display") === "none";
	};

	jQuery.expr.filters.visible = function(elem) {
		return !jQuery.expr.filters.hidden(elem);
	};
}
var jsc = now(),
	rscript = /<script(.|\s)*?\/script>/gi,
	rselectTextarea = /select|textarea/i,
	rinput = /color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week/i,
	jsre = /=\?(&|$)/,
	rquery = /\?/,
	rts = /(\?|&)_=.*?(&|$)/,
	rurl = /^(\w+:)?\/\/([^\/?#]+)/,
	r20 = /%20/g,

	// Keep a copy of the old load method
	_load = jQuery.fn.load;

jQuery.fn.extend({
	load: function(url, params, callback) {
		if (typeof url !== "string") {
			return _load.call(this, url);

		// Don't do a request if no elements are being requested
		} else if (!this.length) {
			return this;
		}

		var off = url.indexOf(" ");
		if (off >= 0) {
			var selector = url.slice(off, url.length);
			url = url.slice(0, off);
		}

		// Default to a GET request
		var type = "GET";

		// If the second parameter was provided
		if (params) {
			// If it's a function
			if (jQuery.isFunction(params)) {
				// We assume that it's the callback
				callback = params;
				params = null;

			// Otherwise, build a param string
			} else if (typeof params === "object") {
				params = jQuery.param(params, jQuery.ajaxSettings.traditional);
				type = "POST";
			}
		}

		var self = this;

		// Request the remote document
		jQuery.ajax({
			url: url,
			type: type,
			dataType: "html",
			data: params,
			complete: function(res, status) {
				// If successful, inject the HTML into all the matched elements
				if (status === "success" || status === "notmodified") {
					// See if a selector was specified
					self.html(selector ?
						// Create a dummy div to hold the results
						jQuery("<div />")
							// inject the contents of the document in, removing the scripts
							// to avoid any 'Permission Denied' errors in IE
							.append(res.responseText.replace(rscript, ""))

							// Locate the specified elements
							.find(selector) :

						// If not, just inject the full result
						res.responseText);
				}

				if (callback) {
					self.each(callback, [res.responseText, status, res]);
				}
			}
		});

		return this;
	},

	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {
			return this.elements ? jQuery.makeArray(this.elements) : this;
		})
		.filter(function() {
			return this.name && !this.disabled &&
				(this.checked || rselectTextarea.test(this.nodeName) ||
					rinput.test(this.type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			return val == null ?
				null :
				jQuery.isArray(val) ?
					jQuery.map(val, function(val, i) {
						return { name: elem.name, value: val };
					}) :
					{ name: elem.name, value: val };
		}).get();
	}
});

// Attach a bunch of functions for handling common AJAX events
jQuery.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "), function(i, o) {
	jQuery.fn[o] = function(f) {
		return this.bind(o, f);
	};
});

jQuery.extend({

	get: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = null;
		}

		return jQuery.ajax({
			type: "GET",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	getScript: function(url, callback) {
		return jQuery.get(url, null, callback, "script");
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	post: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = {};
		}

		return jQuery.ajax({
			type: "POST",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	ajaxSetup: function(settings) {
		jQuery.extend(jQuery.ajaxSettings, settings);
	},

	ajaxSettings: {
		url: location.href,
		global: true,
		type: "GET",
		contentType: "application/x-www-form-urlencoded",
		processData: true,
		async: true,
		/*
		timeout: 0,
		data: null,
		username: null,
		password: null,
		traditional: false,
		*/
		// Create the request object; Microsoft failed to properly
		// implement the XMLHttpRequest in IE7 (can't request local files),
		// so we use the ActiveXObject when it is available
		// This function can be overriden by calling jQuery.ajaxSetup
		xhr: window.XMLHttpRequest && (window.location.protocol !== "file:" || !window.ActiveXObject) ?
			function() {
				return new window.XMLHttpRequest();
			} :
			function() {
				try {
					return new window.ActiveXObject("Microsoft.XMLHTTP");
				} catch(e) {}
			},
		accepts: {
			xml: "application/xml, text/xml",
			html: "text/html",
			script: "text/javascript, application/javascript",
			json: "application/json, text/javascript",
			text: "text/plain",
			_default: "*/*"
		}
	},

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajax: function(origSettings) {
		var s = jQuery.extend(true, {}, jQuery.ajaxSettings, origSettings);
		
		var jsonp, status, data,
			callbackContext = origSettings && origSettings.context || s,
			type = s.type.toUpperCase();

		// convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Handle JSONP Parameter Callbacks
		if (s.dataType === "jsonp") {
			if (type === "GET") {
				if (!jsre.test(s.url)) {
					s.url += (rquery.test(s.url) ? "&" : "?") + (s.jsonp || "callback") + "=?";
				}
			} else if (!s.data || !jsre.test(s.data)) {
				s.data = (s.data ? s.data + "&" : "") + (s.jsonp || "callback") + "=?";
			}
			s.dataType = "json";
		}

		// Build temporary JSONP function
		if (s.dataType === "json" && (s.data && jsre.test(s.data) || jsre.test(s.url))) {
			jsonp = s.jsonpCallback || ("jsonp" + jsc++);

			// Replace the =? sequence both in the query string and the data
			if (s.data) {
				s.data = (s.data + "").replace(jsre, "=" + jsonp + "$1");
			}

			s.url = s.url.replace(jsre, "=" + jsonp + "$1");

			// We need to make sure
			// that a JSONP style response is executed properly
			s.dataType = "script";

			// Handle JSONP-style loading
			window[jsonp] = window[jsonp] || function(tmp) {
				data = tmp;
				success();
				complete();
				// Garbage collect
				window[jsonp] = undefined;

				try {
					delete window[jsonp];
				} catch(e) {}

				if (head) {
					head.removeChild(script);
				}
			};
		}

		if (s.dataType === "script" && s.cache === null) {
			s.cache = false;
		}

		if (s.cache === false && type === "GET") {
			var ts = now();

			// try replacing _= if it is there
			var ret = s.url.replace(rts, "$1_=" + ts + "$2");

			// if nothing was replaced, add timestamp to the end
			s.url = ret + ((ret === s.url) ? (rquery.test(s.url) ? "&" : "?") + "_=" + ts : "");
		}

		// If data is available, append data to url for get requests
		if (s.data && type === "GET") {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.data;
		}

		// Watch for a new set of requests
		if (s.global && ! jQuery.active++) {
			jQuery.event.trigger("ajaxStart");
		}

		// Matches an absolute URL, and saves the domain
		var parts = rurl.exec(s.url),
			remote = parts && (parts[1] && parts[1] !== location.protocol || parts[2] !== location.host);

		// If we're requesting a remote document
		// and trying to load JSON or Script with a GET
		if (s.dataType === "script" && type === "GET" && remote) {
			var head = document.getElementsByTagName("head")[0] || document.documentElement;
			var script = document.createElement("script");
			script.src = s.url;
			if (s.scriptCharset) {
				script.charset = s.scriptCharset;
			}

			// Handle Script loading
			if (!jsonp) {
				var done = false;

				// Attach handlers for all browsers
				script.onload = script.onreadystatechange = function() {
					if (!done && (!this.readyState ||
							this.readyState === "loaded" || this.readyState === "complete")) {
						done = true;
						success();
						complete();

						// Handle memory leak in IE
						script.onload = script.onreadystatechange = null;
						if (head && script.parentNode) {
							head.removeChild(script);
						}
					}
				};
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709 and #4378).
			head.insertBefore(script, head.firstChild);

			// We handle everything using the script element injection
			return undefined;
		}

		var requestDone = false;

		// Create the request object
		var xhr = s.xhr();

		if (!xhr) {
			return;
		}

		// Open the socket
		// Passing null username, generates a login popup on Opera (#2865)
		if (s.username) {
			xhr.open(type, s.url, s.async, s.username, s.password);
		} else {
			xhr.open(type, s.url, s.async);
		}

		// Need an extra try/catch for cross domain requests in Firefox 3
		try {
			// Set the correct header, if data is being sent
			if (s.data || origSettings && origSettings.contentType) {
				xhr.setRequestHeader("Content-Type", s.contentType);
			}

			// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
			if (s.ifModified) {
				if (jQuery.lastModified[s.url]) {
					xhr.setRequestHeader("If-Modified-Since", jQuery.lastModified[s.url]);
				}

				if (jQuery.etag[s.url]) {
					xhr.setRequestHeader("If-None-Match", jQuery.etag[s.url]);
				}
			}

			// Set header so the called script knows that it's an XMLHttpRequest
			// Only send the header if it's not a remote XHR
			if (!remote) {
				xhr.setRequestHeader("X-Requested-With", "XMLHttpRequest");
			}

			// Set the Accepts header for the server, depending on the dataType
			xhr.setRequestHeader("Accept", s.dataType && s.accepts[s.dataType] ?
				s.accepts[s.dataType] + ", */*" :
				s.accepts._default);
		} catch(e) {}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend && s.beforeSend.call(callbackContext, xhr, s) === false) {
			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}

			// close opended socket
			xhr.abort();
			return false;
		}

		if (s.global) {
			trigger("ajaxSend", [xhr, s]);
		}

		// Wait for a response to come back
		var onreadystatechange = xhr.onreadystatechange = function(isTimeout) {
			// The request was aborted
			if (!xhr || xhr.readyState === 0 || isTimeout === "abort") {
				// Opera doesn't call onreadystatechange before this point
				// so we simulate the call
				if (!requestDone) {
					complete();
				}

				requestDone = true;
				if (xhr) {
					xhr.onreadystatechange = jQuery.noop;
				}

			// The transfer is complete and the data is available, or the request timed out
			} else if (!requestDone && xhr && (xhr.readyState === 4 || isTimeout === "timeout")) {
				requestDone = true;
				xhr.onreadystatechange = jQuery.noop;

				status = isTimeout === "timeout" ?
					"timeout" :
					!jQuery.httpSuccess(xhr) ?
						"error" :
						s.ifModified && jQuery.httpNotModified(xhr, s.url) ?
							"notmodified" :
							"success";

				var errMsg;

				if (status === "success") {
					// Watch for, and catch, XML document parse errors
					try {
						// process the data (runs the xml through httpData regardless of callback)
						data = jQuery.httpData(xhr, s.dataType, s);
					} catch(err) {
						status = "parsererror";
						errMsg = err;
					}
				}

				// Make sure that the request was successful or notmodified
				if (status === "success" || status === "notmodified") {
					// JSONP handles its own success callback
					if (!jsonp) {
						success();
					}
				} else {
					jQuery.handleError(s, xhr, status, errMsg);
				}

				// Fire the complete handlers
				complete();

				if (isTimeout === "timeout") {
					xhr.abort();
				}

				// Stop memory leaks
				if (s.async) {
					xhr = null;
				}
			}
		};

		// Override the abort handler, if we can (IE doesn't allow it, but that's OK)
		// Opera doesn't fire onreadystatechange at all on abort
		try {
			var oldAbort = xhr.abort;
			xhr.abort = function() {
				if (xhr) {
					oldAbort.call(xhr);
				}

				onreadystatechange("abort");
			};
		} catch(e) { }

		// Timeout checker
		if (s.async && s.timeout > 0) {
			setTimeout(function() {
				// Check to see if the request is still happening
				if (xhr && !requestDone) {
					onreadystatechange("timeout");
				}
			}, s.timeout);
		}

		// Send the data
		try {
			xhr.send(type === "POST" || type === "PUT" || type === "DELETE" ? s.data : null);
		} catch(e) {
			jQuery.handleError(s, xhr, null, e);
			// Fire the complete handlers
			complete();
		}

		// firefox 1.5 doesn't fire statechange for sync requests
		if (!s.async) {
			onreadystatechange();
		}

		function success() {
			// If a local callback was specified, fire it and pass it the data
			if (s.success) {
				s.success.call(callbackContext, data, status, xhr);
			}

			// Fire the global callback
			if (s.global) {
				trigger("ajaxSuccess", [xhr, s]);
			}
		}

		function complete() {
			// Process result
			if (s.complete) {
				s.complete.call(callbackContext, xhr, status);
			}

			// The request was completed
			if (s.global) {
				trigger("ajaxComplete", [xhr, s]);
			}

			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}
		}
		
		function trigger(type, args) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger(type, args);
		}

		// return XMLHttpRequest to allow aborting the request etc.
		return xhr;
	},

	handleError: function(s, xhr, status, e) {
		// If a local callback was specified, fire it
		if (s.error) {
			s.error.call(s.context || s, xhr, status, e);
		}

		// Fire the global callback
		if (s.global) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger("ajaxError", [xhr, s, e]);
		}
	},

	// Counter for holding the number of active queries
	active: 0,

	// Determines if an XMLHttpRequest was successful or not
	httpSuccess: function(xhr) {
		try {
			// IE error sometimes returns 1223 when it should be 204 so treat it as success, see #1450
			return !xhr.status && location.protocol === "file:" ||
				// Opera returns 0 when status is 304
				(xhr.status >= 200 && xhr.status < 300) ||
				xhr.status === 304 || xhr.status === 1223 || xhr.status === 0;
		} catch(e) {}

		return false;
	},

	// Determines if an XMLHttpRequest returns NotModified
	httpNotModified: function(xhr, url) {
		var lastModified = xhr.getResponseHeader("Last-Modified"),
			etag = xhr.getResponseHeader("Etag");

		if (lastModified) {
			jQuery.lastModified[url] = lastModified;
		}

		if (etag) {
			jQuery.etag[url] = etag;
		}

		// Opera returns 0 when status is 304
		return xhr.status === 304 || xhr.status === 0;
	},

	httpData: function(xhr, type, s) {
		var ct = xhr.getResponseHeader("content-type") || "",
			xml = type === "xml" || !type && ct.indexOf("xml") >= 0,
			data = xml ? xhr.responseXML : xhr.responseText;

		if (xml && data.documentElement.nodeName === "parsererror") {
			jQuery.error("parsererror");
		}

		// Allow a pre-filtering function to sanitize the response
		// s is checked to keep backwards compatibility
		if (s && s.dataFilter) {
			data = s.dataFilter(data, type);
		}

		// The filter can actually parse the response
		if (typeof data === "string") {
			// Get the JavaScript object, if JSON is used.
			if (type === "json" || !type && ct.indexOf("json") >= 0) {
				data = jQuery.parseJSON(data);

			// If the type is "script", eval it in global context
			} else if (type === "script" || !type && ct.indexOf("javascript") >= 0) {
				jQuery.globalEval(data);
			}
		}

		return data;
	},

	// Serialize an array of form elements or a set of
	// key/values into a query string
	param: function(a, traditional) {
		var s = [];
		
		// Set traditional to true for jQuery <= 1.3.2 behavior.
		if (traditional === undefined) {
			traditional = jQuery.ajaxSettings.traditional;
		}
		
		// If an array was passed in, assume that it is an array of form elements.
		if (jQuery.isArray(a) || a.jquery) {
			// Serialize the form elements
			jQuery.each(a, function() {
				add(this.name, this.value);
			});
			
		} else {
			// If traditional, encode the "old" way (the way 1.3.2 or older
			// did it), otherwise encode params recursively.
			for (var prefix in a) {
				buildParams(prefix, a[prefix]);
			}
		}

		// Return the resulting serialization
		return s.join("&").replace(r20, "+");

		function buildParams(prefix, obj) {
			if (jQuery.isArray(obj)) {
				// Serialize array item.
				jQuery.each(obj, function(i, v) {
					if (traditional || /\[\]$/.test(prefix)) {
						// Treat each array item as a scalar.
						add(prefix, v);
					} else {
						// If array item is non-scalar (array or object), encode its
						// numeric index to resolve deserialization ambiguity issues.
						// Note that rack (as of 1.0.0) can't currently deserialize
						// nested arrays properly, and attempting to do so may cause
						// a server error. Possible fixes are to modify rack's
						// deserialization algorithm or to provide an option or flag
						// to force array serialization to be shallow.
						buildParams(prefix + "[" + (typeof v === "object" || jQuery.isArray(v) ? i : "") + "]", v);
					}
				});
					
			} else if (!traditional && obj != null && typeof obj === "object") {
				// Serialize object item.
				jQuery.each(obj, function(k, v) {
					buildParams(prefix + "[" + k + "]", v);
				});
					
			} else {
				// Serialize scalar item.
				add(prefix, obj);
			}
		}

		function add(key, value) {
			// If value is a function, invoke it and return its value
			value = jQuery.isFunction(value) ? value() : value;
			s[s.length] = encodeURIComponent(key) + "=" + encodeURIComponent(value);
		}
	}
});
var elemdisplay = {},
	rfxtypes = /toggle|show|hide/,
	rfxnum = /^([+-]=)?([\d+-.]+)(.*)$/,
	timerId,
	fxAttrs = [
		// height animations
		["height", "marginTop", "marginBottom", "paddingTop", "paddingBottom"],
		// width animations
		["width", "marginLeft", "marginRight", "paddingLeft", "paddingRight"],
		// opacity animations
		["opacity"]
];

jQuery.fn.extend({
	show: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("show", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");

				this[i].style.display = old || "";

				if (jQuery.css(this[i], "display") === "none") {
					var nodeName = this[i].nodeName, display;

					if (elemdisplay[nodeName]) {
						display = elemdisplay[nodeName];

					} else {
						var elem = jQuery("<" + nodeName + " />").appendTo("body");

						display = elem.css("display");

						if (display === "none") {
							display = "block";
						}

						elem.remove();

						elemdisplay[nodeName] = display;
					}

					jQuery.data(this[i], "olddisplay", display);
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = jQuery.data(this[j], "olddisplay") || "";
			}

			return this;
		}
	},

	hide: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("hide", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");
				if (!old && old !== "none") {
					jQuery.data(this[i], "olddisplay", jQuery.css(this[i], "display"));
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = "none";
			}

			return this;
		}
	},

	// Save the old toggle function
	_toggle: jQuery.fn.toggle,

	toggle: function(fn, fn2) {
		var bool = typeof fn === "boolean";

		if (jQuery.isFunction(fn) && jQuery.isFunction(fn2)) {
			this._toggle.apply(this, arguments);

		} else if (fn == null || bool) {
			this.each(function() {
				var state = bool ? fn : jQuery(this).is(":hidden");
				jQuery(this)[state ? "show" : "hide"]();
			});

		} else {
			this.animate(genFx("toggle", 3), fn, fn2);
		}

		return this;
	},

	fadeTo: function(speed, to, callback) {
		return this.filter(":hidden").css("opacity", 0).show().end()
					.animate({opacity: to}, speed, callback);
	},

	animate: function(prop, speed, easing, callback) {
		var optall = jQuery.speed(speed, easing, callback);

		if (jQuery.isEmptyObject(prop)) {
			return this.each(optall.complete);
		}

		return this[optall.queue === false ? "each" : "queue"](function() {
			var opt = jQuery.extend({}, optall), p,
				hidden = this.nodeType === 1 && jQuery(this).is(":hidden"),
				self = this;

			for (p in prop) {
				var name = p.replace(rdashAlpha, fcamelCase);

				if (p !== name) {
					prop[name] = prop[p];
					delete prop[p];
					p = name;
				}

				if (prop[p] === "hide" && hidden || prop[p] === "show" && !hidden) {
					return opt.complete.call(this);
				}

				if ((p === "height" || p === "width") && this.style) {
					// Store display property
					opt.display = jQuery.css(this, "display");

					// Make sure that nothing sneaks out
					opt.overflow = this.style.overflow;
				}

				if (jQuery.isArray(prop[p])) {
					// Create (if needed) and add to specialEasing
					(opt.specialEasing = opt.specialEasing || {})[p] = prop[p][1];
					prop[p] = prop[p][0];
				}
			}

			if (opt.overflow != null) {
				this.style.overflow = "hidden";
			}

			opt.curAnim = jQuery.extend({}, prop);

			jQuery.each(prop, function(name, val) {
				var e = new jQuery.fx(self, opt, name);

				if (rfxtypes.test(val)) {
					e[val === "toggle" ? hidden ? "show" : "hide" : val](prop);

				} else {
					var parts = rfxnum.exec(val),
						start = e.cur(true) || 0;

					if (parts) {
						var end = parseFloat(parts[2]),
							unit = parts[3] || "px";

						// We need to compute starting value
						if (unit !== "px") {
							self.style[name] = (end || 1) + unit;
							start = ((end || 1) / e.cur(true)) * start;
							self.style[name] = start + unit;
						}

						// If a +=/-= token was provided, we're doing a relative animation
						if (parts[1]) {
							end = ((parts[1] === "-=" ? -1 : 1) * end) + start;
						}

						e.custom(start, end, unit);

					} else {
						e.custom(start, val, "");
					}
				}
			});

			// For JS strict compliance
			return true;
		});
	},

	stop: function(clearQueue, gotoEnd) {
		var timers = jQuery.timers;

		if (clearQueue) {
			this.queue([]);
		}

		this.each(function() {
			// go in reverse order so anything added to the queue during the loop is ignored
			for (var i = timers.length - 1; i >= 0; i--) {
				if (timers[i].elem === this) {
					if (gotoEnd) {
						// force the next step to be the last
						timers[i](true);
					}

					timers.splice(i, 1);
				}
			}
		});

		// start the next in the queue if the last step wasn't forced
		if (!gotoEnd) {
			this.dequeue();
		}

		return this;
	}

});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show", 1),
	slideUp: genFx("hide", 1),
	slideToggle: genFx("toggle", 1),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, callback) {
		return this.animate(props, speed, callback);
	};
});

jQuery.extend({
	speed: function(speed, easing, fn) {
		var opt = speed && typeof speed === "object" ? speed : {
			complete: fn || !fn && easing ||
				jQuery.isFunction(speed) && speed,
			duration: speed,
			easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
		};

		opt.duration = jQuery.fx.off ? 0 : typeof opt.duration === "number" ? opt.duration :
			jQuery.fx.speeds[opt.duration] || jQuery.fx.speeds._default;

		// Queueing
		opt.old = opt.complete;
		opt.complete = function() {
			if (opt.queue !== false) {
				jQuery(this).dequeue();
			}
			if (jQuery.isFunction(opt.old)) {
				opt.old.call(this);
			}
		};

		return opt;
	},

	easing: {
		linear: function(p, n, firstNum, diff) {
			return firstNum + diff * p;
		},
		swing: function(p, n, firstNum, diff) {
			return ((-Math.cos(p*Math.PI)/2) + 0.5) * diff + firstNum;
		}
	},

	timers: [],

	fx: function(elem, options, prop) {
		this.options = options;
		this.elem = elem;
		this.prop = prop;

		if (!options.orig) {
			options.orig = {};
		}
	}

});

jQuery.fx.prototype = {
	// Simple function for setting a style value
	update: function() {
		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		(jQuery.fx.step[this.prop] || jQuery.fx.step._default)(this);

		// Set display property to block for height/width animations
		if ((this.prop === "height" || this.prop === "width") && this.elem.style) {
			this.elem.style.display = "block";
		}
	},

	// Get the current size
	cur: function(force) {
		if (this.elem[this.prop] != null && (!this.elem.style || this.elem.style[this.prop] == null)) {
			return this.elem[this.prop];
		}

		var r = parseFloat(jQuery.css(this.elem, this.prop, force));
		return r && r > -10000 ? r : parseFloat(jQuery.curCSS(this.elem, this.prop)) || 0;
	},

	// Start an animation from one number to another
	custom: function(from, to, unit) {
		this.startTime = now();
		this.start = from;
		this.end = to;
		this.unit = unit || this.unit || "px";
		this.now = this.start;
		this.pos = this.state = 0;

		var self = this;
		function t(gotoEnd) {
			return self.step(gotoEnd);
		}

		t.elem = this.elem;

		if (t() && jQuery.timers.push(t) && !timerId) {
			timerId = setInterval(jQuery.fx.tick, 13);
		}
	},

	// Simple 'show' function
	show: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.show = true;

		// Begin the animation
		// Make sure that we start at a small width/height to avoid any
		// flash of content
		this.custom(this.prop === "width" || this.prop === "height" ? 1 : 0, this.cur());

		// Start by showing the element
		jQuery(this.elem).show();
	},

	// Simple 'hide' function
	hide: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.hide = true;

		// Begin the animation
		this.custom(this.cur(), 0);
	},

	// Each step of an animation
	step: function(gotoEnd) {
		var t = now(), done = true;

		if (gotoEnd || t >= this.options.duration + this.startTime) {
			this.now = this.end;
			this.pos = this.state = 1;
			this.update();

			this.options.curAnim[this.prop] = true;

			for (var i in this.options.curAnim) {
				if (this.options.curAnim[i] !== true) {
					done = false;
				}
			}

			if (done) {
				if (this.options.display != null) {
					// Reset the overflow
					this.elem.style.overflow = this.options.overflow;

					// Reset the display
					var old = jQuery.data(this.elem, "olddisplay");
					this.elem.style.display = old ? old : this.options.display;

					if (jQuery.css(this.elem, "display") === "none") {
						this.elem.style.display = "block";
					}
				}

				// Hide the element if the "hide" operation was done
				if (this.options.hide) {
					jQuery(this.elem).hide();
				}

				// Reset the properties, if the item has been hidden or shown
				if (this.options.hide || this.options.show) {
					for (var p in this.options.curAnim) {
						jQuery.style(this.elem, p, this.options.orig[p]);
					}
				}

				// Execute the complete function
				this.options.complete.call(this.elem);
			}

			return false;

		} else {
			var n = t - this.startTime;
			this.state = n / this.options.duration;

			// Perform the easing function, defaults to swing
			var specialEasing = this.options.specialEasing && this.options.specialEasing[this.prop];
			var defaultEasing = this.options.easing || (jQuery.easing.swing ? "swing" : "linear");
			this.pos = jQuery.easing[specialEasing || defaultEasing](this.state, n, 0, 1, this.options.duration);
			this.now = this.start + ((this.end - this.start) * this.pos);

			// Perform the next step of the animation
			this.update();
		}

		return true;
	}
};

jQuery.extend(jQuery.fx, {
	tick: function() {
		var timers = jQuery.timers;

		for (var i = 0; i < timers.length; i++) {
			if (!timers[i]()) {
				timers.splice(i--, 1);
			}
		}

		if (!timers.length) {
			jQuery.fx.stop();
		}
	},
		
	stop: function() {
		clearInterval(timerId);
		timerId = null;
	},
	
	speeds: {
		slow: 600,
 		fast: 200,
 		// Default speed
 		_default: 400
	},

	step: {
		opacity: function(fx) {
			jQuery.style(fx.elem, "opacity", fx.now);
		},

		_default: function(fx) {
			if (fx.elem.style && fx.elem.style[fx.prop] != null) {
				fx.elem.style[fx.prop] = (fx.prop === "width" || fx.prop === "height" ? Math.max(0, fx.now) : fx.now) + fx.unit;
			} else {
				fx.elem[fx.prop] = fx.now;
			}
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.animated = function(elem) {
		return jQuery.grep(jQuery.timers, function(fn) {
			return elem === fn.elem;
		}).length;
	};
}

function genFx(type, num) {
	var obj = {};

	jQuery.each(fxAttrs.concat.apply([], fxAttrs.slice(0,num)), function() {
		obj[this] = type;
	});

	return obj;
}
if ("getBoundingClientRect" in document.documentElement) {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		var box = elem.getBoundingClientRect(), doc = elem.ownerDocument, body = doc.body, docElem = doc.documentElement,
			clientTop = docElem.clientTop || body.clientTop || 0, clientLeft = docElem.clientLeft || body.clientLeft || 0,
			top = box.top + (self.pageYOffset || jQuery.support.boxModel && docElem.scrollTop || body.scrollTop) - clientTop,
			left = box.left + (self.pageXOffset || jQuery.support.boxModel && docElem.scrollLeft || body.scrollLeft) - clientLeft;

		return { top: top, left: left };
	};

} else {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		jQuery.offset.initialize();

		var offsetParent = elem.offsetParent, prevOffsetParent = elem,
			doc = elem.ownerDocument, computedStyle, docElem = doc.documentElement,
			body = doc.body, defaultView = doc.defaultView,
			prevComputedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle,
			top = elem.offsetTop, left = elem.offsetLeft;

		while ((elem = elem.parentNode) && elem !== body && elem !== docElem) {
			if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
				break;
			}

			computedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle;
			top -= elem.scrollTop;
			left -= elem.scrollLeft;

			if (elem === offsetParent) {
				top += elem.offsetTop;
				left += elem.offsetLeft;

				if (jQuery.offset.doesNotAddBorder && !(jQuery.offset.doesAddBorderForTableAndCells && /^t(able|d|h)$/i.test(elem.nodeName))) {
					top += parseFloat(computedStyle.borderTopWidth) || 0;
					left += parseFloat(computedStyle.borderLeftWidth) || 0;
				}

				prevOffsetParent = offsetParent, offsetParent = elem.offsetParent;
			}

			if (jQuery.offset.subtractsBorderForOverflowNotVisible && computedStyle.overflow !== "visible") {
				top += parseFloat(computedStyle.borderTopWidth) || 0;
				left += parseFloat(computedStyle.borderLeftWidth) || 0;
			}

			prevComputedStyle = computedStyle;
		}

		if (prevComputedStyle.position === "relative" || prevComputedStyle.position === "static") {
			top += body.offsetTop;
			left += body.offsetLeft;
		}

		if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
			top += Math.max(docElem.scrollTop, body.scrollTop);
			left += Math.max(docElem.scrollLeft, body.scrollLeft);
		}

		return { top: top, left: left };
	};
}

jQuery.offset = {
	initialize: function() {
		var body = document.body, container = document.createElement("div"), innerDiv, checkDiv, table, td, bodyMarginTop = parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0,
			html = "<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";

		jQuery.extend(container.style, { position: "absolute", top: 0, left: 0, margin: 0, border: 0, width: "1px", height: "1px", visibility: "hidden" });

		container.innerHTML = html;
		body.insertBefore(container, body.firstChild);
		innerDiv = container.firstChild;
		checkDiv = innerDiv.firstChild;
		td = innerDiv.nextSibling.firstChild.firstChild;

		this.doesNotAddBorder = (checkDiv.offsetTop !== 5);
		this.doesAddBorderForTableAndCells = (td.offsetTop === 5);

		checkDiv.style.position = "fixed", checkDiv.style.top = "20px";
		// safari subtracts parent border width here which is 5px
		this.supportsFixedPosition = (checkDiv.offsetTop === 20 || checkDiv.offsetTop === 15);
		checkDiv.style.position = checkDiv.style.top = "";

		innerDiv.style.overflow = "hidden", innerDiv.style.position = "relative";
		this.subtractsBorderForOverflowNotVisible = (checkDiv.offsetTop === -5);

		this.doesNotIncludeMarginInBodyOffset = (body.offsetTop !== bodyMarginTop);

		body.removeChild(container);
		body = container = innerDiv = checkDiv = table = td = null;
		jQuery.offset.initialize = jQuery.noop;
	},

	bodyOffset: function(body) {
		var top = body.offsetTop, left = body.offsetLeft;

		jQuery.offset.initialize();

		if (jQuery.offset.doesNotIncludeMarginInBodyOffset) {
			top += parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0;
			left += parseFloat(jQuery.curCSS(body, "marginLeft", true)) || 0;
		}

		return { top: top, left: left };
	},
	
	setOffset: function(elem, options, i) {
		// set position first, in-case top/left are set even on static elem
		if (/static/.test(jQuery.curCSS(elem, "position"))) {
			elem.style.position = "relative";
		}
		var curElem = jQuery(elem),
			curOffset = curElem.offset(),
			curTop = parseInt(jQuery.curCSS(elem, "top", true), 10) || 0,
			curLeft = parseInt(jQuery.curCSS(elem, "left", true), 10) || 0;

		if (jQuery.isFunction(options)) {
			options = options.call(elem, i, curOffset);
		}

		var props = {
			top: (options.top - curOffset.top) + curTop,
			left: (options.left - curOffset.left) + curLeft
		};
		
		if ("using" in options) {
			options.using.call(elem, props);
		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	position: function() {
		if (!this[0]) {
			return null;
		}

		var elem = this[0],

		// Get *real* offsetParent
		offsetParent = this.offsetParent(),

		// Get correct offsets
		offset = this.offset(),
		parentOffset = /^body|html$/i.test(offsetParent[0].nodeName) ? { top: 0, left: 0 } : offsetParent.offset();

		// Subtract element margins
		// note: when an element has margin: auto the offsetLeft and marginLeft
		// are the same in Safari causing offset.left to incorrectly be 0
		offset.top -= parseFloat(jQuery.curCSS(elem, "marginTop", true)) || 0;
		offset.left -= parseFloat(jQuery.curCSS(elem, "marginLeft", true)) || 0;

		// Add offsetParent borders
		parentOffset.top += parseFloat(jQuery.curCSS(offsetParent[0], "borderTopWidth", true)) || 0;
		parentOffset.left += parseFloat(jQuery.curCSS(offsetParent[0], "borderLeftWidth", true)) || 0;

		// Subtract the two offsets
		return {
			top: offset.top - parentOffset.top,
			left: offset.left - parentOffset.left
		};
	},

	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent || document.body;
			while (offsetParent && (!/^body|html$/i.test(offsetParent.nodeName) && jQuery.css(offsetParent, "position") === "static")) {
				offsetParent = offsetParent.offsetParent;
			}
			return offsetParent;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each(["Left", "Top"], function(i, name) {
	var method = "scroll" + name;

	jQuery.fn[method] = function(val) {
		var elem = this[0], win;
		
		if (!elem) {
			return null;
		}

		if (val !== undefined) {
			// Set the scroll offset
			return this.each(function() {
				win = getWindow(this);

				if (win) {
					win.scrollTo(
						!i ? val : jQuery(win).scrollLeft(),
						 i ? val : jQuery(win).scrollTop()
);

				} else {
					this[method] = val;
				}
			});
		} else {
			win = getWindow(elem);

			// Return the scroll offset
			return win ? ("pageXOffset" in win) ? win[i ? "pageYOffset" : "pageXOffset"] :
				jQuery.support.boxModel && win.document.documentElement[method] ||
					win.document.body[method] :
				elem[method];
		}
	};
});

function getWindow(elem) {
	return ("scrollTo" in elem && elem.document) ?
		elem :
		elem.nodeType === 9 ?
			elem.defaultView || elem.parentWindow :
			false;
}
// Create innerHeight, innerWidth, outerHeight and outerWidth methods
jQuery.each(["Height", "Width"], function(i, name) {

	var type = name.toLowerCase();

	// innerHeight and innerWidth
	jQuery.fn["inner" + name] = function() {
		return this[0] ?
			jQuery.css(this[0], type, false, "padding") :
			null;
	};

	// outerHeight and outerWidth
	jQuery.fn["outer" + name] = function(margin) {
		return this[0] ?
			jQuery.css(this[0], type, false, margin ? "margin" : "border") :
			null;
	};

	jQuery.fn[type] = function(size) {
		// Get window width or height
		var elem = this[0];
		if (!elem) {
			return size == null ? null : this;
		}
		
		if (jQuery.isFunction(size)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self[type](size.call(this, i, self[type]()));
			});
		}

		return ("scrollTo" in elem && elem.document) ? // does it walk and quack like a window?
			// Everyone else use document.documentElement or document.body depending on Quirks vs Standards mode
			elem.document.compatMode === "CSS1Compat" && elem.document.documentElement["client" + name] ||
			elem.document.body["client" + name] :

			// Get document width or height
			(elem.nodeType === 9) ? // is it a document
				// Either scroll[Width/Height] or offset[Width/Height], whichever is greater
				Math.max(
					elem.documentElement["client" + name],
					elem.body["scroll" + name], elem.documentElement["scroll" + name],
					elem.body["offset" + name], elem.documentElement["offset" + name]
) :

				// Get or set width or height on the element
				size === undefined ?
					// Get width or height on the element
					jQuery.css(elem, type) :

					// Set the width or height on the element (default to pixels if value is unitless)
					this.css(type, typeof size === "string" ? size : size + "px");
	};

});
// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

})(window);

OEBPS/images/m150_1_002i.jpg
temperature 'C| 56,
12.00 noon
1.00pm

2.00pm
3.00pm

4.00pm
5.00pm
6.00pm
7.00pm
8.00pm 16

temperatureC

12100 ipm 2pm 3pm 4pm Spm 6pm Fpm Spm
time
(@) ®

OEBPS/images/m150_1_001i.jpg

OEBPS/images/m150_1_023i.jpg
origin

OEBPS/table10.html

		
			

			

		

		
			
				
							114
							111
							117
							103
							104
							119
							105
							110
							100
							115
							100
							111
							115
				

			
			
				
							104
							97
							107
							101
							116
							104
							101
							100
							97
							114
							108
							105
							110
				

				
							103
							98
							117
							100
							115
							111
							102
							109
							97
							121
							
							
							
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/m150_1_024i.jpg

OEBPS/images/m150_1_011i.jpg

OEBPS/answer15.html

		
			

			
Answer

		
			

The huge majority of the pixels will just be white, the background to the picture. The only information all these white pixels give us is the simple fact that the background colour is white.

		

	

OEBPS/images/m150_1_031i.jpg
5

“

i
&

3
E
2
§
E o0
g
8
=4
8
s

u
5

OEBPS/images/m150_1_015i.jpg

OEBPS/answer07.html

		
			

			
Answer

		
			

As you might have guessed, the answer lies in the binary. The binary numbers 0000000 to 1111111 (0–127) can be stored in 7 bits. The numbers 0–65,535 can be stored in 16 bits (two bytes).

		

	

OEBPS/discussion01.html

		
			

			
Discussion

		
			

There is a huge range of examples you might have come up with. Here are just a few suggestions.

			
						
					Storage and presentation

					

		
						keeping copies of all your letters or digital films;

					

							
						keeping records of all the books in a library.

					

				
						
					Control

					

		
						control programs in a washing machine;

					

							
						traffic control systems in large towns.

					

				
						
					Exchange

					

		
						battlefield command and control systems;

					

							
						exchange of data and command between ground control and distant space probes;

					

							
						any computer network.

					

				
						
					Manipulation

					

		
						computer-aided design systems;

					

							
						garden planning and design systems.

					

				
			

		

	

OEBPS/description01.html

		
			

			
Description

		A digitally manipulated image of a rockface

	

OEBPS/description02.html

		
			

			
Description

		Image showing a table of temperature readings and these readings plotted onto a chart.

	

OEBPS/description13.html

		
			

			
Description

		The image of a church with a spire with a grid superimposed above

	

OEBPS/discussion06.html

		
			

			
Discussion

		
			

						
					41

				

						
					209

				

						
					278

				

			

		

	

OEBPS/images/m150_1_019i.jpg

OEBPS/description08.html

		
			

			
Description

		A clip art image of a duck wielding a sledgehammer at a PC.

	

OEBPS/table01.html

		
			

			

		

		
			
				
							Groups of 10000
							Groups of 1000
							Groups of 100
							Groups of 10
							Ones
				

			
			
				
							10×10×10×10×1
							10×10×10×1
							10×10×1
							10×1
							1s
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/answer05.html

		
			

			
Answer

		
			

Because they think in binary terms. The binary number 10000000000 (210or decimal 1024) is close to a thousand and binary 100000000000000000000 (220or decimal 1,048,576) is close to a million.

		

	

OEBPS/answer02.html

		
			

			
Answer

		
			

Brightness (of light), colour, pitch (how high or low a musical note is), pressure, or any of a host of other properties of our world.

		

	

OEBPS/table04.html

		
			

			

		

		
			
				
							Groups of 32
							Groups of 16
							Groups of 8
							Groups of 4
							Groups of 2
							Ones
				

			
			
				
							2×2×2×2×2×1 (25)
							2×2×2×2×1 (24)
							2×2×2×1 (23)
							2×2×1 (22)
							2×1 (21)
					
							1s
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

