
		
			[image: cover image]
		

	
		About this e-book

		This e-book is taken from an Open University module, which was originally
 published as an open educational resource on the OpenLearn website. For more
 information on OpenLearn, and to access the study units published there,
 visit http://openlearn.open.ac.uk/.

		Copyright notice

		Unless otherwise stated, this e-book is released under the terms of the
 “Creative Commons Licence”. Copyright and rights falling
 outside the terms of the Creative Commons Licence are retained or controlled
 by The Open University. Please read the full text before using any of the
 content of this e-book.

		Cover image © Henrik Jonsson.

		
			
				Show full text
			

		

	
		Introduction

		The cytoskeleton is of fundamental importance to a cell, and the development of different elements of the cytoskeleton were key steps in the evolution of eukaryotic cells. The cytoskeleton controls cell shape and allows cell movement; it is required for many aspects of intracellular trafficking of vesicles and organelles, and it is involved in cell division. Because of its important role in facilitating the movement of vesicles between compartments, but a basic understanding of how the cytoskeleton works is equally important for cell division and cell migration.

		
			Learning outcomes

		

		By the end of this unit you should be able to:

		
				define and use each of the terms printed in bold in the text.

				describe the characteristics of different intracellular compartments with respect to their structure, location and composition within a mammalian cell;

				describe the traffic pathways between the endoplasmic reticulum, the Golgi apparatus, the endosomal compartments, and the basolateral and apical regions of the plasma membrane;

				give examples of regulated and unregulated secretion, the mechanisms controlling the processes, and their functional significance;

				give examples of endocytosis, the mechanisms involved and their functional significance;

				describe the components of the cytoskeleton and their role in intracellular transport;

				describe the main classes of motor protein and their functions within the cell;

				understand the role of compartmentalisation in organising different intracellular regions for distinct biochemical interactions and cell functions, which are specific for each type of cell;

				design and interpret the results of an experiment to investigate the subcellular localisation of a receptor protein, based on the technique of immuno-electron microscopy.

		

	
		1 The cytoskeleton

		1.1 Microtubules and microfilaments

		The elements of the cytoskeleton each have their own distribution within the cell. Microtubules extend from the microtubule organising centre (MTOC), which in animal cells is the centrosome, usually located close to the nucleus. The centrosome consists of two centrioles, short cylinders of microtubules arranged at 90° to each other, which are embedded in a matrix of protein (Figure 1). The filamentous network of microtubules extends throughout the cell and has an important role in determining cell shape. As we shall see later, microtubules have plus and minus ends and they tend to extend and shrink from the plus end. The MTOC stabilises the minus ends of microtubules.

		
			[image:]
		

		
			Figure 1 Microtubules originate from the microtubule organising centre, which stabilises their minus ends.
		

		The microfilament network formed from polymerised or fibrous actin (F-actin) extends throughout the cytoplasm, but its organisation, the length of the filaments and their degree of branching depend very much on the type of cell, its shape, and how it is interacting with the extracellular matrix. The great majority of cell adhesion molecules, which allow a cell to bind to the extracellular matrix, interact inside the cell with microfilaments – usually via adaptor proteins. Indeed, one can view the microfilament network as an intracellular matrix, which links to the extracellular matrix by adhesion molecules. Reorganisation of the microfilament network can take place both locally (affecting only part of the cell) and globally (across the whole cell). In particular, cells that are moving rearrange their entire cytoskeleton as the cell becomes polarised, with engagement of microfilaments required for movement of the cell, and microtubules involved in moving the organelles.

		Microfilaments are formed from pools of actin monomers, which associate non-covalently and can grow or shrink or remain stable, and do so continuously. Microtubules are formed from units consisting of a dimer of α-tubulin and β-tubulin. Direct observation of cells shows that microtubules in particular are highly dynamic structures and microfilaments somewhat less so. The dynamic rearrangement of the cytoskeleton requires energy from GTP in the case of microtubules and ATP for microfilaments. Proteins other than actin and tubulin associated with the microtubules and microfilaments are critically important, and determine their overall stability and whether they will grow or shrink. In the case of microfilaments, the proteins can also determine to what extent the network will branch.

		1.2 Polymerisation and depolymerisation of actin

		Actin is a highly conserved protein. Most organisms have several genes encoding actin; in humans there are six principal isoforms, four of which are found in different types of muscle and the other two (β and γ) in all non-muscle cells. (The term ‘isoform’ describes variants of a protein. These may be produced by different genes, or by differential splicing of the mRNA, or be generated by post-translational modifications.) The β and γ cytoskeletal forms differ by just four amino acid residues at the N-terminus. The high level of conservation is probably partly due to the structural requirements of microfilament formation and partly related to the fact that actin interacts with dozens of other highly conserved molecules, so its scope for variation is limited.

		Microfilaments are formed by the polymerisation of actin monomers by the formation of multiple non-covalent bonds between adjacent molecules. The monomers form protofilaments, strings of monomers linked end-to-end, which align with and wind around another string to form the filament. The helix twists once every 37 nm, and each monomer has the same orientation within the helix.

		Question

		
			What is the advantage of having non-covalent bonds linking the elements of the protofilaments?

			
				
					
					Show
 answer
				

			

		

		In solution, filament assembly starts when an actin dimer forms spontaneously. As additional monomers bind to the assembling filament it becomes increasingly stable. This process is called nucleation and in solution it is relatively slow. In a cell, however, actin monomers will normally add on to an already formed filament. Alternatively, nucleation can start from sites at the plasma membrane, and attachment of microfilaments to the plasma membrane is important in maintaining cell shape and permitting movement.

		The rate of assembly of an actin filament depends on the concentration of the monomers. Once a critical threshold concentration has been exceeded, assembly of the polymeric form is favoured. However, actin monomers add on to one end of a filament much faster than to the other end, and these are referred to as the plus end and minus end of the filament, respectively. The difference in the rate of growth is due to a difference in the conformational changes that occur to the subunits when they attach to the plus or minus ends of the filament. The converse is also true: when the concentration of monomers falls below a threshold, the filament tends to depolymerise, but it also depolymerises more rapidly from the plus end. Be careful not to think of the plus end as the place where monomers are always added and the minus end as the place where they are always removed. It is better to think of the plus end as the more active end and the minus end as the less active end. Given the appropriate conditions, filaments do tend to grow from the plus end and shrink from the minus end, but this is not necessarily the case.

		So far, we have thought of actin assembly just as an equilibrium reaction, which is dependent on the concentrations of actin monomers and actin polymers. However, actin is an ATPase. Normally, free actin has bound ATP (Figure 2). In polymerised actin the ATP is slowly hydrolysed to ADP, so the longer an actin molecule has been in a filament, the more likely it is to be converted into actin-ADP.

		
			[image:]
		

		
			Figure 2 Actin (red) normally has ATP (shown as a space-filling model) located in its active site. The molecule shown in blue is gelsolin, which ruptures actin filaments (see later).
		

		Consider the plus end of a microfilament. As it grows, new actin-ATP molecules are added to the plus end faster than the ATP is hydrolysed to ADP, and consequently the tip of the filament contains a cap of actin-ATP molecules, called an ATP cap (or T form). At the minus end, the rate of ATP hydrolysis exceeds the rate at which actin-ATP monomers are added, and the microfilament consists mainly of actin containing ADP (or the D form). Hydrolysis of ATP to ADP changes the conformation of actin, causing the critical concentration for D actin to be higher than that for T actin.

		Question

		
			Consider the situation in which monomeric actin is present at a concentration below the critical concentration of D actin (at the minus end) but above the critical concentration of T actin (at the plus end). Will the plus end grow or shrink? Similarly, will the minus end grow or shrink?

			
				
					
					Show
 answer
				

			

		

		Because of this, when the actin monomer concentration is between the critical concentrations of T actin and D actin, actin filaments appear to move forwards at their plus end and retract at their minus end. This phenomenon is called treadmilling. It requires the presence of ATP, and a similar effect is seen with microtubules. Notice, however, that although the filament appears to move, the individual monomers do not (Figure 3).

		
			[image:]
		

		
			Figure 3 Actin polymerisation and depolymerisation.(a) Actin-ATP monomers (red) join to the plus end of an actin filament. (b) As more monomers join the filament an actin cap is formed in which all the monomers have linked ATP. Behind the cap there is a progressive increase in the proportion of actin-ADP towards the minus end of the filament. (c) At the critical actin concentration the rate of addition of actin-ATP, which predominantly occurs at the plus end, is balanced by loss of monomers (mostly actin-ADP) at the minus end. The filament thus appears to move to the right, even though individual actin monomers remain stationary.
		

		The basic behaviour of actin is greatly modified by actin-binding proteins. In particular, capping proteins attach to the plus end of filaments and prevent addition or loss of further actin monomers. In practice, at any one time, most of the microfilaments in a cell are capped. Capping proteins can also protect the minus end of microfilaments. In muscle cells, where actin fibres are extremely stable, the plus ends of the filaments are capped by CapZ and the minus ends are capped by tropomodulin.

		Question

		
			If an actin filament is capped at the plus end and the concentration of actin-ATP is high (above the threshold for polymerisation) what will happen to the filament?

			
				
					
					Show
 answer
				

			

		

		Other proteins can attach to the sides of filaments and promote rupture of the filaments, stabilisation of the filaments, bundling of filaments, or branching by the nucleation of new filaments. An example of a filament-cleaving molecule, gelsolin, is shown in Figure 2. It is thought that gelsolin takes advantage of random thermally induced flexions of the microfilament, to insert itself between two actin molecules, thus causing the filament to rupture. Gelsolin binds to the plus end of the actin monomer, so that it also acts as a capping protein.

		Molecules that cross-link microfilaments into bundles are very important in maintaining the structure of the microfilament network. Different molecules do this in different ways, so creating different types of structure. For example, α-actinin cross-links bundles of filaments in an antiparallel fashion, forming bundles that are relatively open. This enables cellular myosin to intercalate and engage with the actin, forming a stress fibre. A quite different type of cross-link is made by filamin, which links the filaments in loose three-dimensional bundles to form a gel-like array. Within a cell, the microfilament network will be organised in different ways in different parts of the cell. Some examples of cross-linking are shown in Figure 4.

		
			[image:]
		

		
			Figure 4 Different types of actin cross-linking. (a) α-Actinin cross-links actin filaments in open antiparallel bundles that allow access to myosin II (see Box 1 for myosin nomenclature). This linkage is found in stress fibres. (b) Tight cross-links of parallel filaments, made by fimbrin, produce tight arrays of filaments, such as those found in microvilli. (c) and (d) Filamin dimers produce flexible cross-links that allows the formation of actin gels, which are typically found beneath the plasma membrane and are required for the formation of lamellipodia.
		

		
			Box 1 Myosins

			Myosin was originally identified as a component of skeletal muscle, which interacted with actin fibres to generate muscle contraction. Subsequently, this myosin was found to be just one of a large family of molecules present in all eukaryotic cells, including plants, all of which have motor functions and ATPase activity. Skeletal muscle myosin has a long tail and two heads, which contain the catalytic sites, and the basic units become bundled together in fibres. This protein is also found widely in animal cells, and has since been called myosin II – two-headed. The designation was prompted by the discovery of a single-headed myosin in Acanthamoeba. Since then numerous single-headed and double-headed cytoplasmic myosins have been discovered. Some are confined to animals, some to plants and some to particular protoctists, but the majority of them are found in all eukaryotes, which indicates that the myosin family of molecules evolved before the divergence of these kingdoms.

		

		1.3 Polymerisation and depolymerisation of tubulin

		Polymerisation of microtubules is similar in concept to microfilament polymerisation, but different in almost every detail. The basic subunit of the microtubule is the tubulin heterodimer, consisting of an α-tubulin and a β-tubulin monomer, which are firmly associated with each other. These assemble end-to-end to form filaments. The overall assembly consists of a ring of 13 such filaments arranged into a microtubule with a plus and a minus end (Figures 5 and 6). The minus ends of the tubules are stabilised and nucleated within the MTOC by γ-tubulin, which effectively acts as a capping protein. The plus ends of the microtubules are stabilised by other capping molecules or by attachment to organelles.

		
			[image:]
		

		
			Figure 5 A molecular model of the tubulin heterodimer. The α-chain (top) and β-chain (bottom) are structurally very similar, and both bind to one molecule of GTP, shown as a space-filling model in purple; α helix is shown in red, β sheet in blue, and regions lacking secondary structure in green.
		

		
			[image:]
		

		
			Figure 6 Microtubule structure and assembly. Heterodimers of α-tubulin and β-tubulin assemble end-to-end to form filamants, with α-tubulin at the plus end. Thirteen filaments assemble in a ring to form a microtubule.
		

		Both α- and β-tubulin units bind to GTP and act as GTPases. In the presence of GTP and Mg2+ ions, polymerisation is favoured and the tubules extend from the plus end of the tubule, forming a GTP cap. GTP is progressively hydrolysed by the tubulin, and tubulin-GDP dissociates more readily from the tubule than tubulin-GTP. These characteristics lead to the behaviour known as dynamic instability. This is the observation that microtubules grow slowly from the plus end and then tend to shrink back suddenly, which can be explained in terms of the reactions above.

		Consider the plus end of a microtubule. Provided the concentration of tubulin-GTP is above the critical value, the tubule will continue to grow by addition of new tubulin-GTP monomers, and new monomers will be added before the previous ones have had time to hydrolyse their GTP. Consequently a tubule with a GTP cap will grow slowly. If, however, the concentration of tubulin-GTP falls below the threshold, or the conditions for polymerisation change, new monomers are added too slowly and tubulin-GDP subunits in the microtubule become exposed. As these dissociate more quickly, the tubule will shrink rapidly, until it is rescued by the addition of new tubulin-GTP dimers (Figure 7). Dynamic instability is also seen in actin microfilaments, for the same reasons, but as the rate of growth and retraction of microfilaments is lower than that of microtubules, the effect is less dramatic.

		
			[image:]
		

		
			Figure 7 Dynamic instability of tubulin. Microtubules grow slowly by the addition of tubulin-GTP to the plus end of the tubule. The GTP cap so formed is relatively stable (a) but if the tubule loses its cap (b) tubulin- GDP is exposed and the tubule retracts rapidly with dissociation of tubulin-GDP heterodimers (c). (Note that, for simplicity, only one of the 13 filaments in the microtubule is shown.)
		

		Although you may have gained the impression that microtubules are very dynamic, some microtubules are permanent features of the cell. For example, in neurons, bundles of microtubules extend all the way down axons from the cell body to the nerve terminal. Such bundles are stabilised by cross-linking proteins that bind to the sides of microtubules and are called microtubule associated proteins (MAPs). A MAP called tau, which cross-links bundles of microtubules in axons, has received a lot of attention in recent years, because of the possibility that it is involved in the development of Alzheimer's disease. Tau has multiple tubulin-binding domains that allow it to cross-link microtubules at regular intervals. Thus a nerve axon may contain a bundle of hundreds of regularly spaced, cross-linked microtubules. Cross-linking of the tubules is modulated by the phosphorylation of tau, and one theory proposes that phosphorylation of tau is abnormal in people with Alzheimer's disease. In the case of nerve axons, the bundle of microtubules serves two functions: it acts as a structural element of the cell, giving stability to the axon, but it also acts as a trackway for the transport of vesicles.

		For this reason, it is thought that the microtubule networks must be subject to some degree of remodelling, in order to facilitate vesicular traffic, but that this is limited by the requirement to maintain axon structure. The ‘tau hypothesis’ of Alzheimer's disease suggests that the balance of these functions is disturbed so that normal axon structure and neuronal function are impaired.

		Numerous other proteins associate with microtubules and perform analogous functions to those proteins that associate with microfilaments, including stabilisation, destabilisation and cutting. For example, the protein catastrophin pulls apart the plus end of microtubules and promotes dynamic instability.

		Question

		
			Can you think of one place in the cell where microtubule-capping proteins would be located during mitosis?

			
				
					
					Show
 answer
				

			

		

		Before going on to look in more detail at the function of microtubules in facilitating intracellular traffic, we shall complete our review of the cytoskeleton by looking at intermediate filaments.

		1.4 Specialised intermediate filaments

		Compared with other cytoskeletal elements, intermediate filaments are more like a fixed scaffolding for the cell. They have a higher tensile strength than microtubules and microfilaments. Consequently they contribute greatly to the overall integrity of the cell and preservation of its shape. Not all eukaryotic cells have cytoskeletal intermediate filaments, and of those that do, each cell type has its own distinct set of intermediate filaments. The intermediate filaments, being cell-type specific, are more related to maintaining the characteristic architecture of each cell type. Intermediate filaments appear to have arisen by gene duplication and diversification on a number of separate occasions from the nuclear lamina. One of the largest families is the keratins with more than 20 different members in epithelial cells, and about 10 of them are specific to cells that form hair and nails (Table 1).

		
			
				Table 1 Examples of intermediate filament proteins.
		

		
			
				View table
			

		

		Intermediate filaments are elongated molecules with a central section of α helix (Figure 8a). Two molecules associate to form a coiled-coil dimer (Figure 8b), and the dimers associate in a staggered head-to-tail arrangement as shown in Figure 8c and d, which further pack together to yield a rope-like filament (Figure 8e). This arrangement gives the intermediate filaments their tensile strength. Although intermediate filaments are dynamic structures, much less is known about how they are controlled than microfilaments or microtubules. Cells can change their expression of intermediate filaments in response to activation or a change in requirements. For example, astrocytes are cells in the brain that express the vimentin-like intermediate filament, glial fibrillary acidic protein (GFAP); in resting astrocytes the level of expression is quite low, but this increases greatly when the cells are activated, as occurs in individuals with multiple sclerosis. Activation is associated with an increase in the size and mobility of the astrocytes, which clearly places additional requirements on the cytoskeleton to maintain the structural integrity of the cell.

		
			[image:]
		

		
			Figure 8 A model of intermediate filament assembly.(a) A monomer with an α-helical region. (b) Two monomers pair up to form a coiled-coil dimer. (c) Two dimers then align side-to-side to form an antiparallel tetramer of four polypeptide chains, slightly offset from each other, which allows (d) alignment with another tetramer. (e) In the final rope-like filament, tetramers are packed together in a helical array. An electron micrograph of intermediate filaments is shown upper left.
		

		1.5 Summary

		
				
				The cytoskeleton is formed of microtubules, microfilaments and intermediate filaments. Microtubules are formed by polymerisation of tubulin and microfilaments by polymerisation of actin. Assembly and disassembly are faster at the plus end of the filament. Both microtubules and microfilaments can display treadmilling and dynamic instability, in appropriate conditions.

			

				
				Actin is an ATPase, and actin-ATP is less readily dissociated from the ends of microfilaments than actin-ADP. Tubulin is a GTPase and tubulin-GTP is less readily dissociated from microtubules than tubulin-GDP.

			

				
				Capping proteins stabilise the ends of microfilaments and microtubules. The minus ends of microtubules are stabilised and nucleated by the MTOC. The minus ends of microfilaments are nucleated as branches on the actin network or at the plasma membrane.

			

				
				Microtubule associated proteins modulate the formation, stability and disruption of microtubules: an analogous set of proteins acts on microfilaments in a similar way.

			

				
				Intermediate filaments are structural elements found only in some types of cell. They are found in a wide variety of cell-specific types and they have high tensile strength, which helps to maintain cellular integrity.

			

		

	
		2 Cellular compartments and traffic

		2.1 Introduction

		This section reminds you of the numerous specialised intracellular compartments of the eukaryotic cell, with how molecules are moved rapidly and specifically between them in eukaryotic cells.

		Question

		
			What are the principal membrane-bound compartments of the cell and the trafficking pathways that connect them?

			
				
					
					Show
 answer
				

			

		

		On average, these compartments occupy about half of the volume of the cell. Their associated membranes in a liver cell (hepatocyte), for example, constitute about 50 times more of the total area than the plasma membrane (Table 2). The extent of the intracellular compartments varies between cell types, but the contemporary picture of a cell is a labyrinth of membrane-bound intracellular compartments, endosomes and organelles, with a highly developed interconnecting system of transport vesicles.

		
			
				Table 2 Relative amounts of membrane in two eukaryotic cells (% of total membrane, by surface area).
		

		
			
				View table
			

		

		The volume of the hepatocyte is approximately 5000 μm3 with 110,000 μm2 of membrane surface; the volume of the pancreatic cell is 1000 μm3 with an estimated 13,000 μm2 of membrane surface. Note that the large amount of rough endoplasmic reticulum (ER) in the pancreatic cell reflects its function of secreting digestive enzymes; the relatively large number of mitochondria in liver cells relates to their high metabolic activity. (Based on Alberts et al., 2002.)

		
			Vesicular transport is the mechanism by which molecules are ferried in membrane-bound vesicles between the membrane-bound compartments listed above, or between these compartments and the plasma membrane. Small transport vesicles pinch off from one compartment, and diffuse, or are more often actively transported, to another compartment, where they fuse and discharge their cargo (Figure 9). The size and shape of the vesicles, their cargo, their packaging and their means of transportation vary depending on the trafficking pathway involved. The cargo itself may be soluble within the compartment (e.g. a secreted hormone) or may be associated with membrane proteins. Topologically, the extracellular space, the ER, the Golgi network, the endosomes, secretory vesicles and transport vesicles are all equivalent spaces, each separated from the cytosol by one phospholipid bilayer. For molecules to move from the cytosol into one of these compartments they have to cross one membrane. In this chapter we are concerned only with transport between these topologically equivalent compartments mediated by the budding and fusion of vesicles.

		
			[image:]
		

		
			Figure 9 Vesicles are coated with proteins such as clathrin or caveolin as they bud from a donor membrane (steps 1 and 2). The vesicle is pinched off (scission) and is transported to its destination, a process that is often directed along the microtubule network by motor proteins (steps 3–5). At the target membrane the protein coat is removed and the vesicle fuses to release its cargo (steps 6 and 7).
		

		Transport of proteins to the correct cellular compartment depends on signal sequences in the polypeptide chain.

		Signal sequences at the N-terminus of newly synthesised polypeptides are recognised by a signal recognition protein, which directs them to sites on the ER, where they are transported into the lumen of the ER as they are translated. The signal sequence is enzymatically removed from most proteins after translation. For multipass membrane proteins, internal stop-transfer and start-transfer signals are required to produce the correct looping across the membrane.

		Proteins destined for specific cellular compartments also contain signal sequences, although these may be non-contiguous within the polypeptide chain, and are referred to as signal patches. Unlike the N-terminal signal sequences, signal patches are integral to the final protein and are not cleaved off. The signal patches serve to sort the proteins for their appropriate compartment and/or ensure that they remain in that compartment. Proteins called sorting receptors recognise the signal patches and group the proteins in appropriate vesicles for transport. We shall start by looking at how particular proteins are selectively localised in particular compartments.

		2.2 Traffic in the endoplasmic reticulum and the Golgi network

		The ER extends as a network of membranous tubes and sheets throughout the cytoplasm and is the site of synthesis of proteins ultimately destined for the Golgi apparatus, endosomes, lysosomes, the plasma membrane, secretory vesicles and beyond. In animal cells, the Golgi apparatus is usually a single structure located near the nucleus of the cell, consisting of between four and ten flattened cisternae, which are designated the cis, medial or trans Golgi network, depending on their position within the stack. The cis Golgi comprises the cisternae that receive transport vesicles from the ER, and the trans Golgi sorts proteins for onward delivery to the plasma membrane, endosomes, etc. The organisation of the Golgi apparatus depends on the integrity of the microtubule network.

		Only proteins that are correctly folded are released from the ER and transported to the cis Golgi where they are further modified and processed. Protein synthesis has numerous quality-control steps of this type, and this extends to protein localisation. Vesicles carrying proteins move between the ER and the cis, medial and trans faces of the Golgi apparatus in both directions (see Figure 16). Primarily, these will be proteins destined for onward delivery to downstream compartments, such as secretory vesicles, but some proteins are required in the Golgi itself and these have the appropriate signal patches to ensure they are retained in this compartment.

		However, there is always some degree of error in biological systems, so that proteins intended to function in the ER will occasionally be carried to the Golgi apparatus. A reverse transport system, or ER retrieval pathway, ensures that they are returned to their correct compartment. Signal sequences at the C-terminus of membrane-bound ER proteins and different sequences in soluble ER proteins control their localisation, as described in Section 3.5.

		Proteins that are destined for endosomal compartments, the plasma membrane or secretion are carried in vesicles that bud from the trans Golgi. The pH in the ER is neutral, but as proteins move from the cis to the trans Golgi they are exposed to increasingly acidic conditions. The pH affects the activity of the enzymes in the different compartments and may regulate how well proteins bind to sorting receptors in each compartment. Beyond the Golgi, specialised endosomal compartments in some cells have even lower pH values, maintained by proton pumps. One of the key functions of protein sorting is to move molecules to a compartment where they are in an appropriate environment to function, or where they can be stored.

		2.3 Sorting for the basolateral and apical zones of the plasma membrane

		Many cells are permanently polarised, and this means that surface proteins are selectively localised to different areas of the plasma membrane, depending on their function. For example, endothelial cells have adhesion molecules on the surface that contacts the basal lamina, but receptors that take up molecules from the blood (e.g. the transferrin receptor – see below) are located on the surface of the cell that is in contact with the blood. Cell surface molecules can normally diffuse laterally within the plane of the membrane, although they may be excluded from, or concentrated in, particular areas such as lipid rafts. However, for some cells, such as the epithelial cells in the gut, the plasma membrane is divided into two distinct zones termed the basolateral and apical domains, which are separated from each other by a belt of continuous tight junctions around the cell. This structure severely restricts the free diffusion of molecules through the extracellular spaces between neighbouring cells, and is seen in a number of other tissues.

		Basal membranes are now more often called basal laminae, to emphasise the fact that they are not phospholipid bilayers, but sheets of extracellular matrix.

		For example, the endothelial cells in the blood vessels in the brain have a ring of continuous tight junctions, which forms a barrier betweeen the blood and the brain tissue that contributes to the so-called blood–brain barrier. The tight junctions also prevent the lateral diffusion of proteins and lipids within the plasma membrane from one zone to another.

		Question

		
			Predict what requirement this places on the transport systems within cells that have such differentiated zones of the plasma membrane.

			
				
					
					Show
 answer
				

			

		

		Proteins destined for these zones are initially sorted in the Golgi apparatus and packaged in different vesicles before being directed to the appropriate zone of the membrane (Figure 10). Sorting signals have been identified in the C-terminus of proteins destined for the basolateral membrane, which ensure that the proteins reach the correct zone and are returned there should they be internalised by endocytosis.

		
			[image:]
		

		
			Figure 10 Basolateral and apical zones of the plasma membrane are shown on an epithelial cell, lining the lumen of the gut. Tight junctions between cells separate the two zones of the membrane. Proteins intended for each zone are sorted into separate vesicles at the trans Golgi network.
		

		2.4 Exocytosis and the secretory pathways

		
			Exocytosis is the process by which molecules are released to the outside of the cell. This includes the release of proteins to the plasma membrane and the release of secreted molecules into the extracellular fluid. All eukaryotic cells need a system to transport molecules to their plasma membrane, and many cells secrete proteins into the extracellular environment. In addition, cells in multicellular organisms communicate with each other via a variety of signalling molecules, which are released in appropriate circumstances. Intercellular signalling is effected by hormones, cytokines and other small signalling molecules that are released from secretory vesicles. Even within the nervous system, which we think of as an electrochemical signalling network, the transmission of a signal from one cell to another occurs by the secretion of neurotransmitters into the synaptic cleft, in response to the arrival of an action potential.

		Biologists distinguish two basic types of exocytosis. Constitutive secretion is carried out by all cells and serves to transfer molecules from the Golgi network to the outer surface of the cell. It is the default pathway for most molecules bound for the plasma membrane. Regulated secretion occurs in response to specific conditions, signals or biochemical triggers, and is the process underlying the release of cytokines, hormones, neurotransmitters and other small signalling molecules, such as histamine (Figure 11). (Cytokines are soluble extracellular molecules that act locally on cells, whereas hormones are carried by the bloodstream to distant cells. Although secretion usually implies the release of soluble molecules, these pathways also transfer membrane-associated molecules to the cell surface.) One should note in passing that constitutive secretion is not an unregulated process; it is just that the rate of release of the molecules to the cell surface depends on their rate of production, which is regulated by transcription and translation, i.e. at an earlier stage in the pathway.

		
			[image:]
		

		
			Figure 11 Secretory pathways. Molecules in the trans Golgi network are sorted into secretory vesicles either for regulated secretion if they contain appropriate signal sequences or for constitutive secretion if they do not. Proteins for regulated secretion are first assembled in immature vesicles, which mature into secretory vesicles located near the plasma membrane. Regulated secretion is typically controlled by external signals transduced via cell surface receptors. This example shows a constitutively secreted, membrane-bound molecule and a soluble, secreted molecule, but either type of molecule can be directed down either pathway.
		

		Question

		
			Identify the fundamental difference between constitutive and regulated secretion, in terms of their function within an organism and the ways in which this is regulated.

			
				
					
					Show
 answer
				

			

		

		In mammals, the release of insulin by β cells of the pancreatic islets of Langerhans, in response to variations in blood glucose concentration, is a good example of regulated secretion. Insulin is retained in secretory vesicles that are triggered to fuse with the plasma membrane in response to a rise in intracellular Ca+ concentration. Briefly, the series of interactions that links the concentration of blood glucose to the rate of insulin secretion is as follows:

		
				
				A rise in blood glucose causes the ATP: ADP ratio in the β cell to rise, which closes a K+ channel in the plasma membrane.

			

				
				The resulting change in the β cell's membrane potential opens a Ca2+ channel, causing a rise in intracellular Ca2+ concentration and the secretion of insulin.

			

		

		The way in which Ca2+ controls the fusion of vesicles with the plasma membrane is discussed in Section 7.2, in relation to the release of neurotransmitters from synaptic vesicles.

		2.5 The endocytic pathways and lysosomes

		
			Endocytosis is the process by which cells internalise molecules from the outside, and it includes pinocytosis, the uptake of small soluble molecules in vesicles, and phagocytosis, the internalisation of large insoluble particles. These are two ends of a spectrum as seen microscopically, but the receptors, the subsequent intracellular trafficking pathways and the fate of the internalised molecules, vary depending on the cell type and its functions. The endocytic pathway comprises two distinct kinds of endosome, early endosomes and late endosomes. Material taken up by endocytosis passes from the early endosomes to the late endosomes and from there may intersect with trafficking pathways from the Golgi apparatus, or may be directed to lysosomes or to the Golgi. The exact pathway depends on the cell and the material that has been internalised.

		It is important to distinguish receptor-mediated endocytosis from the general non-specific endocytic uptake of material from the medium. For example, transferrin (the iron transport molecule present in blood plasma) is taken up after binding to a transferrin receptor, which is expressed on a variety of cells. The receptor with its bound transferrin is internalised by budding of vesicles from the plasma membrane, and these fuse with endosomes. In the acidic environment of the endosome, iron dissociates from transferrin to give apotransferrin, which is then recycled back to the plasma membrane to collect more iron (Figure 12). The receptor is similarly recycled.

		
			[image:]
		

		
			Figure 12 Pathways of endocytosis. Transferrin with a bound iron molecule binds to the transferrin receptor on the plasma membrane and is internalised. Within an acidic endosome, iron is released from transferrin (now designated apotransferrin) and the apotransferrin and the receptor are recycled to the cell membrane. A different pathway is illustrated by the EGF receptor, which is internalised via endosomal compartments and is then directed to lysosomes for degradation.
		

		A different pathway is taken by receptors such as the EGF (epidermal growth factor) receptor, which together with its ligand moves from an early endosomal compartment to a late endosome and from there to lysosomes for degradation (Figure 12). This is a mechanism for reducing the number of receptors on the cell surface, a process that is controlled, in many cases, by the phosphorylation of the receptors.

		Notice that the transferrin receptor can be used many times to take up iron, whereas the EGF receptor has a single function – signalling cell division. Once the cell has received the appropriate signal then the EGF receptor is no longer required (at least for a while) and, by degrading the receptor, the cell becomes less sensitive to further signals.

		2.6 Transcytosis

		The components of the endocytotic pathways also function to transfer material within a cell. In vertebrates, most cells depend on nutrients from the blood even though they are not in direct contact with the blood. Diffusion of molecules from the blood to the tissues would in many cases be just too slow. Transcytosis is the transfer of molecules across cells from one side to the other, a process that entails endocytosis, vesicular transfer and exocytosis, and which speeds the bulk movement of molecules through tissues. In some cases, transcytosis is receptor-mediated, and is often carried out by vesicles called caveolae, which are distinct from those involved in endocytosis and exocytosis as described above.

		Question

		
			Which cells in a vertebrate would you expect to contain abundant caveolae?

			
				
					
					Show
 answer
				

			

		

		Figure 13 shows a cluster of caveolae adjoining the membrane of an endothelial cell from lung.

		
			[image:]
		

		
			Figure 13 Electron micrograph of lung endothelium showing caveolae, small goblet-shaped vesicles, which are prominent near the cell membrane.
		

		Receptor-mediated transcytosis can also carry specific molecules across cells. For example, in humans and some other mammals, antibodies are transported across the placental cells that form the interface between the maternal and fetal circulation. The transported maternal antibodies protect the fetus in utero and in neonatal life. A related process occurs in the gut epithelial cells of some neonatal animals, which have receptors that transfer antibodies from maternal milk intact across the gut epithelium and into the tissues, to protect the neonatal animal. The reverse process occurs in the gut of adult mammals that have a system for transferring a different type of antibody (IgA) from the tissues into the lumen of the gut, to protect against infection (Figure 14).

		
			[image:]
		

		
			Figure 14 Receptor-mediated transcytosis. The antibody IgA is transported across an epithelial cell from the submucosal tissue side to the lumen of the mucosal epithelium. The antibody first binds to a poly-Ig receptor and is then transferred from the basolateral to the apical zone of the membrane, where the receptor is cleaved, to release the antibody with a segment of the receptor, called ‘secretory component’, still bound.
		

		Transcytosis may also be important in moving proteins involved in differentiation and body pattern development. An interesting example is the Wg protein produced in a row of cells at the posterior of each segment of Drosophila, which is distributed throughout the segments to control the normal development of elements of the segment (mutations of the Wg gene which produces the Wg protein may result in a wingless phenotype). In this example, transcytosis distributes the protein laterally in the plane of the polarised epidermal epithelium. This differs from the basal–apical transcytosis of IgA, described above.

		2.7 Summary

		
				
				Eukaryotic cells contain numerous distinct types of membrane-bound compartment. Transport vesicles move proteins and other molecules between the compartments.

			

				
				Proteins contain signalling sequences or patches that specify their destination compartment.

			

				
				Proteins destined for lysosomes, secretion or the plasma membrane are synthesised in the ER, transported to the cis Golgi, modified in the Golgi apparatus, and sorted and packaged in vesicles at the trans Golgi for onward delivery to endosomes or secretory vesicles. The pH and the proteins in each compartment of the ER and Golgi are different. Misplaced proteins are returned to the ER. Proteins are sent from the Golgi to the basolateral and apical regions of the plasma membrane (if separate) in different vesicles.

			

				
				Molecules are internalised either by non-specific or receptor-mediated systems. Receptors may be recycled to the plasma membrane or routed for breakdown in lysosomes, depending on the receptor and the requirements of the cell.

			

				
				Molecules can be transported across cells either in solution in a non-specific manner, or by receptor-mediated mechanisms.

			

		

	
		3 Trafficking vesicles

		3.1 Introduction

		In the following sections, we shall describe the sequential steps involved in the movement of vesicles from one membrane to another (see Figure 9). Some of these steps are quite well defined, but for others there are gaps in our knowledge. Although we have emphasised the importance of proteins as cargo, vesicles also transfer membrane lipids between compartments, and so are important in maintaining the lipid composition and relative proportions of membrane lipids between different compartments, a process that is much less well understood.

		The first stage of vesicular transport is the production of the transport vesicles. Vesicle formation requires deformation of the lipid bilayer, forming a goblet-shaped invagination of the membrane that will eventually be pinched off to form the vesicle, a process called budding. The induction of membrane curvature required for vesicle formation is an energy-dependent process mediated by proteins such as epsins, which are required specifically for budding. When a vesicle is generated, it carries proteins that were resident in that stretch of membrane as well as soluble molecules. Fusion of the vesicle with a target membrane is essentially a reversal of the process by which it originates. The proteins that direct the targeting of the vesicle to the correct cellular location also mediate fusion, and in some systems regulate the precise time at which fusion occurs.

		Question

		
			We emphasised the importance of signal sequences in proteins, which ensure they are packaged in the right vesicles. What other proteins are needed to ensure they reach their correct destination?

			
				
					
					Show
 answer
				

			

		

		Some vesicles have a coat of proteins surrounding their membrane and are therefore called coated vesicles. The coat is acquired as the vesicle buds from the donor membrane and is shed before the vesicle fuses with the target membrane (see Figure 9). One purpose of the coat is to enable the type of vesicle to be identified, so that is directed to the appropriate target membrane; it may also be involved in the selection of cargo to be transported.

		Figure 15 shows in more detail how the vesicular coat is assembled, a process that involves small G proteins. Budding is initiated by recruitment of small G proteins to a region of membrane curvature, which then assemble the complex of coat proteins and adaptor proteins, which link the coat to molecules in the membrane. The G proteins exchange GDP for GTP, converting into the active form, which can then insert spontaneously into lipid bilayers, by means of a hydrophobic tail. It seems that the G protein activity and ability to recycle is controlled by hydrolysis of GTP. The G proteins associate with proteins in the membrane, and there is some evidence that they may interact with receptors in the donor membrane. In other words, the function of these G proteins is to provide the binding sites at which coat proteins can assemble. Examples of such G proteins and the types of coated vesicle they associate with are shown in Table 3.

		
			[image:]
		

		
			Figure 15 Assembly of a coated vesicle. Small membrane-bound G proteins, attached to the membrane, recruit coat proteins and adaptor proteins. The cargo may be a soluble molecule that binds to membrane receptors that are attached to adaptors within the coat. Alternatively, the cargo may be a membrane protein that is carried in the membrane of the vesicle. (Note that the lipid tail of the G proteins would be fully buried in the membrane.)
		

		Three types of different coat protein involved in vesicular transport have been particularly well studied (Table 3 and Figure 16).

		
				
				Endocytic and secretory vesicles have clathrin as the most prominent protein in their coats and they are called clathrin-coated vesicles.

			

				
				The vesicles involved in transport between Golgi cisternae are called COPI-coated vesicles (COPI is an acronym for COat Protein I (roman one).)

			

				
				The vesicles involved in trafficking from the ER to the cis Golgi have a different coat (COPII), and are called COPII-coated vesicles.

			

		

		
			
				Table 3 Protein and G protein components of coated vesicles.
		

		
			
				View table
			

		

		Each of the coat proteins (clathrin, COPI and COPII) is a complex of subunits, sometimes referred to as a coatamer. ARF is an acronym for ADP ribosylation factor. AP = adaptor protein.

		
			[image:]
		

		
			Figure 16 Clathrin-coated vesicles are involved in the endosomal pathways and in transport of proteins from the trans Golgi network. COPI-coated vesicles are involved in retrograde transport from the trans Golgi back through the Golgi cisternae to the ER. COPII-coated vesicles are required for transport from the ER to the cis Golgi.
		

		3.2 Formation of clathrin and COP-coated vesicles

		The structure of clathrin and clathrin-coated vesicles is known in some detail. Clathrin consists of a heavy chain of M
			r 180,000 together with a light chain of M
			r 35,000. Clathrin molecules successively assemble into a polyhedral, cage-like coat on the surface of the coated pit. The clathrin coat is made of sub-assemblies, each consisting of a three-pronged protein complex, a triskelion, each leg of which is made of one heavy and one light chain (Figure 17a). The triskelion forms a lattice-like network of hexagons and pentagons (Figure 17b), which attaches to the membrane via an adaptor protein (AP) complex. Adaptor proteins bind both to clathrin and to integral membrane proteins of the vesicle and stimulate its assembly. Much more importantly, by binding to the molecules in the membrane of the vesicle, adaptor proteins appear to be responsible for recognising the appropriate cargo molecules.

		
			[image:]
		

		
			Figure 17 The clathrin triskelion (a) forms a skeleton of hexagons and pentagons around the coated vesicle (b). (c) Scanning electron micrograph of clathrin-coated vesicles.
		

		Clathrin concentrates in specific areas of the plasma membrane, forming clathrin-coated membrane invaginations, called clathrin-coated pits. Cell surface receptors cluster in the pits, and then through a series of highly regulated steps the pits pinch off to form clathrin-coated vesicles (Figure 18). Although the detail and ordering of the process is not fully defined, the main steps are:

		
				
				Recruitment of the G-protein ARF (ADP-ribosylation factor-binding protein), adaptor proteins and clathrin to defined sites on the plasma membrane;

			

				
				Assembly of clathrin, formation of clathrin-coated pits and cargo recruitment, specified by adaptor proteins;

			

				
				Budding and detachment of the nascent clathrin-coated vesicles.

			

		

		
			[image:]
		

		
			Figure 18 Transmission electron micrographs demonstrating successive stages in the progression from a clathrin-coated pit to a clathrin-coated vesicle.
		

		Several types of adaptor protein have been characterised (Table 3); their distribution suggests that they correspond to coated vesicles with different origins. For example, the AP2 adaptor, found on coated pits at the plasma membrane, characterises endocytic vesicles. The AP1 adaptor is found on coated pits of the Golgi and identifies vesicles that are targeted to endosomes. The role of AP3 is not yet fully understood. In addition to clathrin and APs, a number of other molecules, including dynamin and epsin, have been implicated in the formation of coated vesicles at the plasma membrane.

		Within the past few years a novel family of proteins has been identified as molecules that also interact directly with ARF, clathrin and vesicle cargo. These proteins appear to be ARF-dependent clathrin adaptors that facilitate specific membrane trafficking events, such as cargo sorting and vesicle formation at the trans Golgi network. They are named GGA proteins (Golgi-localised, gamma-ear containing, ADP-ribosylation factor-binding proteins). GGA proteins are cytosolic monomeric proteins containing four distinct domains, one of which, the ‘hinge’ domain, contains one or more clathrin-binding sites (Figure 19).

		
			[image:]
		

		
			Figure 19 GGA proteins have been shown to act as multifunctional adaptors at the trans Golgi network. They bind to ARF–GTP and also bind to sorting proteins (sortilin and mannose 6-phosphate receptor, M6PR), clathrin and possibly other molecules. GGA proteins have four distinct domains, labelled VHS, GAT, hinge and ear.
		

		As mentioned above, the deformation and scission of the vesicle is energy-dependent, and a family of proteins called epsins appear to be involved in this process. Epsin-1 induces membrane curvature and promotes the polymerisation of clathrin. Another protein, AP180, appears to limit the vesicle size, and vesicle scission is mediated by another protein, dynamin, a GTPase of M
			r 100,000 that collaborates with the coat proteins to induce budding of clathrin-coated vesicles. Dynamin self-assembles into rings and forms collars at the neck of invaginated coated pits. These collars constrict the neck of the coated pits, which are then severed by hydrolysis of GTP (Figure 20).

		Although the mechanisms are broadly similar, different coat structures seem to be involved in different transport steps. Hence, COPI-coated vesicles shuttle molecules from exit sites on the cis Golgi complex towards the ER, while COPII-coated vesicles shuttle them from the ER towards the Golgi. This type of spatial organisation of transport maintains an asymmetric intracellular distribution of different proteins, such as enzymes, and permits the transport of newly synthesised proteins to the plasma membrane. For example, in the Golgi network, modifying enzymes are spread in a unique gradient-like distribution across several discontinuous membrane-bound compartments that collectively make up the Golgi stack; in the ER, enzymes mediating post-translational modifications of proteins either coexist in a continuous membrane or are segregated spatially into ER subregions.

		
			[image:]
		

		
			Figure 20 Dynamin is recruited by vesicle-associated proteins and forms rings around the neck of the invagination. GTP hydrolysis leads to constriction of the dynamin ring followed by pinching off of the vesicle.
		

		In contrast to clathrin-coated vesicles, which carry rather specific proteins, COP-coated vesicles undertake bulk flow from the Golgi to the ER and back, and the mechanism of recognising the protein cargo seems to be different. The cargo of the COPI-coated vesicles is selected by binding of the cargo molecules to specific membrane receptors. COPI-coated vesicles are involved in the ER retrieval pathway; thus, this pathway is often called the retrograde transport pathway. In contrast, the transport from the ER to the Golgi, achieved by movements of COPII-coated vesicles, is called anterograde.

		Although the formation of clathrin-coated vesicles is similar in principle to that of COP-coated vesicles, there are some differences in the detail. Formation of COPII-coated vesicles requires the ordered assembly of the coat from many different cytoplasmic components (Table 3), but the formation of the prebudding complex as well as severance of the neck differs from the processes involved with clathrin-coated vesicles. Budding of COPII vesicles is initiated by the G protein Sar1, which recruits two further proteins, Sec23 and Sec24, to generate a pre-budding complex. The elongated COPII prebudding complex is in marked contrast to the open honeycomb-like clathrin-coated prebudding complex. Moreover, the architecture and folding of the COPII-coat components bears no resemblance to clathrin adaptor complexes. These structural differences between clathrin and COPII coats suggest that budding might be accomplished by distinct mechanisms within different intracellular compartments.

		The mechanism by which cargo is recognised depends on both lumenal and transmembrane proteins of the vesicles as well as the receptors that reside in the Golgi complex. For example, COPI vesicles select proteins containing a dilysine motif near their C-terminus, in the form of -KKXX-COOH, where K is lysine and X is any amino acid residue.

		After vesicle scission and transport to the target membrane, the delivery of the cargo occurs by vesicle fusion with the target membrane. The coat components would be an obstacle to membrane fusion, so they must be removed. Shedding of the coat is regulated by hydrolysis of GTP in ARF–GTP (Figure 21). Studies on transport in nerve terminals have shown that proteins including ARF, dynamin and some epsins, which are phosphorylated in resting nerve terminals, become coordinately dephosphorylated following nerve terminal stimulation. This dephosphorylation is believed to promote recycling of the components of the clathrin- and COP-coated vesicles (Figure 22).

		
			[image:]
		

		
			Figure 21 Assembly of vesicles at the Golgi cisternae. ARF–GTP binds to the membrane of the cisternae and recruits coat proteins and vesicle-targeted proteins carrying soluble cargo molecules (other proteins are excluded from the vesicle). v-SNARE molecules, which are required for fusion with the target membrane, are also incorporated into the vesicle membrane. The vesicle buds off and moves towards the target membrane, where hydrolysis of GTP in ARF–GTP leads to depolymerisation of the coat.
		

		
			[image:]
		

		
			Figure 22 Electron micrographs showing COPI- and COPII-coated vesicles.
		

		3.3 Fusion of vesicles with the target membrane

		In this section, we shall look at how vesicles fuse with the appropriate target membrane. The targeting of different classes of transport vesicles to their distinct membrane destinations is essential in maintaining the distinct characteristics of the various eukaryotic organelles. Because coat proteins, such as clathrin, are found in different trafficking pathways, it follows that other proteins in the coat must specify the direction of transport of a particular vesicle and its ultimate destination.

		What controls the specificity of vesicle targeting and docking? The interaction and fusion of the membranes of the vesicle and the target is a multistage event. The first stage is membrane recognition. The next step is a loose interaction called tethering. The subsequent interaction brings the opposing membranes much closer to each other and is called docking. Docking leads to membrane fusion.

		Thus, targeting specificity might be thought of as a series of events that includes:

		
				
				specification of the vesicle delivery site;

			

				
				the recruitment of components capable of initiating vesicle ‘capture’;

			

				
				the formation of a bridge between the vesicle and the target membrane;

			

				
				conformational change that allows the vesicle and target membrane proteins to come close enough to interact;

			

				
				dissociation of the tethering proteins, to free them for another round of transport.

			

		

		Proteins involved in the tethering processes are called TRAPPs (transport protein particles). The TRAPP complex (M
			r ~ 1,100,000) is made of 10 subunits and is essential for vesicle trafficking. TRAPP proteins are highly conserved and integral to the membrane. The discovery of different tethering complexes involved in the process of vesicle trafficking suggests that tethering is more complex than a simple cross-bridging of two membranes. It is more likely to be a series of events that involves pairing of specific membrane proteins (Figure 23).

		
			[image:]
		

		
			Figure 23 A model for vesicle docking, based on transport from the ER to the Golgi in yeast. A TRAPP complex on the target membrane recruits a GTPase of the Rab family. A tethering protein captures the transport vesicle by linking it to the TRAPP/Rab–GTP complex. Binding causes the protein that blocks t-SNARE binding (pale green) to be released from the t-SNARE, which is then free to bind to the v-SNARE on the vesicle. Several additional proteins are thought to be involved in this scheme, with variations between species and trafficking pathways.
		

		Two families of integral membrane proteins ‘tag’ the membrane of the target organelle and the vesicle. Members of one family are known as vesicle SNAREs (v-SNAREs) and members of the other family are known as target SNAREs (t-SNAREs). (SNAREs may be categorised according to their amino acid sequence as well as by the v/t nomenclature. Components involved in the fusion between the donor membrane of the vesicle and the target membrane were identified because of their interactions with a soluble ATPase called NSF, identified by its sensitivity to NEM (N -ethylmaleimide). Thus SNARE is an acronym for Soluble NEM-sensitive factor Attachment protein REceptors.)

		What are SNAREs and how is SNARE function studied? Most of the discoveries on SNARE function and their interactions in membrane trafficking have been made through studies of the proteins that attach to the membrane of synaptic vesicles (Box 2). We shall use this example to illustrate how SNAREs function.

		
			Box 2 Synaptic vesicles

			Synaptic vesicles are secretory vesicles containing neurotransmitters that are found clustered near the plasma membrane at the terminals of a nerve axon. These vesicles fuse with specialised areas of the plasma membrane called ‘active zones’, releasing the neurotransmitter into the extracellular space (the synaptic cleft). This process is the basis of signal transmission between nerves and it depends on the v/t SNARE complex.

			Relatively pure synaptic vesicles from the nervous system may be prepared by subcellular fractionation. Brain tissue is homogenised in a medium that allows subcellular organelles, such as mitochondria and synaptic vesicles, to remain intact. Different organelles can be separated according to their buoyant density by sedimentation in sucrose density gradients. In this way it is possible to obtain relatively pure preparations of vesicles from neuronal as well as other secretory tissues. The availability of pure vesicles has enabled some of the key molecules in the process of exocytosis to be identified and the relationship between these molecules to be unravelled.

		

		The synaptic SNARE complex, which comprises a v-SNARE (synaptobrevin) and two t-SNAREs (syntaxin and SNAP-25), is made of three proteins: synaptobrevin, syntaxin and SNAP-25 (named for SyNaptosomal Associated Protein of M
			r 25,000).

		The v-SNARE synaptobrevin is a transmembrane synaptic vesicle protein with a short C-terminal region inside the vesicle and the bulk of the protein in the cytoplasm. The t-SNARE syntaxin has a very similar structure but is located in the plasma membrane of the synapse, with the bulk of the protein also in the cytoplasm. In contrast, the t-SNARE SNAP-25 is firmly anchored to the plasma membrane by palmitoyl chains (see Section 3.3.3). These three proteins together form a complex that links the synaptic vesicle to the plasma membrane and whose structure has been determined by X-ray crystallography. They assemble with a 1 : 1 : 1 stoichiometry into a tight ternary complex called a fusion or SNARE complex (Figure 24). Much of our knowledge of these processes has been gained from the study of neurotoxins (Box 3).

		
			[image:]
		

		
			Figure 24 Fusion of the synaptic vesicle with the active zone of the plasma membrane at the synaptic cleft is brought about by the SNARE complex, consisting of synaptobrevin, SNAP-25 and syntaxin. The complex is associated with a Ca2+ channel and other proteins (synaptotagmin, neurexin and synaptophysin) that are involved in triggering the fusion process. It is postulated that the initial fusion is effected by fusion pores on either membrane.
		

		
			Box 3 Neurotoxins and SNARE research

			Important insights into the function of SNAREs have been gained through the use of toxins that poison the nervous system (neurotoxins). In the case of neurotransmitter release, evidence that SNAP-25 and synaptobrevin are essential for membrane docking was obtained in studies using tetanus toxin and botulinum toxin, which are bacterial neurotoxins, which cause paralysis by blocking neurotransmitter release. They are produced by bacteria as single proteins that are then cleaved into two different subunits, known as the light chain and the heavy chain. The heavy chain binds to the external membrane of neurons and facilitates the entry of the light chain into the cytoplasm of the nerve cell at the synaptic terminal. Once the light chains enter the cytoplasm they act as proteases that rapidly destroy specific target proteins. For example, botulinum B and tetanus toxin destroy only synaptobrevin, whereas botulinum A selectively cleaves SNAP-25. Another toxin, botulinum C1, destroys syntaxin. Because each of these toxins is very specific in their action they have provided direct evidence that SNARE proteins are critical components of the process of neurotransmitter release.

			Note that tetanus toxin produces spastic paralysis by preventing transmitter release in the CNS, whereas botulinum B toxin causes flaccid paralysis by preventing acetylcholine release at the neuromuscular junction.

		

		All SNARE proteins share a characteristic motif that consists of a stretch of approximately 60 amino acids called the SNARE motif. The SNARE motif is the principal protein–protein interaction region; it is where synaptobrevin binds tightly to corresponding SNARE motifs in syntaxin and SNAP-25 to form an exceptionally stable complex.

		After docking of the synaptic vesicle, SNARE proteins undergo a priming step that probably involves the transition of syntaxin to an open conformation required for SNARE complex formation. Another protein, called Unc (named after uncoordinated phenotype of C. elegans), interacts with the syntaxin in its open state to stabilise the conformation, which enables the SNARE complex to form. The stable assembly of the SNARE complex is believed to drive membrane fusion, which involves a number of other proteins shown in Figure 24, although the precise interactions are not yet known.

		For fusion and cargo release to proceed normally, the SNARE complex must become disassembled. In nerve terminals, this process occurs at some point after fusion, and is a step required for recovery and recycling of the membrane. Disassembly is carried out by proteins called NSF and three different SNAPs (unrelated to SNAP-25), which prise apart the SNARE complex in a process that requires ATP hydrolysis (see Figure 26).

		v/t SNARE pairing presents an attractive lock-and-key mechanism, which may underlie the specificity of vesicle targeting and docking. In other words, the v/t SNARE recognition process could provide a means by which a cell controls the specificity of a vesicle–target membrane fusion. Direct evidence for the involvement of SNAREs in bilayer fusion was lacking until recently, when studies in which SNAREs were reconstituted into liposomes and the liposomes placed inside permeabilised living cells provided strong evidence that SNARE complex formation is associated with the physiological fusion step.

		However, several lines of evidence indicate that the same v-SNARE can reside both on vesicles moving towards the plasma membrane and on those being recovered from it. Also it appears that one single v-SNARE can interact with several t-SNAREs. Hence the v–t interaction is not sufficient to ensure the necessary targeting/docking/fusion specificity. This suggests that SNAREs cannot be the sole determinants of vesicle docking that occurs prior to fusion.

		3.4 The function of Rab proteins in directing traffic

		The SNARE proteins are just one component of the vesicle targeting system. Other participants in this process are the Rab family of GTPases, which regulate traffic between different cellular compartments and which are implicated in directing vesicles to their appropriate target compartments. The Rab family is the largest family of GTPases, with more than 30 members. They are distributed in specific organelles where they mediate the assembly of distinctive groups of proteins. Moreover, Rabs act in a combinatorial manner with Rab effector proteins to regulate almost all stages of membrane traffic, hence they are the key to recruitment of the tethering and docking proteins that facilitate membrane fusion. Rabs are selectively distributed to different membranous systems in the cell (Table 4) and attach to membranes via prenyl or palmitoyl groups at the C-terminus. Localisation of Rabs onto their membranes occurs when they are activated by a guanine nucleotide exchange factor (GEF), which allows them to bind Rab effector proteins and to recruit other specific proteins to the cluster (Figure 25).

		
			
				Table 4 Intracellular localisation of some Rab proteins.
		

		
			
				View table
			

		

		
			[image:]
		

		
			Figure 25 A model for the role of Rabs in protein recruitment. Rab–GDP is present in the cytosol, bound to a GDP dissociation inhibitor (GDI). At the appropriate membrane a protein (GDF) displaces the inhibitor and a guanine nucleotide exchange factor (GEF) activates Rab, exposing the prenyl group, which attaches to the membrane. Rab–GTP then binds to Rab effector proteins, which recruit a specific set of proteins to the cluster.
		

		Although Rab proteins are structurally similar, their C-termini are highly variable, and it is this part of the molecule that determines their membrane specificity. Rab proteins and their effectors collect integral and peripheral membrane proteins into specific domains by regulating protein–protein interactions. In this way they can link appropriate addressing molecules, such as SNAREs, to the vesicles. Although Rabs are fairly similar in structure, the Rab effectors are very diverse. Rabs remain associated with the vesicles as they move and may also be involved in getting the correct motor proteins attached to the vesicle. After all, there is little point in knowing the address of where you are going if you are on the wrong road to get there.

		Once a vesicle has fused with its target membrane, Rab proteins hydrolyse their bound GTP and the inactive Rab–GDP protein returns to the cytoplasm.

		Question

		
			Rabs are small GTPases associated with vesicles that shuttle between compartments. What other small GTPases have you encountered that are involved in this process?

			
				
					
					Show
 answer
				

			

		

		Despite the partially unresolved mystery about some functions of Rabs, such as their ability to link membranes to molecular motors, at least two facets are clear: (i) Rabs contribute to organelle identity and (ii) they catalyse the selective recruitment of proteins onto membranes to promote specific vesicle formation, tethering and fusion. As such, Rab GTPases are thought to be ‘master regulators’ of membrane trafficking in eukaryotic cells.

		Our attention has been focused very much on proteins, but numerous aspects of membrane fluidity, specificity and permeability as well as fusion are regulated by lipids. Thus, lipids should not be forgotten because they are inevitably involved in vesicle trafficking. Membrane phospholipids and phosphoinositides in particular regulate many aspects of vesicular trafficking by binding to proteins implicated in tethering and in mixing the membrane bilayers.

		3.5 Cycling and re-use of membranes and traffic proteins

		As already mentioned, a vesicle follows a cycle in which it gains its coat, is released from a donor membrane, moves to the target membrane, becomes uncoated, and fuses with the target membrane. Once a vesicle releases its contents by fusing with the target membrane, its components become part of the target membrane or of the lumen of the compartment bounded by the target membrane. The vesicular membrane that has fused with the target membrane needs to be retrieved to form new vesicles. Recovery of the membrane is achieved by the process of budding and membrane scission, i.e. formation of a new vesicle. For example, the recovery of synaptic vesicles involves a new round of budding and scission and involves the same set of coat components used for vesicle release.

		Question

		
			Which coat protein, adaptor protein and GTPase would be involved in recovering synaptic vesicle membrane from the plasma membrane at an axon terminal?

			
				
					
					Show
 answer
				

			

		

		In the synaptic vesicle recovery pathway, the adaptor protein AP2 binds directly to synaptotagmin (see Figure 26), a vesicle protein that may flag the stretch of membrane that contains other recently fused vesicular components. The formation of the clathrin coat and the recovery of the underlying membrane involves close interaction of the proteins with the lipids of the membrane, and the process is regulated by specific enzymes that act on phospholipids. After the coated vesicle buds from the plasma membrane, it moves to an early endosome (Figure 26).

		
			[image:]
		

		
			Figure 26 Recycling synaptic vesicle components. After synaptic vesicle fusion the SNARE complex is dissociated by the action of NSF and SNAPS in a process driven by ATP hydrolysis. Regions of the membrane that have recently fused with vesicles are marked by synaptotagmin, which identifies regions of membrane for recycling to early endosomes via the assembly of clathrin-coated recycling vesicles, in a process mediated by ARF and the adaptor proteins AP2 and AP180.
		

		After fusion of the coated vesicle with an early endosome, the retrieved synaptic vesicle proteins are ready to be reformed into new synaptic vesicles. To make a mature synaptic vesicle, it must first be replenished with neurotransmitters. Before this happens the interior of the vesicle is acidified by the activity of an ion pump, which uses ATP to pump protons across the membrane into the lumen of the vesicle. The acidic environment is essential in that it drives the uptake and storage of neurotransmitter by specific proteins present in the membrane of the vesicle.

		Many small neurotransmitters are recovered after release into the synaptic cleft, in order to replenish the synaptic vesicles. Small neurotransmitters such as acetylcholine are regenerated by enzymes near the nerve terminal. For example, after its release, acetylcholine is rapidly cleaved into acetate and choline. Most of the choline is then taken up again into the nerve terminal, by a high affinity sodium-dependent choline uptake system, and used for resynthesis of acetylcholine. Thus, the depletion of neurotransmitters is prevented by their rapid resynthesis and packing into the small synaptic vesicles retrieved by the process of endocytosis. Vesicles can be recycled many times at the terminal by repeated exocytosis/endocytosis, which entails retrieval of vesicle proteins and refilling with neurotransmitters.

		Membrane recycling also occurs between the Golgi cisternae and the ER. The fidelity of synthesised proteins is checked during the process of anterograde transport, and all proteins that are not properly modified or folded are returned to the ER in vesicles that also carry biologically dysfunctional proteins as well as ER-resident proteins that had escaped. An intermediate compartment between the ER and the Golgi is involved in the sorting process.

		Question

		
			Which coat proteins are components of the vesicles moving in the retrograde and anterograde directions?

			
				
					
					Show
 answer
				

			

		

		The process that regulates the exchange of a COPII to a COPI coat is still unknown. It seems that sequential coupling between COPII and COPI coats may be essential to coordinate bidirectional vesicular traffic between the ER and the pre-Golgi intermediate compartments.

		COPI-coated vesicles also move proteins that were involved in anterograde transport back to the ER and between the Golgi cisternae, so that these components are continuously replenished. After reaching the Golgi complex and delivering their cargo, the vesicles depend for recycling on the retrieval signal and retrograde transport. For example, ER membrane proteins carry a dilysine motif (KKXX) that binds directly to the COPI coat. The recycling of the soluble ER proteins involves a C-terminal tetrapeptide (KDEL) that binds to a receptor (Section 3.2), which packages the protein into the COPI-coated vesicle. The affinity of the KDEL receptor varies depending on whether it is in the ER or the Golgi compartment (high in the Golgi; low in the ER), so the receptor binds the proteins in the Golgi and releases them in the ER.

		Question

		
			How could a receptor have one affinity for its substrate in the ER and a different affinity in the Golgi apparatus?

			
				
					
					Show
 answer
				

			

		

		The KDEL-containing proteins and KDEL receptors are not the only molecules that are recycled between ER and Golgi compartments; v- and t-SNAREs and many Golgi enzymes are also returned to their correct compartments.

		There is growing evidence for more than one mechanism for protein recycling between the Golgi and the ER. Some proteins clearly have KDEL-like sequences whereas others, such as some glycosylation enzymes, lack such motifs but nevertheless find their way from the Golgi complex to the ER. The KDEL-receptor independent/COPI-independent pathway of recycling is much slower than the COPI-dependent one. This transport process, like the COPI-dependent pathway, requires the cytoskeleton and motor proteins, but it seems that these two mechanisms are completely unrelated, because no increase in COPI-independent recycling is observed in cells that have had their COPI-dependent pathway inhibited. Investigation of the two transport mechanisms has been greatly assisted by the use of toxins (Box 4).

		
			Box 4 Transport of toxins

			The orientation of intracellular trafficking (anterograde vs. retrograde) is often studied by use of protein toxins that enter the cell and are transported subsequently from the Golgi to the ER. For example, Pseudomonas exotoxin (PE), cholera toxin (CT) and Shiga-like toxins (verotoxins) enter the cell by endocytosis and travel to the trans Golgi network from where they are recycled to the ER. Upon arrival in the ER, the toxins translocate to the cytoplasm to exert their effects. Both PE and CT contain C-terminal KDEL or KDEL-like motifs, which facilitate their transport from the Golgi to the ER, through interaction with the KDEL receptor. These toxins provide conclusive evidence for the existence of COPI-mediated retrograde transport that recycles between the Golgi complex and the ER.

		

		At present, biologists know something about the start and the end points of recycling pathways, but have less understanding of the routes of recycling or detailed molecular mechanisms. Moreover, there is very little knowledge on how the ER and the Golgi disassemble during mitosis. It is believed that an interruption in vesicular trafficking is likely to occur through a collapse of the Golgi back into the ER, increased fragmentation of ER membranes and inhibition of COPI vesicular fusion. This complex process of disassembly must be followed by reassembly, which involves activation of Rabs, TRAPPs, SNAREs and NSF-related factors and seems to be controlled by cell-cycle dependent kinases and phosphatases.

		Yet again, lipids should not be forgotten. Lipid rafts also affect trafficking between the ER and Golgi compartments. Although the major metabolic pathways of cholesterol and sphingolipids have been elucidated, our understanding of the molecular mechanisms of lipid trafficking between subcellular organelles is, compared with our knowledge of protein trafficking, still elementary.

		3.6 Membrane fusion mediated by viral proteins

		Until now, we have focused on the transport of material between different intracellular membrane-bound compartments and fusion of cytoplasmic membranes. This type of fusion is endoplasmic fusion. Another type of membrane fusion, called ectoplasmic fusion, is used by enveloped viruses to infect cells (enveloped viruses have an outer phospholipid bilayer). The biophysical and structural studies of viral proteins involved in the processes of membrane fusion provide a foundation for understanding their functions at a molecular level.

		The proteins involved in promoting ectoplasmic fusion reactions are virally encoded membrane glycoproteins, and the best studied are the influenza virus haemagglutinin and the gp120 protein of human immunodeficiency virus (HIV).

		In the case of influenza virus, the virus attaches to the host cell and is taken up by endocytosis, a process mediated by binding of the haemagglutinin in the viral envelope to sialic acid residues that are present on glycophorins, a widely distributed group of cell-surface proteins. The extracellular domain of the haemagglutinin contains a non-polar peptide sequence of 16–23 amino acid residues (known as the fusion peptide), which is essential for fusion of the viral envelope with the membrane of the endosome. In inactive haemagglutinin the peptide is folded in the extracellular domain. This inactive form is converted into an active form in the endosome because the pH is low. This causes the haemagglutinin to unfold so that the fusion peptide is exposed at the tip of the protein farthest from the viral envelope. In this conformation the fusion peptide, being non-polar, can penetrate the endosome membrane, insert into the phospholipid bilayer and thereby facilitate fusion with the viral envelope.

		Analysis of the viral proteins and eukaryotic proteins involved in membrane fusion shows significant structural similarities. In particular, the parallel topology of α helices from opposing membranes within the v/t SNARE complex is similar to the coiled arrangement seen in viral fusion proteins (Figure 27). It is believed that proteins such as haemagglutinins and SNAREs help to overcome several energetically unfavourable transition states during the process of fusion pore formation. The similarity seen between viral and non-viral fusion proteins may reflect a common mechanism in which the free energy contained in the coiled formation is transformed into the mechanical work needed to fuse membranes.

		
			[image:]
		

		
			Figure 27 Structural similarities between protein components of (a) a v/t SNARE complex, (b) the haemagglutinin of influenza virus (HA-A2) at low pH, and (c) the core of HIV gp41.
		

		In the case of HIV, the virus enters the cell by binding to a protein, CD4, which is expressed on the surface of some lymphocytes and phagocytes. Binding is mediated by the viral protein gp120, which is bound to the HIV fusion protein. The release and consequent insertion of the viral fusion protein into the lymphocyte membrane is mediated by the action of another lymphocyte membrane protein. The viral fusion protein spontaneously rearranges, and the energy released in this process, as in the case of influenza virus, is transformed into the mechanical work required for membrane fusion.

		3.7 Summary

		
				
				The formation of transport vesicles is initiated by small G proteins that insert into the donor membrane and assemble coat proteins. The coat proteins are COPI, COPII or clathrin, depending on the pathway, and the coat includes adaptor proteins that link the coat to the vesicle and its cargo. Epsins and dynamin are involved in the budding process.

			

				
				The vesicle cargo depends on the adaptor proteins, sorting proteins and receptors that are assembled in the vesicle.

			

				
				After vesicles have moved to the target membrane, GTP is hydrolysed and the coat proteins depolymerise to uncoat the vesicle.

			

				
				The initial tethering of vesicles with the target membrane is mediated by TRAPPs, and docking is mediated by SNAREs, but other proteins and ion channels are involved in triggering fusion.

			

				
				Rab GTPases act as master regulators of vesicle trafficking, by binding to membranes and, in association with Rab effectors, assembling appropriate groups of proteins to mediate transport to and fusion with the target membrane. There are numerous Rabs, each selectively localised in particular membranes or organelles.

			

				
				Membrane components and proteins involved in controlling vesicular traffic and vesicle coating are recycled to their original compartment for re-use. Misdirected cargo proteins are returned to their correct compartment, by a process involving their signal sequences. Misfolded proteins are returned to the endoplasmic reticulum.

			

				
				Enveloped viruses must also fuse with cell membranes in order for the virus to enter the cytoplasm of the cell. Viral fusion proteins have structural similarities with eukaryotic fusion proteins.

			

		

	
		4 Signals for compartmentalisation

		4.1 Introduction

		We have noted how proteins for different destinations are packaged in transport vesicles, a process that depends on signal sequences in the proteins. In this section we shall look in a little more detail at the nature of the signal sequences. Except for the few proteins synthesised in the mitochondria or chloroplasts, cellular proteins are encoded by nuclear genes and synthesised on ribosomes in the cytosol or at the ER. Consequently, these proteins, if destined for organelles, must be sorted to the correct target membrane and translocated to the organelle. Sorting of proteins for their ultimate destinations occurs in conjunction with a variety of post-translational modifications. These modifications represent ‘recognition signatures’ for a variety of biological processes, including organelle targeting, subcellular anchoring and the formation of macromolecular complexes.

		Question

		
			In the absence of a signal sequence, or if the signal sequence is removed by genetic modification, where is the protein likely to end up?

			
				
					
					Show
 answer
				

			

		

		4.2 Peptide signal sequences

		The distinct chemistry of proteins at the N- and C-termini provides protein molecules with two positionally and chemically unique sites for post-translational modifications and with the means to control their spatial and temporal interactions and position. This feature of proteins is crucial for a variety of biological processes from protein degradation to protein sorting for specific cellular compartments. The N- and C-termini of proteins have distinct roles, and we have already emphasised the importance of the N-terminal signal sequence in controlling translation across the ER.

		Proteins destined for other cellular compartments also have signal sequences. For example, more than 98% of mitochondrial proteins are synthesised as pre-proteins in the cytosol, and these proteins contain a targeting sequence at the N-terminus, called a presequence, which is made up of 20–50 amino acid residues with characteristic properties. This sequence is enriched with positively charged hydroxylated and hydrophobic residues and has the potential to form an amphiphilic α helix. The sequence is recognised by protein translocator complexes located in both the inner and outer mitochondrial membranes.

		Import of proteins to the nucleus and to the chloroplast also depends on the N-terminal signal peptides. It is possible to change the localisation of a protein by genetic engineering – attachment of appropriate presequences can direct non-mitochondrial proteins to mitochondria and across both outer and inner membrane into the matrix. This demonstrates that they contain all the information needed for targeting and membrane translocation properties. In plants, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles, that is to mitochondria and chloroplasts. Dual-targeted proteins not only have to be recognised by the import apparatus of two different organelles, but their targeting peptide must be correctly removed once the protein is inside the organelle.

		Signals at the C-terminus are also important, but have different functions. We have already mentioned the tetrapeptide signals KDEL and KKXX of lumenal and transmembrane ER proteins, and their interaction with corresponding receptors that forms the basis for ER localisation and retrieval activity. Other examples are the diacidic DXE motif or the FCYENE motif both involved in ER export. The sorting function of a signalling peptide is not restricted to proteins that enter the secretory pathway. For example, two types of peroxisomal targeting signal mediate the import of most peroxisomal matrix proteins.

		Abnormal proteins can arise as a result of various mechanisms, including premature termination of translation. To channel these proteins into a degradation pathway, an 11-residue C-terminal sequence with a non-polar tail,-AANSENYALAA-COOH, is added to the protein. This sequence serves as a signal for protease recognition in various cellular compartments. Although it is relatively easy to spot signal sequences in molecules, signal patches that rely on particular protein folding are less easy to identify. Table 5 shows some examples of signal sequences.

		
			
				Table 5 Signal sequences
		

		
			
				View table
			

		

		Important hydrophobic amino acids are underlined; +H3N indicates the N-terminus of a protein; COO− indicates the C-terminus; the positions of a key set of positively charged residues in the mitochondrial import sequence, which cluster on one side of the α helix, are shown in bold. (Information derived from Alberts, et al., 2002).

		Because many viruses replicate in the nucleus of their host cells (e.g. influenza virus, HIV-1), they have developed several methods for transporting their genome into this compartment using the complex machinery that cells have evolved for protein and nucleic acid trafficking. After viral entry into the cell, either through endocytosis (influenza virus) or via fusion with the plasma membrane (HIV-1), the nucleic acids (associated with virus-specific proteins) are discharged into the cytoplasm. This nucleoprotein capsid must make its way to the nucleus. To gain access to the nucleus, viruses use two different methods: (i) they wait in the cytosol until the cell undergoes mitosis, or (ii) they use strategies that enlist the cellular nuclear transport machinery, but which also depend on the size of the viral capsid. The only way for macromolecules to enter the nucleus is through the nuclear pore complex (NPC), and the mechanism depends on the ‘nuclear localisation sequences’ (NLS) exposed on the surface of the capsid particle.

		4.3 Glycosylation sequences and protein glycosylation

		Polysachharide units on proteins may be simple or branched and are almost completely confined to those proteins destined for the cell surface or secretion. The sites and types of glycosylation are determined by the primary structure of the protein and by the availability of enzymes to carry out glycosylation (glycosyltransferases).

		N-linked polysaccharides are attached to the –NH2 groups of asparagine and O-linked polysaccharides are attached to the –OH groups of serine and threonine. N-linked glycosylation occurs in the rough ER as the protein is synthesised.

		Glycosylation of proteins is important for two reasons: it alters the properties of proteins, changing their stability, solubility and physical bulk, and carbohydrate units may act as recognition signals that are central to aspects of protein targeting and cellular recognition.

		
			N-glycosylation begins in the ER lumen and carbohydrates are further processed after transport of the protein to the Golgi apparatus. A specific sequence NXT/S is required, in which N is asparagine and T/S is either threonine or serine and X may be any amino acid except proline or aspartic acid. Not all NXT/S sequences in protein molecules are glycosylated because in some cases they are masked by protein folding. The process of linking the carbohydrate unit through the amide nitrogen atom of asparagine occurs in the ER, whereas the process of linking the carbohydrate unit through the hydroxyl group of serine or threonine occurs in the Golgi. N-glycosylation is the most conserved form of protein glycosylation in eukaryotes, but the modifications of N-linked oligosaccharides in plants and invertebrates often differ greatly from those in vertebrates.

		The initial step in N-glycosylation is the transfer of a pre-assembled branched oligosaccharide from a special lipid molecule dolichol to the target asparagine residue, in a single enzymatic step (Figure 28). Dolichol acts as an anchor upon which the carbohydrate unit is assembled by successive addition of monosaccharide units. Assembly of the carbohydrate starts on the cytosolic side of the ER and is completed in the lumen of the ER.

		After the addition of the oligosaccharide, and provided the protein has folded correctly, the terminal glucose units are trimmed back by an ER glucosidase, and an ER mannosidase (Figure 29), before being despatched to the Golgi network.

		The protein will then bind to chaperone molecules, such as calnexin and calreticulin, and will be retained in the ER until properly folded and released for transport to the Golgi. If it is incorrectly folded it will be released for degradation.

		
			[image:]
		

		
			Figure 28 N-linked protein glycosylation. The core oligosaccharide, which has been assembled on dolichol, is transferred en bloc to an asparagine residue (Asn) in the nascent polypeptide chain by the action of oligosaccharyl transferase. Energy for the reaction comes from the phosphoanhydride bonds that link the carbohydrate unit to dolichol.
		

		
			[image:]
		

		
			Figure 29 The oligosaccharide unit is trimmed back within the ER by the action of ER glucosidase and ER mannosidase.
		

		Once in the Golgi network the carbohydrate is further modified by enzymes that add or remove monosaccharide residues (Figure 30). Some carbohydrate residues on glycoproteins are heavily sulfated. For example, the molecules perlecan and agrin, which are components of the extracellular matrix carry heparan sulfate groups, which are polymeric carbohydrates that are highly negatively charged under physiological conditions. The enzymes that promote the sulfation of the carbohydrates are located in the Golgi network, and this is the final stage in the maturation of such proteins.

		
			[image:]
		

		
			Figure 30 In the Golgi network the carbohydrate unit is further trimmed back by the action of a Golgi mannosidase, and further residues may be added by the action of different Golgi enzymes.
		

		The implications of glycosylation for the structure and function of a glycoprotein are so far-reaching that the regulation of protein glycosylation and its effect on the subsequent structure and function of proteins are extremely important in cell biology. For example, recent research into prion diseases has highlighted the impact of glycosylation on the structure of the prion protein, PrP, and its propensity to misfold if incorrectly glycosylated. Misfolded PrP can recruit further PrP molecules that are highly resistant to degradation, which leads to PrP deposition in the nervous system and death of nerve cells.

		4.4 Lipidation

		Lipid modification occurs in both prokaryotes and eukaryotes, including viruses. Lipidated proteins have an increased affinity for membranes, and the preferential partition of lipid-anchored proteins provides a number of physiological benefits, such as spatial specificity, increased local concentration and faster protein–protein interactions. A number of C-terminal motifs are sites for lipidation, including-CaaX, -CC and –CXC, where X is any amino acid and a is an aliphatic residue.

		Prenylation and acylation affect the ability of the protein to interact with membranes (Table 6), which in turn alters their ability to interact with substrates and can also affect sorting to different compartments. For example, segregation to the apical and basolateral membranes appears to involve partitioning of newly synthesised proteins into glycosphingolipid-enriched domains.

		
			
				Table 6 Lipid modification of proteins and their membrane affinity.
		

		
			
				View table
			

		

		4.5 Summary

		
				
				Targeting sequences at the N-terminus of proteins direct translation across the ER, and act as signals for import to the nucleus, mitochondrion and chloroplasts. Sequences at the C-terminus control traffic through the ER and the Golgi and to peroxisomes.

			

				
				Glycosylation is directed by signal sequences that act as targets for N-linked glycosylation in the ER and O-linked glycosylation in the Golgi apparatus. Glycosylation and remodelling of polysaccharides is important in controlling protein folding and release from the ER, and in affecting the stability and function of the completed glycoprotein.

			

				
				Lipidation affects the ways in which proteins attach or partition to membranes, and may also contribute to sorting.

			

		

	
		5 The cytoskeleton and motor proteins

		5.1 The role of the cytoskeleton in intracellular transport

		In Section 3 we explained how vesicles bud from donor membranes and fuse with target membranes, which may be quite distant. In such cases, vesicles are actively transported from one site to another, a process that involves motor proteins attached to the vesicle, which propel the vesicle along the cytoskeleton. The microtubule network in particular acts as a trackway for long-range movement of transport vesicles, and this is evident in the movies that show the dual staining of tubulin and secretory vesicle components.

		Question

		
			How is the microtubule network arranged in relation to the Golgi network and the ER and how might this facilitate long-range movement of transport vesicles? What implications does this arrangement have for the direction of travel of vesicles along the microtubules?

			
				
					
					Show
 answer
				

			

		

		The implication of these observations is that the microtubule network can act as a semi-permanent link between compartments, but that the directionality of migration is very carefully controlled – the network is doing much more than speeding up diffusion – vesicle migration is directional and depends on the vesicle and its cargo as well as on the orientation of the cytoskeletal elements and the action of motor proteins.

		Microfilaments also affect vesicle movement, especially for vesicles positioned near the cell surface. For example, the mobility of caveolae located beneath the plasma membrane is affected by latrunculin, a drug that inhibits microfilament assembly, whereas their movement across the cell is blocked by nocodazole, a drug that causes microtubules to disassemble. For caveolae, the mobility of vesicles near the membrane appears to be limited by their interaction with the microfilaments.

		5.2 Motor proteins

		The final element that is needed for a vesicle transport system is motor proteins, as indicated in Figure 9. These proteins bind to vesicles and organelles and use energy from ATP to move them along the microtubule or microfilament network. Two families of motor proteins, the kinesins and dyneins, move vesicles along microtubules, and members of the myosin family move them along microfilaments (see Box 1). The myosin family is also important in cell movement.

		The direction of movement of vesicles along the cytoskeleton is absolutely dependent on the polarity of the microfilaments and microtubules. Some motor proteins move from the minus end to the plus end and others in the opposite direction. For example, of the various myosins that have been discovered throughout the animal and plant kingdoms, all but one (myosin VI) move towards the plus end of the filament.

		Kinesins have a tertiary structure that is similar to myosin II, even though there is no significant similarity in the primary structure. Both molecules have two heads with motor domains formed around an ATP-binding core, and a coiled tail that binds to the cargo (Figure 31). A number of other molecules are related to kinesin, and all of them share the kinesin motor domain, but very little else. These are the kinesin-related proteins. Kinesin itself moves towards the plus end of microtubules (Figure 32), but other members of the kinesin family move to the plus or minus end depending on the protein. Some of the kinesin-related proteins are involved in moving microtubules during mitosis – in this way the motor protein and the microtubule act in an analogous way to myosin and microfilaments in cell movement.

		
			[image:]
		

		
			Figure 31 Molecular structure of kinesin. The model shows a truncated kinesin dimer. The heavy and light chains of the two motor domains are coloured in green and blue, and a space-filling model of ADP is shown in the binding site of each. The tail regions of the molecules (red) consist of paired α helices.
		

		
			[image:]
		

		
			Figure 32 Kinesins and dyneins carry cargo along microtubules. Kinesin itself moves towards the plus end of the microtubule, whereas the dyneins move towards the minus end.
		

		Dyneins are unrelated to either kinesins or myosins, and they move towards the minus end of microtubules. Each is composed of two or three heavy chains, with the cytoplasmic dyneins having two chains, each of which forms a large motor domain. In nerve cells, the axonemal dyneins, which have two or three motor domains, transport vesicles along microtubule bundles in the axons.

		Question

		
			In which direction will dyneins transport vesicles along the axons?

			
				
					
					Show
 answer
				

			

		

		The speed of the movement mediated by dyneins and kinesins is quite extraordinary. In vitro, kinesins can move along microtubules at 2 μm s−1 and dyneins at up to 14 μm s−1. Although these high rates of movement would not be achieved in the complex environment of a cell, they can explain, for example, how caveolar transcytosis of molecules across an endothelial cell can occur in 1–2 minutes. Movement and force generation by both classes of proteins involves ATP hydrolysis and allosteric shifts in the orientation of the motor domains, so that the proteins are thought to ‘step’ progressively down the microtubule.

		Notice however that the ATP-binding site of kinesin (Figure 31) is located at the distal tip of the motor domain, whereas in myosin the equivalent site is deep within the motor domain and covered by the myosin's actin-binding site. Therefore the mechanism of stepping is different in the two molecules. In particular, the α-helical linking region connecting the two motor domains of kinesin appears to transfer allosteric changes between them to coordinate ATPase activity and hence the stepping motion of the protein. It is interesting that the motor domains of kinesin-related proteins that move to the plus end and those that move to the minus end of the microtubule are similar, but the linkage between them is quite different. Kinesin has its motor domain near the N-terminus, whereas the molecule Ncd, which moves to the minus end of the microtubule, has its motor domain located near the C-terminus. It seems that whether the protein is directed to the plus or the minus end is dependent on the configuration of domains and the coordination.

		The mechanical cycle of kinesin is outlined in Figure 33. Notice that kinesin is permanently attached to the microtubule, by either one head or the other. By comparison, the myosin heads (which are arranged in bundles in myofibrils) are only in contact with actin filaments for about 5% of each movement cycle.

		Question

		
			What advantage can you see in the stepping mechanism of kinesin when compared with myosin? Remember that the kinesin molecule acts singly, whereas myosin acts in concert with other myosin molecules in the myofibril.

			
				
					
					Show
 answer
				

			

		

		
			[image:]
		

		
			Figure 33 Proposed motor cycle of kinesin. The leading kinesin motor domain binds to a site on the microtubule (a). As ATP binds to this domain, the trailing head swings forward (b) to become the leading head, and attaches to a new site on the microtubule (c). Release of ADP and phosphate from the new trailing head causes it to be released from the microtubule (d). Thus the molecule takes one step for each molecule of ATP hydrolysed.
		

		How are different motor proteins associated with different trafficking vesicles? Figure 34 shows a basic hypothesis of how a vesicle attaches to a microtubule, but the details of this process are still largely unknown. Observation of moving caveolae suggests that they tend to track initially to a large endosomal compartment, the caveosome, located near the MTOC and then switch to move away, as they traverse the cell. However it is also clear that individual caveolae can alternately move forwards or backwards along the microtubule network.

		
			[image:]
		

		
			Figure 34 A proposed scheme for association of a transport vesicle with a microtubule. Adaptors link cargo molecules to the motor proteins, to ensure that the appropriate motor is attached to each vesicle.
		

		Question

		
			What does this imply about the motor proteins that associate with caveolae?

			
				
					
					Show
 answer
				

			

		

		It has been suggested that there is occasionally competition between kinesin and dyneins to produce this shuffling back and forth, but this is the exception. Observation of the movement of secretory vesicles shows a rapid one-way transfer from the Golgi to the plasma membrane, and the key to this transfer must be the attachment of the correct motor protein as the vesicles bud from the trans Golgi network. However, this subject is not well understood. It is possible that small GTPases, such as those that assemble the vesicle and the coat proteins, could also be responsible for recruiting the correct motor protein to the vesicle, and there is good evidence for different adaptor proteins that link the motor protein to the vesicle. GGA proteins (Figure 19) could perform such a function, but at present the mechanisms of the process are unclear.

		5.3 Summary

		
				
				The microtubule network provides an essential trackway for the rapid movement of vesicles around cells, and the microfilament network also contributes to the local organisation and movement of vesicles.

			

				
				Motor proteins can move vesicles and organelles (described as cargo) along microfilaments (myosins) or along microtubules (kinesins and dyneins). Kinesin and most kinesin-related proteins move to the plus end of microtubules whereas dyneins move to the minus end.

			

				
				The motor domains (heads) of these proteins convert ATP into work. Kinesin is a two-headed molecule and dyneins have two or three heads, which step along the microtubule in a coordinated fashion.

			

				
				Association of the correct motor protein with a trafficking vesicle ensures that the vesicle will move towards the correct region of the cell. However, the mechanisms by which the correct motor protein is attached to a vesicle are unclear.

			

		

	
		6 Endocytic pathways

		6.1 Introduction

		In the final two sections of this unit, we shall look at some examples of endocytosis and exocytosis, in different types of cell. The molecules that are taken up or released by a cell and the triggers for secretion depend greatly on the type of cell, although the underlying transport processes are similar for many cell types, and relate to the systems described above.

		The plasma membrane not only separates the cell interior from the extracellular environment, it also regulates and coordinates the entry and exit of different types of molecule. Many small molecules, such as amino acids, water, sugars and ions, can cross the plasma membrane.

		Question

		
			Give three mechanisms by which small molecules can cross the plasma membrane, with examples.

			
				
					
					Show
 answer
				

			

		

		Macromolecules, however, must be carried into the cell by endocytosis.

		6.2 Endocytosis

		Fluid-phase uptake by pinocytosis can be broadly categorised according to the size of the endocytic vesicle and this also relates to how the vesicle is coated (Figure 35). The rate of internalisation is directly proportional to (i) the concentration of extracellular molecules, (ii) the volume enclosed by the vesicle and (iii) the rate of vesicle formation. Greater efficiency of endocytosis can be achieved by binding of the extracellular molecules to the membrane. The most efficient uptake occurs when molecules from the extracellular environment bind to specific receptors, i.e. receptor-mediated endocytosis. In contrast, phagocytosis is concentration-independent, but as with pinocytosis, the entry into the cell is determined by the type of cargo and its receptor. Both processes also serve to internalise and recycle membrane proteins and lipids.

		
			[image:]
		

		
			Figure 35 Endocytosis occurs by a number of different mechanisms, generating vesicles of different sizes.
		

		In many cell types, stimulation by growth factors often induces membrane disturbance, which ultimately leads to macropinocytosis. Macropinocytosis is a non-specific mechanism for internalisation, in which lamellipodia extend at a site of membrane ruffling to form irregular vesicles, containing large volumes of extracellular fluid. Macropinocytosis is often induced as part of the response to stimulation by growth factors. The extension of lamellipodia is driven by the extension of actin filaments, in a process controlled by small GTPases belonging to the Rho family. (Be careful not to confuse this family of molecules with the Rho protein involved in termination of transcription.) Rho was the first member of a large family of GTPases to be discovered. It is involved in numerous cellular events, including pinocytosis, cell signalling and cell migration. Many of these events involve the reorganisation of the cytoskeleton, for different purposes. Other members of the Rho family are Rac, Rap1 and Cdc42.

		In contrast to macropinocytosis, the mechanism of clathrin-coated-vesicle dependent, clathrin-coated-vesicle independent and caveolin-mediated endocytosis proceeds by involution of selective plasma-membrane domains that give rise to smaller pinocytic vesicles (Figure 35). Assembly of endosomal vesicles is often preceded by the formation of domains within the membrane, consisting of specific lipids and proteins. For example, caveolae form from lipid rafts (cholesterol-rich domains within the membrane), which can selectively incorporate or exclude particular proteins. The cytoskeletal protein actin is thought to constrain the lateral mobility of rafts, increasing their stability in the membrane. Moreover, actin is involved in the initial intracellular movement of the caveolae.

		Question

		
			What are the principal traffic pathways of material entering the cell by endocytosis?

			
				
					
					Show
 answer
				

			

		

		What are the sorting signals that guide proteins through the endocytic maze? In some cases of receptor-mediated endocytosis, covalent attachment of ubiquitin can act as a signal for endocytosis – several proteins appear to control this complex process and some of them are distinguished by the fact that they become tagged with a single copy of the molecule ubiquitin. Monoubiquitination (the addition of one ubiquitin molecule) is well established as a signal for endocytosis in yeast, and is implicated in the regulated removal of cell surface receptors in animal cells. This tagging requires sequentially acting enzymes, the last one being a ubiquitin ligase that attaches ubiquitin to a lysine residue of the target protein. It is not known how the ligase distinguishes between proteins destined for degradation, which will be tagged with several molecules of ubiquitin, and proteins destined for endocytosis, which will be tagged with a single molecule of ubiquitin by the very same ligase. This process has been studied in relation to the protein eps15, a molecule that associates with clathrin-coated pits and which regulates endocytosis (Figure 36).

		
			[image:]
		

		
			Figure 36 Proteins such as eps15 become monoubiquitinated, as a signal for endocytosis. The separate region of eps15 also contains a ubiquitin-interacting motif (UIM), and it is proposed that this could link eps15 to other monoubiquitinated proteins, such as growth factor receptors, leading them to be clustered into clathrin-coated pits.
		

		The signals that trigger internalisation vary according to the receptors. Some receptors are internalised continuously, but others remain exposed on the surface until ligand is bound to them, after which they become susceptible to endocytosis. In either case the receptors slide laterally into coated pits, and endocytosis starts by a common route that leads to several pathways in which receptors have different fates. It is not clear whether lateral diffusion can adequately explain receptor movement into coated pits or whether some additional forces are required.

		Coated pits invaginate into the cytoplasm and pinch off to form coated vesicles. Clathrin forms an outer polyhedral layer on clathrin-coated vesicles, and the adaptins recognise the appropriate sequences in the cytoplasmic domains of receptors that are to be internalised, immobilising the receptor in the pit. As a result, the receptor is retained by the coated vesicle when it pinches off from the plasma membrane. These vesicles move to early endosomes, fuse with the target membrane and release their content. The immediate destination for endocytic clathrin-coated vesicles is the endosome, a rather heterogeneous structure consisting of membrane-bound tubules and vesicles. Early endosomes lie just beneath the plasma membrane and are reached by the internalised proteins within about a minute. By comparison, late endosomes are closer to the nucleus and are reached within 5–10 minutes.

		The early endosomes provide the main location for sorting proteins on the endocytic pathway. The interior of the endosome is acidic (pH < 6), which is important in determining the fate of proteins taken up by endocytosis. For example, the fate of a receptor–ligand complex depends on its response to the acidic environment of the endosome. Exposure to a low pH environment changes the conformation of the external domain of receptors, causing the ligand to be released and/or changing the structure of the ligand (e.g. transferrin). But the receptor must not become irreversibly denatured by the acidic environment, and the presence of multiple disulfide bridges in the external domain may play an important role in maintaining stability.

		Transport to the lysosomes is the default pathway and applies to any material that does not possess a signal specifically directing it elsewhere. The lysosomes contain the cellular supply of hydrolytic enzymes, which are responsible for degradation of the macromolecules. Like the endosome, the lysosomal lumen is acidic (pH ~ 5). There are two routes to the lysosomes. Proteins internalised from the plasma membrane may be directed via the early endosome to the late endosome. Newly synthesised proteins may be directed from the trans Golgi via the late endosome, as already described. The relationship between the various types of endosome and lysosome is not clear. Vesicles may be used to transport proteins along the pathways from one structure to the next, or early endosomes may mature into late endosomes, which in turn mature into lysosomes. Regardless of the sequence, the pathway is unidirectional and many proteins that have left the early endosome for the late endosome will end up in the lysosomes.

		6.3 Uncoupling and receptor recycling

		Receptors that have been directed to the early endosome generally behave in one of two ways. They may return to the plasma membrane by vesicular transport or they may be transported to the lysosomes, where they are degraded. Rapid recycling of receptors in general occurs for receptors that bring ligand into the cell, whereas receptors involved in signal transduction are usually degraded. Note that these are generalisations and specific receptors may take different routes through the cell.

		Two possible fates for a receptor–ligand complex in which the receptor may return to the plasma membrane are:

		
				
				The receptor and ligand both recycle. The transferrin receptor provides the classic example of this pathway (see Figure 12). A transferrin receptor recycles every 15–20 minutes and has a half-life of about 30 hours.

			

				
				The receptor recycles to the surface in coated vesicles while the ligand is degraded. This pathway is used by receptors that transport ligand into cells at high rates. A receptor recycles every 1–20 minutes and can undertake about 100 cycles during its lifetime of around 20 hours.

			

		

		The classic example of this latter pathway is the LDL receptor, whose ligand is the plasma low-density lipoprotein apolipoproteins E and B (collectively known as LDLs). For example, Apo-B is a large protein (M
			r ~ 500,000) that carries cholesterol and cholesterol esters. The LDL is released from its receptor in the endosome and the receptor recycles to the surface to be used again. The LDL, having released cholesterol for use by the cell, is sent on to the lysosomes, where it is degraded. This represents the major route for removing cholesterol from the circulation, and people with mutations in the gene encoding the LDL receptor accumulate large amounts of plasma cholesterol, which causes the disease known as familial hypercholesterolemia. In fact, characterisation of the internalisation defect provided evidence that entry into coated pits is needed for receptor-mediated endocytosis of LDL. In cells from human patients with such defects in the LDL receptor, the receptors gather in small clusters over the plasma membrane and cannot enter the coated pits. The mutations responsible for this type of defect all affect the cytoplasmic domain of the receptor that mediates endocytosis.

		Two possible fates for a receptor–ligand complex in which the receptor does not return to the plasma membrane are:

		
				
				The receptor and ligand are both degraded. The epidermal growth factor (EGF) receptor binds its ligand (a small polypeptide), and is internalised. Although EGF and its receptor appear to dissociate at low pH, they are both carried to the lysosomes, where they are degraded (see Figure 12).

			

				
				The receptor and ligand are transported elsewhere. This pathway is seen in some polarised cells in which the receptor–ligand complex is taken up at one cell surface, and then released at another (e.g. the transport of IgA, see Figure 14). Other pathways have been described for specific receptors, including recycling between the cell membrane, endosomes and the Golgi network.

			

		

		6.4 Phagocytosis

		Phagocytosis in vertebrates and invertebrates is conducted primarily by specialised cells such as macrophages, monocytes and neutrophils, which internalise large pathogens such as bacteria and yeast, or large debris, such as the remnants of dead cells or arterial deposits of fat. Material that has been internalised by phagocytosis forms a phagocytic vacuole (phagosome) and will eventually be degraded when lysosomes fuse with the phagosome to form a phagolysosome, releasing their digestive enzymes into the vacuole (Figure 37). However, the way that a phagocyte responds to phagocytosed material depends very much on the nature of the material and the way in which it is recognised before internalisation. For example, bacteria are recognised by the phagocyte as potentially dangerous and they trigger the cell to direct cytotoxic molecules against the internalised bacteria, before digestion in the phagolysosome. Phagocytosis by this pathway activates the phagocyte, which releases cytokines that signal local inflammation. In contrast, debris from cells that have died as part of the normal process of cell turnover, are phagocytosed and degraded, but do not induce the release of cytotoxic molecules, nor do they induce inflammation.

		
			[image:]
		

		
			Figure 37 Electron micrograph of a phagocyte (a neutrophil) that has internalised a yeast cell. The yeast cell is enclosed within a membrane-bound phagosome, and lysosomes (arrowed) are fusing with the phagosome to form a phagolysosome.
		

		Let us look first at the phagocytosis of apoptotic cells. A molecule that is essential for the successful endocytosis of dying cells is phosphatidylserine.

		Exposure of phosphatidylserine occurs on the outer leaflet of the plasma membrane when cells die by apoptosis. Macrophages have a conserved receptor for phosphatidylserine as well as a number of ‘scavenger receptors’, which can bind to a variety of other cellular debris. These receptors promote the uptake of dead cells, but crucially, phagocytosis of such debris is associated with the release of cytokines that suppress inflammation. Since apoptosis is a normal physiological process, there is no requirement for the macrophage to signal an inflammatory reaction.

		Contrast this with the phagocytosis of pathogens, which are recognised by binding to Fc receptors (Antibody receptors) and C3b receptors. (Antibody and C3b are immune system molecules that specifically bind to foreign material.) Some classes of Fc receptors have intracellular domains, which become phosphorylated when the receptor is ligated with antibody. As a consequence, material phagocytosed by these receptors activates the cell and causes it to generate reactive oxidative compounds (e.g. hydrogen peroxide) in the phagosome (Figure 38).

		
			[image:]
		

		
			Figure 38 Phagocytosis of apoptotic cell debris (left) and pathogens (right) activates different responses in a macrophage. Apoptotic cells taken up by scavenger receptors and a proposed phosphatidylserine receptor are directed to lysosomes, and cause the cell to release cytokines TGFβ and IL-10 which tend to damp down inflammatory reactions. Pathogens such as a bacterium are tagged by antibody and C3b which bind to receptors, which promote internalisation, but also induce the secretion of reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) into the phagosomes, to damage or kill the pathogen. This process induces the release of proinflammatory cytokines, such as tumour necrosis factor (TNFα). Killed pathogens are directed to the lysosome for degradation.
		

		Phagocytosis activates GTPases of the Rho family, which cause reorganisation of the cytoskeleton as the cell extends processes around the receptor-bound material. The precise way in which this occurs depends on the receptors to which the material has been bound. For example, binding to the Fc receptor will activate a signalling cascade involving activation of Cdc42 and Rac, which causes actin assembly and the formation of cell-surface extensions that close up around the antibody-coated pathogen to engulf it. In other cases, spacious phagosomes may form where the cell extends pseudopodia that eventually fall back on the membrane to enclose the particle and a volume of extracellular fluid. Different receptors appear to trigger phagocytosis by related mechanisms but involving different GTPases.

		6.5 Lysosomes

		
			Lysosomes are membrane-bound organelles responsible for intracellular digestion of substances derived from both inside and outside the cell. Within their membrane an acidic interior (pH ~ 5) is maintained by the action of proton pumps in the membrane. The lysosomes contain a class of enzymes, hydrolases, that catalyse hydrolysis of covalent bonds in proteins, lipids, carbohydrates and nucleic acids.

		The lysosomal hydrolases break down complex molecules into simpler, low molecular mass compounds that can be reused. The enzyme content of lysosomes varies in different tissues according to the needs of the tissue.

		Lysosomes are not just involved in breaking down material arriving via endocytosis, but also degrade intracellular debris, such as defective organelles and macromolecules. Molecules destined to be degraded are tagged (most frequently by ubiquitination) and then taken up by lysosomes, or are first encapsulated within endosomes that fuse with lysosomes. This process is called autophagy. Products of lysosomal degradation are released from lysosomes into the cytosol and are re-used by the cell. Material that cannot be digested accumulates in vesicles called residual bodies, whose contents are removed from the cell by exocytosis. Some residual bodies contain high concentrations of heterogenous pigmented substances, including polyunsaturated fatty acids and proteins, called lipofucsin or ‘age pigment’. Under particular conditions some lysosomal enzymes are secreted from the cell for the digestion of extracellular material in connective tissue.

		Question

		
			What do you suppose is the consequence of a genetic deficiency in individual lysosomal enzymes?

			
				
					
					Show
 answer
				

			

		

		The deficiencies result in so-called ‘lysosomal storage diseases’. What accumulates depends on which type of enzyme is deficient. For example, the lack of some endoglycosidases leads to the accumulation of heparan sulfate-containing glycoproteins. As a consequence the undegraded molecules accumulate in tissues and cause damage, particularly in the brain where they produce loss of neurons and progressive dementia. Most of these conditions are rare but extremely serious, and affected individuals often die in childhood (Figure 39).

		
			[image:]
		

		
			Figure 39 A section of brain tissue, stained with haematoxylin and eosin, from a patient who died of type-A Niemann–Pick disease, an autosomal recessive condition that causes progressive neural damage in children. In this disease, the enzyme responsible for one of the steps in the breakdown of sphingomyelin is absent, causing accumulation of sphingolipids. Note the numerous abnormal distended neurons (arrows).
		

		6.6 Special endosomal compartments

		Different cell types may have specialised endosomal compartments related to their specific functions. In this section we are going to look at just one example of this, the pathway of antigen processing and presentation that occurs in a number of different types of leukocyte, including B cells, the lymphocytes that make antibodies.

		In order to synthesise antibodies, B cells interact with another class of lymphocyte, a T helper cell. To do this the B cell has to degrade foreign material that it has internalised and present antigen fragments to the T cell. These steps, called antigen processing and antigen presentation, play a central role in the induction of the immune response. As you read the following paragraphs, refer to Figure 40.

		
			[image:]
		

		
			Figure 40 Pathways of antigen presentation in a B cell. Antigen is bound to the surface antibody on the B cell, internalised and directed to a compartment where it is degraded by lysosomal enzymes, and moves to the MIIC compartment. MHC class II molecules, with an associated invariant chain, move from the trans Golgi network to the MIIC compartment. The invariant chain is removed by proteolysis, and a chaperone molecule (DM) is involved in loading the MHC class II molecule with a peptide. The complex is moved to the cell surface to be presented to a T cell.
		

		The T cell recognises small peptide fragments that are non-covalently bound to molecules encoded within the major histocompatibility complex (MHC class II molecules).

		Now let us look at the steps in antigen processing and presentation that occur in the B cell, and specifically at the intracellular trafficking pathways. B cells have antibody on their surface, which acts as their receptor for antigen. Antigens that become bound to the surface antibody are endocytosed and passed through the early and late endosomal compartments, and thence to a lysosomal compartment, where they are partly degraded. Partial proteolysis generates polypeptide fragments, which are diverted to an acidic endosomal compartment called the MIIC compartment. Figure 41 shows the multilamellar appearance of an MIIC compartment in a B cell.

		
			[image:]
		

		
			Figure 41 The MIIC compartment in a B cell in an ultrathin section. MHC class II molecules are identified by immuno-gold staining with 10 nm gold particles. The molecular chaperone (DM) which loads the peptide fragments onto the MHC class II molecules is identified with 15 nm gold particles. The two molecules colocalise in the MIIC compartment. (N = nucleus).
		

		Meanwhile, in the ER, the B cell synthesises MHC class II molecules, with the associated invariant chain. These are directed to the trans Golgi network where they are sorted for delivery to endosomes by a signal sequence that is located in the cytoplasmic tail of the invariant chain. While in transit from the Golgi to the endocytic pathway, the invariant chain is degraded by endosomal proteases. From the trans Golgi network, the MHC class II molecules move to the MIIC compartment, where they intersect the pathway taken by polypeptide fragments coming from the lysosomes. Cleavage of the invariant chain causes it to dissociate from the MHC class II molecule, thus exposing its peptide binding site. A type of chaperone (DM in Figure 40) located in the compartment now loads the binding site with peptide fragments coming from the lysosomes. The MHC–peptide complex is sent to the cell surface, for potential recognition by a passing T cell.

		6.7 Summary

		
				
				Endocytosed material can be taken up by macropinocytosis, via clathrin-coated pits, caveolae or non-coated vesicles. Receptor-mediated uptake is more specific and efficient, and the class of receptor also determines the subsequent intracellular trafficking route. Material taken up by receptor-mediated endocytosis may be dissociated in the endosome, directed to the lysosome or despatched for transcytosis. Monoubiquitination is an important signal for proteins to be endocytosed.

			

				
				The default pathway for endocytosed material is via the early endosome to the late endosome and thence to the lysosome. However some receptors, such as the transferrin receptor, are recycled to the plasma membrane. Other receptors may transfer material across a cell (transcytosis) or to other intracellular compartments.

			

				
				Phagocytosed material is taken up by binding to receptors that direct material to phagosomes that fuse with lysosomes to form phagolysosomes, where it is degraded. The response of the phagocytic cell depends on the nature of the phagocytosed material and on which receptors are ligated.

			

				
				Enzymes within lysosomes degrade material that has been endocytosed, as well as cellular proteins tagged with polyubiquitin, defunct organelles, polynucleotides and lipids. Deficiencies of lysosomal enzymes result in failure to break down macromolecules, and this leads to lysosomal storage diseases.

			

				
				Many cells have specialised endosomal compartments, for example the MIIC compartment in antigen-presenting cells, where antigenic peptides are loaded onto MHC class II molecules.

			

		

	
		7 Exocytosis

		7.1 Introduction

		In all eukaryotic cells, proteins that are destined for the plasma membrane or secretion are synthesised in the rough endoplasmic reticulum and enter the Golgi apparatus where they undergo a variety of post-translational modifications, before transfer to the cell surface in secretory vesicles.

		Question

		
			Which post-translational modifications of proteins occur in which compartment?

			
				
					
					Show
 answer
				

			

		

		The processes of exocytosis are closely related to those used for importing molecules into the cell. But secretory vesicles not only transport molecules to the plasma membrane, they also provide a mechanism for replenishing and remodelling the plasma membrane with lipids and proteins. The addition of membrane lipids by exocytosis balances the loss of membrane that occurs during endocytosis. Also, membranes in every cell need to be replenished continuously as they become ‘aged’.

		Question

		
			When introducing the subject of secretion we made a distinction between constitutive and regulated exocytosis or secretion. Based on your understanding of this distinction, say which of the following are constitutive and which are regulated.

			
					
					Release of the hormone adrenalin from cells in the adrenal medulla.

				

					
					Release of the neurotransmitter acetylcholine at the motor end-plate (nerve/muscle junction).

				

					
					Release of the proteolytic enzyme pepsin from gastric epithelium.

				

					
					Release of the cytokine receptor IL-4 to the surface of B cells.

				

					
					Release of the inflammatory mediator serotonin from granules in mast cells.

				

					
					Release of collagen from fibroblasts to form the extracellular matrix.

				

			

			
				
					
					Show
 answer
				

			

		

		In this section we are going to look in detail at one example of regulated secretion, the secretion and release of neurotransmitter from synaptic vesicles, and the way in which this process is triggered. We have already looked at the way in which a synaptic vesicle is coated, and at some of the molecules, such as syntaxin and synaptobrevin, that target it to active zones in the plasma membrane, and effect recovery of the vesicle components. Here we shall continue studying the release of neurotransmitters, but focus on how their release is triggered.

		While many neurotransmitters are small molecules (e.g. dopamine and acetylcholine), and are synthesised at the nerve terminal, some are polypeptides, which are synthesised in the rough ER and modified in the Golgi apparatus. However, most neuroactive peptides are not synthesised in the form in which they are eventually secreted, but as a part of a larger inactive precursor protein, or prohormone. Proteolysis of the precursor into smaller fragments, including the active peptides, occurs in the secretory vesicles and in the Golgi apparatus. In some cases, several different neuroactive peptides may be generated from a single precursor. It is possible that there is some advantage in producing small peptides from a large precursor molecule, because such peptides may be too small to carry the necessary signal sequences to send them to their destination; the precursor contains the signals for translation, Golgi processing and intracellular localisation, and the final peptides are released only when all these steps have been completed.

		After synthesis near the body of the neuron, neuroactive peptides are packed into the vesicles and transported along microtubules in the axon to the release sites, where they are stored until an appropriate stimulus arrives. The distance from the site of synthesis to the point of use at the end of the nerve axon may be considerable. Note that this mechanism to resupply the nerve terminal with neuropeptides and transmitters is a long-term process, distinct from the rapid recycling and reformation of vesicles described in Figure 26.

		7.2 Triggering systems

		In neurons, the stimulus for vesicle release is usually a depolarisation (action potential) that causes calcium to enter the nerve cell through voltage-gated calcium channels. The rise in intracellular Ca2+ concentration,[Ca+], causes the vesicle to fuse with the plasma membrane and a large amount of neurotransmitter is then released. Although the SNARE complex constitutes the essential fusion machinery of the synaptic vesicles, it is unclear exactly how fusion is triggered by calcium ions. Two elements appear to be important, synaptotagmin and CaM kinases, which are a family of kinases whose activity is critically dependent on the local [Ca2+](see Box 5).

		Question

		
			Where is synaptotagmin located?

			
				
					
					Show
 answer
				

			

		

		Synaptotagmin is most probably the major calcium sensor that mediates membrane fusion at the synapse. It has a large cytoplasmic calcium-binding domain, and it has been suggested that calcium binding to synaptotagmin induces conformational changes that cause oligomerisation (i.e. aggregation of a few molecules) leading it to interact with components of the plasma membrane and thence to the assembly and clustering of the SNARE complex.

		
			Box 5 CaM kinases (Ca2+–calmodulin-dependent kinases)

			The CaM kinases are a group of kinases that are highly sensitive to changes in intracellular [Ca2+]. Moreover they can display a ‘molecular memory’. CaM kinases are normally inactive, but are activated by a rise in [Ca2+]. At this point they autophosphorylate themselves, which locks them into an active conformation. Consequently they remain active for a while, even after [Ca2+] falls.

			The kinases also act on other proteins – different CaM kinases have different substrate specificities. Eventually phosphatases remove the phosphate groups on the CaM kinase and the enzyme becomes inactive again. This means, however, that the effect of a Ca2+ signal persists longer than the signal itself.

		

		In nervous tissue, a member of the CaM kinase family known as CaM kinase II is present at very high concentration. An important property of CaM kinases is their ability to integrate and decode Ca2+ pulses. As each action potential reaches the nerve terminal it opens the voltage-gated calcium channels, thus producing a pulse of intracellular Ca2+. An increase in the rate of action potentials produces a corresponding increase in the rate of Ca2+ pulses. Because of their molecular memory, the CaM kinases can integrate this signal over time. Moreover, because of the positive feedback in their action the kinase activity of CaM kinases is highly dependent on [Ca+]– small changes in [Ca2+] produce big changes in kinase activity. One function of CaM kinase II is to phosphorylate synapsin, a protein that controls the interaction of synaptic vesicles with the cytoskeleton and hence whether they are free to bind to the plasma membrane (Figure 42). A variety of methods using fluorescent tracers has been used to elucidate the mechanisms of vesicle fusion (Box 6).

		
			[image:]
		

		
			Figure 42 Possible mechanisms of Ca2+- dependent fusion of synaptic vesicles. Influx of Ca2+ through voltage-gated Ca2+ channels activates CaM kinase II, which phosphorylates synapsin. This releases the vesicle from its interaction with microfilaments and allows it to fuse with the plasma membrane, a process that is also mediated by Ca2+, which binds to synaptotagmin and promotes vesicle binding to syntaxin and neurexin.
		

		Question

		
			Calcium-dependent signalling controls secretion in many other cell types. Can you recall another example?

			
				
					
					Show
 answer
				

			

		

		
			Box 6 Investigating exocytosis and endocytosis

			Release of neurotransmitters from small synaptic vesicles can be visualised with a fluorescent dye called FM2–10. This dye is not fluorescent in solution but it becomes so after binding to cellular membranes. Thus, when a synaptic terminal is exposed to FM2–10, the external membrane becomes fluorescent. If the neuron is stimulated at this time, the membrane of small synaptic vesicles fuses with the plasma membrane where they encounter the FM2–10. When this vesicular membrane is recycled by endocytosis the synaptic vesicles within the nerve terminal become fluorescent. If the externally added FM2–10 is removed from the medium, the plasma membrane will lose its fluorescence but the internal synaptic vesicles will remain fluorescent. Subsequent stimulation of the nerve terminal thus allows measurement of the rate of fusion of synaptic vesicles at the synaptic junction, as shown in Figure 43.

			
				[image:]
			

			
				Figure 43 Graph demonstrating the change in fluorescence of neuronal cells loaded with FM2–10. Following stimulation the tracer is lost by release into the extracellular medium or by lateral diffusion of the dye in the neuronal membrane.
			

			Most studies of neurotransmitter release use electrophysiological measurements of the postsynaptic response to presynaptic events. However, it is also possible to follow presynaptic activity directly by measuring changes in membrane capacitance. When a synaptic vesicle or secretory granule from a non-neuronal cell fuses with the plasma membrane during exocytosis, the surface area of the secreting cell increases. Conversely, the surface area decreases when membrane is retrieved by endocytosis. These changes in the cell surface can be followed by measuring the electrical capacitance of the cell membrane (Figure 44).

			
				[image:]
			

			
				Figure 44 The measurement of membrane capacitance. The starting point is a process in which a small piece of neuronal membrane with its associated synaptic vesicle is held on a pipette tip (a). Following stimulation the vesicles fuse with the membrane, which creates a transient current (I, measured in picoamps, pA) and an increase in the surface area of the membrane, which produces a permanent increase in its capacitance (C
					m, measured in picofarads, pF). The trace from such a stimulated preparation is shown in (b).
			

		

		7.3 Regulation of secretion

		Up to this point we have made a clear distinction between constitutive secretion and regulated secretion. In reality however the border is a bit more blurred. For example, many molecules are constitutively expressed on the surface of a cell, but their expression is increased in response to a particular stimulus. In other words, surface expression is determined by both constitutive and regulated secretion. Constitutive secretion is regulated primarily at the level of protein synthesis, whereas regulated secretion is controlled at the level of release from intracellular stores.

		Question

		
			What is the essential functional difference for the cell in regulating the surface expression of molecules by one mechanism or the other? Think in terms of how long it takes a cell to respond.

			
				
					
					Show
 answer
				

			

		

		For this reason, cells that need to respond quickly to a stimulus often retain intracellular stores of molecules that can be rapidly mobilised to the cell surface. In this section, we are going to look briefly at a group of cell surface proteins called selectins, which are regulated in this way. Selectins play important roles in blood clotting and in leukocyte migration from the blood into tissues.

		Selectins are expressed on the plasma membrane of blood platelets and endothelial cells lining blood vessels as well as on leukocytes. They mediate cell-to-cell adhesion. All selectins carry an extracellular lectin domain, which allows them to interact with polymeric carbohydrates present on glycoproteins of other cells. There are three members of the selectin family, E-selectin (Endothelial), P-selectin (Platelet) and L-selectin (Leukocyte) (Figure 45), named according to the cells that express them. In practice however, expression of each selectin is not confined to just one cell type, for example both E-selectin and P-selectin are expressed on blood vessel endothelium. The function of P-selectin on endothelium is principally concerned with blood clotting, and the function of E-selectin with leukocyte migration into tissue – a component of inflammation. When an endothelial cell is activated by a suitable stimulus, the surface expression of P-selectin increases within minutes, and the expression of E-selectin increases over 2–8 h.

		Question

		
			Which of these two selectins is regulated at the level of protein synthesis and which by regulated secretion? Can you relate the way the cell controls the expression of its selectins to their physiological functions?

			
				
					
					Show
 answer
				

			

		

		
			[image:]
		

		
			Figure 45 Molecules of the selectin family have an N-terminal lectin domain, an epidermal growth factor receptor domain (EGF-R) and a variable number of complement control protein (CCP) domains. They all bind carbohydrate ligands that may be expressed on different cell types, and hence are involved in intercellular adhesion.
		

		There are numerous other examples of proteins whose expression is controlled by both constitutive production and regulated secretion. Moreover, even a protein such as insulin, whose release is controlled by regulated secretion, must be replenished by an appropriate level of protein synthesis.

		7.4 Summary

		
				
				Secretion of proteins may be constitutive or regulated. Constitutive secretion replenishes membrane lipids and proteins as part of normal cellular physiology. Cells may also release molecules to remodel their immediate environment, such as the extracellular matrix. Regulated secretion occurs in response to an external stimulus.

			

				
				Secretory vesicles are held near the membrane and released in response to a specific stimulus.

			

				
				In nerve terminals, action potentials cause a rise in intracellular [Ca2+], which activates CaM kinase II to promote release of synaptic vesicles from the cytoskeleton and their fusion with the membrane. Secretion in many other cells is also controlled by intracellular [Ca2+].

			

				
				In many cases the basal expression of surface molecules is controlled by constitutive production and secretion, but release of molecules from intracellular stores can produce a rapid increase in surface expression if required.

			

		

	
		References

		Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (eds) (2002) The Molecular Biology of the Cell, 4th edn, Part IV, Chapters 10–13 and 16, Garland Science, Taylor and Francis Group.

		Altschuler, Y., Hodson, C. and Milgram, S. (2003) 'The apical compartment: trafficking pathways, regulators and scaffolding proteins', Current Opinion in Cell Biology, vol. 15, pp. 423–9.

		Conner, S. D. and Schmid, S.L. (2003) 'Regulated portals of entry into the cell', Nature, vol. 422, pp. 37–44.

		Ford, M., Mills, I., Peter, B., Vallis, Y., Praefcke, G., Evans P. and McMahon, H. (2002) 'Curvature of clathrin-coated pits driven by epsin', Nature, vol. 419, pp. 361–6.

		Jarousse, N. and Kelly, R. (2001) 'Endocytotic mechanisms in synapses', Current Opinion in Cell Biology, vol. 13, pp. 461–9.

		Kandel, E., Schwartz, J. H. and Jessel, T. (2000) Principles of Neuroscience, Part III, Chapters 10–16, MacGraw Hill.

		Pollard, T. D. and Earnshaw, C. (2002) Cell Biology, Chapters 17–24, Elsevier Science.

		Solemina, M. and Gerdes, H.-H. (2003) 'Secretory granules', Trends in Cell Biology, vol. 13, pp. 399–402.

		Szule, J. and Coorssen, J. (2003) 'Revisiting the role of SNAREs in exocytosis and membrane fusion', Biochimica et Biophysica Acta, vol. 1641, pp. 121–35.

		Troub, L. M. (2001) 'Endocytosis: molecules, membranes and movement', Cell, vol. 10, pp. 272–4.

		Vincent, J.-P. (2003) 'Membranes, trafficking and signalling during animal development', Cell, vol. 112, pp. 745–74.

		Acknowledgements

		Grateful acknowledgement is made to the following:

		The content acknowledged below is Proprietary and used under licence (not subject to Creative Commons licence). See Terms and Conditions.

		Figures

		
			
				Figures 4 and 8
			: Alberts, B. et al. (2002) Molecular Biology of the Cell, 4th edn, Garland Science, reproduced with permission of Routledge/Taylor and Francis Books, Inc.

		
			
				Figures 15, 16, 17a, 17b, 21
			: Taken from www.bioxentrum.unibas.ch/Teaching/Lectures/Pieters/Vesicular_Transport.pdf
		

		
			
				Figure 17c
			: Alberts, B. et al (2002) Molecular Biology of the Cell, 3rd edn, Garland Publishing Inc., Chapter 13, ‘Vesicular traffic in the secretory and endocytic pathways’, reprinted by permission of Hodder Headlines plc.

		
			
				Figure 18
			: Perry, M.M. and Gilbert, A.B. (1979) ‘Yolk transport in the ovarian follicle of the hen …’, Journal of Cell Science, vol. 114, pp. 3413–18, Company of Biologists Limited.

		
			
				Figure 20
			: Reprinted from De Camilli, P. et al. (1995) ‘The function of dynamin in endocytosis’, Current Opinion in Neurobiology, vol. 5, p. 562, copyright © 1995, with permission from Elsevier.

		
			
				Figure 22
			: Courtesy of Lelio Orci.

		
			
				Figure 35
			: Conner, S.D. and Schmid, S.L. (2003) ‘Regulated portals of entry into the cell’, Nature, vol. 422, 6 March 2003, copyright © Nature Publishing Group.

		
			
				Figures 36, 39
			: Riesman, H. (2002) ‘The ubiquity connection’, Nature, vol. 416, 28 March 2002, copyright © Nature Publishing Group.

		
			
				Figure 37
			: Reprinted from Roitt, I.M. (1993) ‘Fusing granule discharges contents into the phagocytic vacuole’, in Essential Immunobiology, 3rd edn, by permission of the publisher Mosby.

		
			
				Figure 41
			: Reprinted from Roitt, I .M. et al (2001) Immunology, 6th edn, p. 111, Fig 6.13, Mosby Inc, with permission from Elsevier.

		
			
				Figure 43
			: Kavalali, E.T. (2002) ‘SNARE interactions in membrane trafficking: a perspective from mammalian central synapses’, BioEssays, vol. 24, no. 10, copyright © 2002, used by permission of Wiley-Liss Inc., a subsidiary of John Wiley and Sons Inc.

		
			
				Figure 45
			: Roitt, I., Brostoff, J and Male, D. (2001) Immunobiology, 6th edn, Mosby, an imprint of Elsevier Science Limited.

		Tables

		
			
				Tables 2, 5
			: Alberts, B. et al (2002) Molecular Biology of the Cell, 4th edn, Garland Science, reproduced with permission of Routledge/Taylor and Francis Books, Inc.

		Unit image

		© Science Photo Library

		All other material contained within this unit originated at the Open University

	
		Version

		ID: S377_3
			
Module code: S377_3
			
 Build: 1.5.0
			
Stamp: 2011-01-07T17:37:38+00:00
		

		Copyright © 2011 The Open University

	OEBPS/images/s377book3chapter12_f026hi.jpg
cvrosoL carly endosome.

recycling vesicle ,

ARE
Avido

clathrin ’\ /

e\

SNARE complex SNARE symapotagmin
complex

synapic vesicle

SNAP2S

OEBPS/copyright.html

		Copyright © 2011 The Open University
	

OEBPS/images/s377book3chapter12_f005hi.jpg

OEBPS/js/jquery.columnmanager.js
/*

 * jQuery columnManager plugin

 * Version: 0.2.5

 *

 * Copyright (c) 2007 Roman Weich

 * http://p.sohei.org

 *

 * Dual licensed under the MIT and GPL licenses

 * (This means that you can choose the license that best suits your project, and use it accordingly):

 * http://www.opensource.org/licenses/mit-license.php

 * http://www.gnu.org/licenses/gpl.html

 *

 * Changelog:

 * v 0.2.5 - 2008-01-17

 *	-change: added options "show" and "hide". with these functions the user can control the way to show or hide the cells

 *	-change: added $.fn.showColumns() and $.fn.hideColumns which allows to explicitely show or hide any given number of columns

 * v 0.2.4 - 2007-12-02

 *	-fix: a problem with the on/off css classes when manually toggling columns which were not in the column header list

 *	-fix: an error in the createColumnHeaderList function incorectly resetting the visibility state of the columns

 *	-change: restructured some of the code

 * v 0.2.3 - 2007-12-02

 *	-change: when a column header has no text but some html markup as content, the markup is used in the column header list instead of "undefined"

 * v 0.2.2 - 2007-11-27

 *	-change: added the ablity to change the on and off CSS classes in the column header list through $().toggleColumns()

 *	-change: to avoid conflicts with other plugins, the table-referencing data in the column header list is now stored as an expando and not in the class name as before

 * v 0.2.1 - 2007-08-14

 *	-fix: handling of colspans didn't work properly for the very first spanning column

 *	-change: altered the cookie handling routines for easier management

 * v 0.2.0 - 2007-04-14

 *	-change: supports tables with colspanned and rowspanned cells now

 * v 0.1.4 - 2007-04-11

 *	-change: added onToggle option to specify a custom callback function for the toggling over the column header list

 * v 0.1.3 - 2007-04-05

 *	-fix: bug when saving the value in a cookie

 *	-change: toggleColumns takes a number or an array of numbers as argument now

 * v 0.1.2 - 2007-04-02

 * 	-change: added jsDoc style documentation and examples

 * 	-change: the column index passed to toggleColumns() starts at 1 now (conforming to the values passed in the hideInList and colsHidden options)

 * v 0.1.1 - 2007-03-30

 * 	-change: changed hideInList and colsHidden options to hold integer values for the column indexes to be affected

 *	-change: made the toggleColumns function accessible through the jquery object, to toggle the state without the need for the column header list

 *	-fix: error when not finding the passed listTargetID in the dom

 * v 0.1.0 - 2007-03-27

 */

(function($)

{

	var defaults = {

		listTargetID : null,

		onClass : '',

		offClass : '',

		hideInList: [],

		colsHidden: [],

		saveState: false,

		onToggle: null,

		show: function(cell){

			showCell(cell);

		},

		hide: function(cell){

			hideCell(cell);

		}

	};

	

	var idCount = 0;

	var cookieName = 'columnManagerC';

	/**

	 * Saves the current state for the table in a cookie.

	 * @param {element} table	The table for which to save the current state.

	 */

	var saveCurrentValue = function(table)

	{

		var val = '', i = 0, colsVisible = table.cMColsVisible;

		if (table.cMSaveState && table.id && colsVisible && $.cookie)

		{

			for (; i < colsVisible.length; i++)

			{

				val += (colsVisible[i] == false) ? 0 : 1;

			}

			$.cookie(cookieName + table.id, val, {expires: 9999});

		}

	};

	

	/**

	 * Hides a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to hide.

	 */

	var hideCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(hideCell = function(c)

			{

				c.style.setAttribute('display', 'none');

			})(cell);

		}

		else

		{

			(hideCell = function(c)

			{

				c.style.display = 'none';

			})(cell);

		}

	};

	/**

	 * Makes a cell visible again.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to show.

	 */

	var showCell = function(cell)

	{

		if (jQuery.browser.msie)

		{

			(showCell = function(c)

			{

				c.style.setAttribute('display', 'block');

			})(cell);

		}

		else

		{

			(showCell = function(c)

			{

				c.style.display = 'table-cell';

			})(cell);

		}

	};

	/**

	 * Returns the visible state of a cell.

	 * It rewrites itself after the browsercheck!

	 * @param {element} cell	The cell to test.

	 */

	var cellVisible = function(cell)

	{

		if (jQuery.browser.msie)

		{

			return (cellVisible = function(c)

			{

				return c.style.getAttribute('display') != 'none';

			})(cell);

		}

		else

		{

			return (cellVisible = function(c)

			{

				return c.style.display != 'none';

			})(cell);

		}

	};

	/**

	 * Returns the cell element which has the passed column index value.

	 * @param {element} table	The table element.

	 * @param {array} cells		The cells to loop through.

	 * @param {integer} col	The column index to look for.

	 */

	var getCell = function(table, cells, col)

	{

		for (var i = 0; i < cells.length; i++)

		{

			if (cells[i].realIndex === undefined) //the test is here, because rows/cells could get added after the first run

			{

				fixCellIndexes(table);

			}

			if (cells[i].realIndex == col)

			{

				return cells[i];

			}

		}

		return null;

	};

	/**

	 * Calculates the actual cellIndex value of all cells in the table and stores it in the realCell property of each cell.

	 * Thats done because the cellIndex value isn't correct when colspans or rowspans are used.

	 * Originally created by Matt Kruse for his table library - Big Thanks! (see http://www.javascripttoolbox.com/)

	 * @param {element} table	The table element.

	 */

	var fixCellIndexes = function(table)

	{

		var rows = table.rows;

		var len = rows.length;

		var matrix = [];

		for (var i = 0; i < len; i++)

		{

			var cells = rows[i].cells;

			var clen = cells.length;

			for (var j = 0; j < clen; j++)

			{

				var c = cells[j];

				var rowSpan = c.rowSpan || 1;

				var colSpan = c.colSpan || 1;

				var firstAvailCol = -1;

				if (!matrix[i])

				{

					matrix[i] = [];

				}

				var m = matrix[i];

				// Find first available column in the first row

				while (m[++firstAvailCol]) {}

				c.realIndex = firstAvailCol;

				for (var k = i; k < i + rowSpan; k++)

				{

					if (!matrix[k])

					{

						matrix[k] = [];

					}

					var matrixrow = matrix[k];

					for (var l = firstAvailCol; l < firstAvailCol + colSpan; l++)

					{

						matrixrow[l] = 1;

					}

				}

			}

		}

	};

	

	/**

	 * Manages the column display state for a table.

	 *

	 * Features:

	 * Saves the state and recreates it on the next visit of the site (requires cookie-plugin).

	 * Extracts all headers and builds an unordered() list out of them, where clicking an list element will show/hide the matching column.

	 *

	 * @param {map} options		An object for optional settings (options described below).

	 *

	 * @option {string} listTargetID	The ID attribute of the element the column header list will be added to.

	 *						Default value: null

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 *						Works only with listTargetID set!

	 *						Default value: ''

	 * @option {array} hideInList	An array of numbers. Each column with the matching column index won't be displayed in the column header list.

	 *						Index starting at 1!

	 *						Default value: [] (all columns will be included in the list)

	 * @option {array} colsHidden	An array of numbers. Each column with the matching column index will get hidden by default.

	 *						The value is overwritten when saveState is true and a cookie is set for this table.

	 *						Index starting at 1!

	 *						Default value: []

	 * @option {boolean} saveState	Save a cookie with the sate information of each column.

	 *						Requires jQuery cookie plugin.

	 *						Default value: false

	 * @option {function} onToggle	Callback function which is triggered when the visibility state of a column was toggled through the column header list.

	 *						The passed parameters are: the column index(integer) and the visibility state(boolean).

	 *						Default value: null

	 *

	 * @option {function} show		Function which is called to show a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to block (visible)

	 *

	 * @option {function} hide		Function which is called to hide a table cell.

	 *						The passed parameters are: the table cell (DOM-element).

	 *						Default value: a functions which simply sets the display-style to none (invisible)

	 *

	 * @example $('#table').columnManager([listTargetID: "target", onClass: "on", offClass: "off"]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and sets the CSS classes for the visible("on") and hidden("off") states.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", hideInList: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" but without the first and fourth column.

	 *

	 * @example $('#table').columnManager([listTargetID: "target", colsHidden: [1, 4]]);

	 * @desc Creates the column header list in the element with the ID attribute "target" and hides the first and fourth column by default.

	 *

	 * @example $('#table').columnManager([saveState: true]);

	 * @desc Enables the saving of visibility informations for the columns. Does not create a column header list! Toggle the columns visiblity through $('selector').toggleColumns().

	 *

	 * @type jQuery

	 *

	 * @name columnManager

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.columnManager = function(options)

	{

		var settings = $.extend({}, defaults, options);

		/**

		 * Creates the column header list.

		 * @param {element} table	The table element for which to create the list.

		 */

		var createColumnHeaderList = function(table)

		{

			if (!settings.listTargetID)

			{

				return;

			}

			var $target = $('#' + settings.listTargetID);

			if (!$target.length)

			{

				return;

			}

			//select headrow - when there is no thead-element, use the first row in the table

			var headRow = null;

			if (table.tHead && table.tHead.length)

			{

				headRow = table.tHead.rows[0];

			}

			else if (table.rows.length)

			{

				headRow = table.rows[0];

			}

			else

			{

				return; //no header - nothing to do

			}

			var cells = headRow.cells;

			if (!cells.length)

			{

				return; //no header - nothing to do

			}

			//create list in target element

			var $list = null;

			if ($target.get(0).nodeName.toUpperCase() == 'UL')

			{

				$list = $target;

			}

			else

			{

				$list = $('');

				$target.append($list);

			}

			var colsVisible = table.cMColsVisible;

			//create list elements from headers

			for (var i = 0; i < cells.length; i++)

			{

				if ($.inArray(i + 1, settings.hideInList) >= 0)

				{

					continue;

				}

				colsVisible[i] = (colsVisible[i] !== undefined) ? colsVisible[i] : true;

				var text = $(cells[i]).text(),

					addClass;

				if (!text.length)

				{

					text = $(cells[i]).html();

					if (!text.length) //still nothing?

					{

						text = 'No label'; // GNS - was: 'undefined'

					}

				}

				if (colsVisible[i] && settings.onClass)

				{

					addClass = settings.onClass;

				}

				else if (!colsVisible[i] && settings.offClass)

				{

					addClass = settings.offClass;

				}

				var $li = $('<li class="' + addClass + '">' + text + '').click(toggleClick);

				$li[0].cmData = {id: table.id, col: i};

				$list.append($li);

			}

			table.cMColsVisible = colsVisible;

		};

		/**

		 * called when an item in the column header list is clicked

		 */

		var toggleClick = function()

		{

			//get table id and column name

			var data = this.cmData;

			if (data && data.id && data.col >= 0)

			{

				var colNum = data.col,

					$table = $('#' + data.id);

				if ($table.length)

				{

					$table.toggleColumns([colNum + 1], settings);

					//set the appropriate classes to the column header list

					var colsVisible = $table.get(0).cMColsVisible;

					if (settings.onToggle)

					{

						settings.onToggle.apply($table.get(0), [colNum + 1, colsVisible[colNum]]);

					}

				}

			}

		};

		/**

		 * Reads the saved state from the cookie.

		 * @param {string} tableID	The ID attribute from the table.

		 */

		var getSavedValue = function(tableID)

		{

			var val = $.cookie(cookieName + tableID);

			if (val)

			{

				var ar = val.split('');

				for (var i = 0; i < ar.length; i++)

				{

					ar[i] &= 1;

				}

				return ar;

			}

			return false;

		};

 return this.each(function()

 {

			this.id = this.id || 'jQcM0O' + idCount++; //we need an id for the column header list stuff

			var i,

				colsHide = [],

				colsVisible = [];

			//fix cellIndex values

			fixCellIndexes(this);

			//some columns hidden by default?

			if (settings.colsHidden.length)

			{

				for (i = 0; i < settings.colsHidden.length; i++)

				{

					colsVisible[settings.colsHidden[i] - 1] = true;

					colsHide[settings.colsHidden[i] - 1] = true;

				}

			}

			//get saved state - and overwrite defaults

			if (settings.saveState)

			{

				var colsSaved = getSavedValue(this.id);

				if (colsSaved && colsSaved.length)

				{

					for (i = 0; i < colsSaved.length; i++)

					{

						colsVisible[i] = true;

						colsHide[i] = !colsSaved[i];

					}

				}

				this.cMSaveState = true;

			}

			//assign initial colsVisible var to the table (needed for toggling and saving the state)

			this.cMColsVisible = colsVisible;

			//something to hide already?

			if (colsHide.length)

			{

				var a = [];

				for (i = 0; i < colsHide.length; i++)

				{

					if (colsHide[i])

					{

						a[a.length] = i + 1;

					}

				}

				if (a.length)

				{

					$(this).toggleColumns(a);

				}

			}

			//create column header list

			createColumnHeaderList(this);

 });

	};

	/**

	 * Shows or hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. The display state(visible/hidden) for each column with the matching column index will get toggled.

	 *							Column index starts at 1! (see the example)

	 *

	 * @param {map} options		An object for optional settings to handle the on and off CSS classes in the column header list (options described below).

	 * @option {string} listTargetID	The ID attribute of the element with the column header.

	 * @option {string} onClass		A CSS class that is used on the items in the column header list, for which the column state is visible

	 * @option {string} offClass		A CSS class that is used on the items in the column header list, for which the column state is hidden.

	 * @option {function} show		Function which is called to show a table cell.

	 * @option {function} hide		Function which is called to hide a table cell.

	 *

	 * @example $('#table').toggleColumns([2, 4], {hide: function(cell) { $(cell).fadeOut("slow"); }});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for the columns "two" and "four". Use custom function to fade the cell out when hiding it.

	 *

	 * @example $('#table').toggleColumns(3, {listTargetID: 'theID', onClass: 'vis'});

	 * @before <table id="table">

	 * 			<thead>

	 * 				<th>one</th

	 * 				<th>two</th

	 * 				<th>three</th

	 * 				<th>four</th

	 * 			</thead>

	 * 		 </table>

	 * @desc Toggles the visible state for column "three" and sets or removes the CSS class 'vis' to the appropriate column header according to the visibility of the column.

	 *

	 * @type jQuery

	 *

	 * @name toggleColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.toggleColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i, toggle, di,

				rows = this.rows,

				colsVisible = this.cMColsVisible;

			if (!columns)

				return;

			if (columns.constructor == Number)

				columns = [columns];

			if (!colsVisible)

				colsVisible = this.cMColsVisible = [];

			//go through all rows in the table and hide the cells

			for (i = 0; i < rows.length; i++)

			{

				var cells = rows[i].cells;

				for (var k = 0; k < columns.length; k++)

				{

					var col = columns[k] - 1;

					if (col >= 0)

					{

						//find the cell with the correct index

						var c = getCell(this, cells, col);

						//cell not found - maybe a previous one has a colspan? - search it!

						if (!c)

						{

							var cco = col;

							while (cco > 0 && !(c = getCell(this, cells, --cco))) {} //find the previous cell

							if (!c)

							{

								continue;

							}

						}

						//set toggle direction

						if (colsVisible[col] == undefined)//not initialized yet

						{

							colsVisible[col] = true;

						}

						if (colsVisible[col])

						{

							toggle = cmo && cmo.hide ? cmo.hide : hideCell;

							di = -1;

						}

						else

						{

							toggle = cmo && cmo.show ? cmo.show : showCell;

							di = 1;

						}

						if (!c.chSpan)

						{

							c.chSpan = 0;

						}

						//the cell has a colspan - so dont show/hide - just change the colspan

						if (c.colSpan > 1 || (di == 1 && c.chSpan && cellVisible(c)))

						{

							//is the colspan even reaching this cell? if not we have a rowspan -> nothing to do

							if (c.realIndex + c.colSpan + c.chSpan - 1 < col)

							{

								continue;

							}

							c.colSpan += di;

							c.chSpan += di * -1;

						}

						else if (c.realIndex + c.chSpan < col)//a previous cell was found, but doesn't affect this one (rowspan)

						{

							continue;

						}

						else //toggle cell

						{

							toggle(c);

						}

					}

				}

			}

			//set the colsVisible var

			for (i = 0; i < columns.length; i++)

			{

				this.cMColsVisible[columns[i] - 1] = !colsVisible[columns[i] - 1];

				//set the appropriate classes to the column header list, if the options have been passed

				if (cmo && cmo.listTargetID && (cmo.onClass || cmo.offClass))

				{

					var onC = cmo.onClass, offC = cmo.offClass, $li;

					if (colsVisible[columns[i] - 1])

					{

						onC = offC;

						offC = cmo.onClass;

					}

					$li = $("#" + cmo.listTargetID + " li").filter(function(){return this.cmData && this.cmData.col == columns[i] - 1;});

					if (onC)

					{

						$li.removeClass(onC);

					}

					if (offC)

					{

						$li.addClass(offC);

					}

				}

			}

			saveCurrentValue(this);

		});

	};

	/**

	 * Shows all table columns.

	 * When columns are passed through the parameter only the passed ones become visible.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will become visible.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').showColumns();

	 * @desc Sets the visibility state of all hidden columns to visible.

	 *

	 * @example $('#table').showColumns(3);

	 * @desc Show column number three.

	 *

	 * @type jQuery

	 *

	 * @name showColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.showColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = [],

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns && columns.constructor == Number)

					columns = [columns];

				for (i = 0; i < cV.length; i++)

				{

					//if there were no columns passed, show all - or else show only the columns the user wants to see

					if (!cV[i] && (!columns || $.inArray(i + 1, columns) > -1))

						cols.push(i + 1);

				}

				

				$(this).toggleColumns(cols, cmo);

			}

		});

	};

	/**

	 * Hides table columns.

	 *

	 * @param {integer|array} columns		A number or an array of numbers. Each column with the matching column index will get hidden.

	 *							Column index starts at 1!

	 *

	 * @param {map} options		An object for optional settings which will get passed to $().toggleColumns().

	 *

	 * @example $('#table').hideColumns(3);

	 * @desc Hide column number three.

	 *

	 * @type jQuery

	 *

	 * @name hideColumns

	 * @cat Plugins/columnManager

	 * @author Roman Weich (http://p.sohei.org)

	 */

	$.fn.hideColumns = function(columns, cmo)

	{

 return this.each(function()

 {

			var i,

				cols = columns,

				cV = this.cMColsVisible;

			if (cV)

			{

				if (columns.constructor == Number)

					columns = [columns];

				cols = [];

				for (i = 0; i < columns.length; i++)

				{

					if (cV[columns[i] - 1] || cV[columns[i] - 1] == undefined)

						cols.push(columns[i]);

				}

				

			}

			$(this).toggleColumns(cols, cmo);

		});

	};

})(jQuery);

OEBPS/images/s377book3chapter12_f006hi.jpg
B-tubulin

o-tubulin

OEBPS/images/s377book3chapter12_f017hi.jpg
s N

"\ clabrin

coat

(@) riskelion structure (b) costed vesicle

OEBPS/answer22.html

		Answer

		
			N-glycosylation and N-myristoylation occur in the ER. Remodelling of N-glycosyl residues and O-glycosylation occur in the Golgi network. Sulfation takes place in the trans Golgi network (Section 3).

	

OEBPS/images/s377book3chapter12_f023hi.jpg
transport vesicle

“ LSNARE
L VSNARE protein
=

aTP r\w\n r =

target membranc

OEBPS/images/s377book3chapter12_f011hi.jpg

OEBPS/images/s377book3chapter12_f042hi.jpg
SYNAPTIC VESICLE microfilament

synapsin

syntaxin neurexin

SYNAPTIC CLEFT

OEBPS/copyright-full.html

		Copyright notice

		Unless otherwise stated, this e-book is released under the terms of the “Creative Commons
 Licence”. In short, this allows you to use the e-book throughout the world
 without payment for non-commercial purposes only. Please read the Creative Commons Licence in
 full before making use of the e-book.

		You must however read these rights subject to any restrictions on use applying to the e-book
 or any part of it.

		When using the e-book you must attribute us and any identified author in accordance with the
 terms of the Creative Commons License. Each e-book has an
 “Acknowledgements” section which will identify the author/owner(s) and any
 Special Restriction(s) applying. You must take account of and abide by any restrictions set
 out in this section when using the e-book.

		This e-book also contains proprietary content which is owned by or licensed to us and which
 is not subject to the Creative Commons Licence. This content, which will be identified as
 “PROPRIETARY” include, but are not limited to, our logos and trading
 names, certain photographic and video images and sound recordings. This proprietary content is
 protected by intellectual property rights and should remain in context at all times.
 Unauthorised use of this content may constitute intellectual property infringement.

		Copyright and rights falling outside the terms of the Creative Commons Licence are retained
 or controlled by The Open University.

		Cover photograph © Henrik Jonsson.

	

OEBPS/images/s377book3chapter12_f037hi.jpg

OEBPS/images/s377book3chapter12_f015hi.jpg
membrane receptor
protein

‘membrane cargo

OEBPS/js/jquery.cookie.js
/**
 * Cookie plugin
 *
 * Copyright (c) 2006 Klaus Hartl (stilbuero.de)
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */

/**
 * Create a cookie with the given name and value and other optional parameters.
 *
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Set the value of a cookie.
 * @example $.cookie('the_cookie', 'the_value', { expires: 7, path: '/', domain: 'jquery.com', secure: true });
 * @desc Create a cookie with all available options.
 * @example $.cookie('the_cookie', 'the_value');
 * @desc Create a session cookie.
 * @example $.cookie('the_cookie', null);
 * @desc Delete a cookie by passing null as value. Keep in mind that you have to use the same path and domain
 * used when the cookie was set.
 *
 * @param String name The name of the cookie.
 * @param String value The value of the cookie.
 * @param Object options An object literal containing key/value pairs to provide optional cookie attributes.
 * @option Number|Date expires Either an integer specifying the expiration date from now on in days or a Date object.
 * If a negative value is specified (e.g. a date in the past), the cookie will be deleted.
 * If set to null or omitted, the cookie will be a session cookie and will not be retained
 * when the the browser exits.
 * @option String path The value of the path atribute of the cookie (default: path of page that created the cookie).
 * @option String domain The value of the domain attribute of the cookie (default: domain of page that created the cookie).
 * @option Boolean secure If true, the secure attribute of the cookie will be set and the cookie transmission will
 * require a secure protocol (like HTTPS).
 * @type undefined
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */

/**
 * Get the value of a cookie with the given name.
 *
 * @example $.cookie('the_cookie');
 * @desc Get the value of a cookie.
 *
 * @param String name The name of the cookie.
 * @return The value of the cookie.
 * @type String
 *
 * @name $.cookie
 * @cat Plugins/Cookie
 * @author Klaus Hartl/klaus.hartl@stilbuero.de
 */
jQuery.cookie = function(name, value, options) {
 if (typeof value != 'undefined') { // name and value given, set cookie
 options = options || {};
 if (value === null) {
 value = '';
 options.expires = -1;
 }
 var expires = '';
 if (options.expires && (typeof options.expires == 'number' || options.expires.toUTCString)) {
 var date;
 if (typeof options.expires == 'number') {
 date = new Date();
 date.setTime(date.getTime() + (options.expires * 24 * 60 * 60 * 1000));
 } else {
 date = options.expires;
 }
 expires = '; expires=' + date.toUTCString(); // use expires attribute, max-age is not supported by IE
 }
 // CAUTION: Needed to parenthesize options.path and options.domain
 // in the following expressions, otherwise they evaluate to undefined
 // in the packed version for some reason...
 var path = options.path ? '; path=' + (options.path) : '';
 var domain = options.domain ? '; domain=' + (options.domain) : '';
 var secure = options.secure ? '; secure' : '';
 document.cookie = [name, '=', encodeURIComponent(value), expires, path, domain, secure].join('');
 } else { // only name given, get cookie
 var cookieValue = null;
 if (document.cookie && document.cookie != '') {
 var cookies = document.cookie.split(';');
 for (var i = 0; i < cookies.length; i++) {
 var cookie = jQuery.trim(cookies[i]);
 // Does this cookie string begin with the name we want?
 if (cookie.substring(0, name.length + 1) == (name + '=')) {
 cookieValue = decodeURIComponent(cookie.substring(name.length + 1));
 break;
 }
 }
 }
 return cookieValue;
 }
};

OEBPS/answer01.html

		Answer

		The advantage of assembling the protofilaments non-covalently is that they can be disassembled and reassembled relatively quickly by loss or addition of monomers to the ends. This allows greater flexibility to the cell than would be provided by a fixed (covalently linked) network.

	

OEBPS/answer21.html

		Answer

		People who are genetically deficient in lysosomal enzymes are unable to break down particular macromolecules that have been directed to the lysosome for recycling. The macromolecules accumulate in the cell, or they may be released to accumulate in the extracellular space.

	

OEBPS/table02.html

		Table 2 Relative amounts of membrane in two eukaryotic cells (% of total membrane, by surface area).

		
			
				
							Membrane type
							Hepatocyte
							Pancreatic exocrine cell
				

			
			
				
							plasma membrane
							2%
							5%
				

				
							rough ER
							35%
							60%
				

				
							smooth ER
							16%
							<1%
				

				
							Golgi apparatus
							7%
							10%
				

				
							mitochondrial innermembrane
							32%
							17%
				

				
							mitochondrial outermembrane
							7%
							4%
				

				
							nuclear membrane
							0.2%
							0.7%
				

				
							lysosomes, peroxisomes, endosomes, secretory vesicles
							<2%
							<4%
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/s377book3chapter12_f031hi.jpg

OEBPS/images/s377book3chapter12_f022hi.jpg

OEBPS/images/s377book3chapter12_f016hi.jpg
plasma.
membrane

i @ / @\
S @

clathrin \)\O/ O

ko g) A

nd .’ §
o A

e " A e
o ol ()

= %@

¥ %

COPII
b /
= :
7 c)\
‘COPI subunits

COPII subunits

intermediate compartment n

OEBPS/images/s377book3chapter12_f002hi.jpg

OEBPS/images/s377book3chapter12_f018hi.jpg

OEBPS/answer04.html

		Answer

		The centromeres of the chromosomes have capping proteins that attach to microtubules emanating from the mitotic spindles. These serve to stabilise the microtubules during mitosis and to act as attachment points on the chromosomes.

	

OEBPS/images/s377book3chapter12_f008hi.jpg
N

@
N

® N

eight tetramers twisted into a rope-Tke ilament

M

‘aehelical region in monomer

E coiled-coil dimer %

W

10nm

c

13

&

OEBPS/js/jquery-latest.js
/*!
 * jQuery JavaScript Library v1.4.2
 * http://jquery.com/
 *
 * Copyright 2010, John Resig
 * Dual licensed under the MIT or GPL Version 2 licenses.
 * http://jquery.org/license
 *
 * Includes Sizzle.js
 * http://sizzlejs.com/
 * Copyright 2010, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 *
 * Date: Sat Feb 13 22:33:48 2010 -0500
 */
(function(window, undefined) {

// Define a local copy of jQuery
var jQuery = function(selector, context) {
		// The jQuery object is actually just the init constructor 'enhanced'
		return new jQuery.fn.init(selector, context);
	},

	// Map over jQuery in case of overwrite
	_jQuery = window.jQuery,

	// Map over the $ in case of overwrite
	_$ = window.$,

	// Use the correct document accordingly with window argument (sandbox)
	document = window.document,

	// A central reference to the root jQuery(document)
	rootjQuery,

	// A simple way to check for HTML strings or ID strings
	// (both of which we optimize for)
	quickExpr = /^[^<]*(<[\w\W]+>)[^>]*$|^#([\w-]+)$/,

	// Is it a simple selector
	isSimple = /^.[^:#\[\.,]*$/,

	// Check if a string has a non-whitespace character in it
	rnotwhite = /\S/,

	// Used for trimming whitespace
	rtrim = /^(\s|\u00A0)+|(\s|\u00A0)+$/g,

	// Match a standalone tag
	rsingleTag = /^<(\w+)\s*\/?>(?:<\/\1>)?$/,

	// Keep a UserAgent string for use with jQuery.browser
	userAgent = navigator.userAgent,

	// For matching the engine and version of the browser
	browserMatch,
	
	// Has the ready events already been bound?
	readyBound = false,
	
	// The functions to execute on DOM ready
	readyList = [],

	// The ready event handler
	DOMContentLoaded,

	// Save a reference to some core methods
	toString = Object.prototype.toString,
	hasOwnProperty = Object.prototype.hasOwnProperty,
	push = Array.prototype.push,
	slice = Array.prototype.slice,
	indexOf = Array.prototype.indexOf;

jQuery.fn = jQuery.prototype = {
	init: function(selector, context) {
		var match, elem, ret, doc;

		// Handle $(""), $(null), or $(undefined)
		if (!selector) {
			return this;
		}

		// Handle $(DOMElement)
		if (selector.nodeType) {
			this.context = this[0] = selector;
			this.length = 1;
			return this;
		}
		
		// The body element only exists once, optimize finding it
		if (selector === "body" && !context) {
			this.context = document;
			this[0] = document.body;
			this.selector = "body";
			this.length = 1;
			return this;
		}

		// Handle HTML strings
		if (typeof selector === "string") {
			// Are we dealing with HTML string or an ID?
			match = quickExpr.exec(selector);

			// Verify a match, and that no context was specified for #id
			if (match && (match[1] || !context)) {

				// HANDLE: $(html) -> $(array)
				if (match[1]) {
					doc = (context ? context.ownerDocument || context : document);

					// If a single string is passed in and it's a single tag
					// just do a createElement and skip the rest
					ret = rsingleTag.exec(selector);

					if (ret) {
						if (jQuery.isPlainObject(context)) {
							selector = [document.createElement(ret[1])];
							jQuery.fn.attr.call(selector, context, true);

						} else {
							selector = [doc.createElement(ret[1])];
						}

					} else {
						ret = buildFragment([match[1]], [doc]);
						selector = (ret.cacheable ? ret.fragment.cloneNode(true) : ret.fragment).childNodes;
					}
					
					return jQuery.merge(this, selector);
					
				// HANDLE: $("#id")
				} else {
					elem = document.getElementById(match[2]);

					if (elem) {
						// Handle the case where IE and Opera return items
						// by name instead of ID
						if (elem.id !== match[2]) {
							return rootjQuery.find(selector);
						}

						// Otherwise, we inject the element directly into the jQuery object
						this.length = 1;
						this[0] = elem;
					}

					this.context = document;
					this.selector = selector;
					return this;
				}

			// HANDLE: $("TAG")
			} else if (!context && /^\w+$/.test(selector)) {
				this.selector = selector;
				this.context = document;
				selector = document.getElementsByTagName(selector);
				return jQuery.merge(this, selector);

			// HANDLE: $(expr, $(...))
			} else if (!context || context.jquery) {
				return (context || rootjQuery).find(selector);

			// HANDLE: $(expr, context)
			// (which is just equivalent to: $(context).find(expr)
			} else {
				return jQuery(context).find(selector);
			}

		// HANDLE: $(function)
		// Shortcut for document ready
		} else if (jQuery.isFunction(selector)) {
			return rootjQuery.ready(selector);
		}

		if (selector.selector !== undefined) {
			this.selector = selector.selector;
			this.context = selector.context;
		}

		return jQuery.makeArray(selector, this);
	},

	// Start with an empty selector
	selector: "",

	// The current version of jQuery being used
	jquery: "1.4.2",

	// The default length of a jQuery object is 0
	length: 0,

	// The number of elements contained in the matched element set
	size: function() {
		return this.length;
	},

	toArray: function() {
		return slice.call(this, 0);
	},

	// Get the Nth element in the matched element set OR
	// Get the whole matched element set as a clean array
	get: function(num) {
		return num == null ?

			// Return a 'clean' array
			this.toArray() :

			// Return just the object
			(num < 0 ? this.slice(num)[0] : this[num]);
	},

	// Take an array of elements and push it onto the stack
	// (returning the new matched element set)
	pushStack: function(elems, name, selector) {
		// Build a new jQuery matched element set
		var ret = jQuery();

		if (jQuery.isArray(elems)) {
			push.apply(ret, elems);
		
		} else {
			jQuery.merge(ret, elems);
		}

		// Add the old object onto the stack (as a reference)
		ret.prevObject = this;

		ret.context = this.context;

		if (name === "find") {
			ret.selector = this.selector + (this.selector ? " " : "") + selector;
		} else if (name) {
			ret.selector = this.selector + "." + name + "(" + selector + ")";
		}

		// Return the newly-formed element set
		return ret;
	},

	// Execute a callback for every element in the matched set.
	// (You can seed the arguments with an array of args, but this is
	// only used internally.)
	each: function(callback, args) {
		return jQuery.each(this, callback, args);
	},
	
	ready: function(fn) {
		// Attach the listeners
		jQuery.bindReady();

		// If the DOM is already ready
		if (jQuery.isReady) {
			// Execute the function immediately
			fn.call(document, jQuery);

		// Otherwise, remember the function for later
		} else if (readyList) {
			// Add the function to the wait list
			readyList.push(fn);
		}

		return this;
	},
	
	eq: function(i) {
		return i === -1 ?
			this.slice(i) :
			this.slice(i, +i + 1);
	},

	first: function() {
		return this.eq(0);
	},

	last: function() {
		return this.eq(-1);
	},

	slice: function() {
		return this.pushStack(slice.apply(this, arguments),
			"slice", slice.call(arguments).join(","));
	},

	map: function(callback) {
		return this.pushStack(jQuery.map(this, function(elem, i) {
			return callback.call(elem, i, elem);
		}));
	},
	
	end: function() {
		return this.prevObject || jQuery(null);
	},

	// For internal use only.
	// Behaves like an Array's method, not like a jQuery method.
	push: push,
	sort: [].sort,
	splice: [].splice
};

// Give the init function the jQuery prototype for later instantiation
jQuery.fn.init.prototype = jQuery.fn;

jQuery.extend = jQuery.fn.extend = function() {
	// copy reference to target object
	var target = arguments[0] || {}, i = 1, length = arguments.length, deep = false, options, name, src, copy;

	// Handle a deep copy situation
	if (typeof target === "boolean") {
		deep = target;
		target = arguments[1] || {};
		// skip the boolean and the target
		i = 2;
	}

	// Handle case when target is a string or something (possible in deep copy)
	if (typeof target !== "object" && !jQuery.isFunction(target)) {
		target = {};
	}

	// extend jQuery itself if only one argument is passed
	if (length === i) {
		target = this;
		--i;
	}

	for (; i < length; i++) {
		// Only deal with non-null/undefined values
		if ((options = arguments[i]) != null) {
			// Extend the base object
			for (name in options) {
				src = target[name];
				copy = options[name];

				// Prevent never-ending loop
				if (target === copy) {
					continue;
				}

				// Recurse if we're merging object literal values or arrays
				if (deep && copy && (jQuery.isPlainObject(copy) || jQuery.isArray(copy))) {
					var clone = src && (jQuery.isPlainObject(src) || jQuery.isArray(src)) ? src
						: jQuery.isArray(copy) ? [] : {};

					// Never move original objects, clone them
					target[name] = jQuery.extend(deep, clone, copy);

				// Don't bring in undefined values
				} else if (copy !== undefined) {
					target[name] = copy;
				}
			}
		}
	}

	// Return the modified object
	return target;
};

jQuery.extend({
	noConflict: function(deep) {
		window.$ = _$;

		if (deep) {
			window.jQuery = _jQuery;
		}

		return jQuery;
	},
	
	// Is the DOM ready to be used? Set to true once it occurs.
	isReady: false,
	
	// Handle when the DOM is ready
	ready: function() {
		// Make sure that the DOM is not already loaded
		if (!jQuery.isReady) {
			// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
			if (!document.body) {
				return setTimeout(jQuery.ready, 13);
			}

			// Remember that the DOM is ready
			jQuery.isReady = true;

			// If there are functions bound, to execute
			if (readyList) {
				// Execute all of them
				var fn, i = 0;
				while ((fn = readyList[i++])) {
					fn.call(document, jQuery);
				}

				// Reset the list of functions
				readyList = null;
			}

			// Trigger any bound ready events
			if (jQuery.fn.triggerHandler) {
				jQuery(document).triggerHandler("ready");
			}
		}
	},
	
	bindReady: function() {
		if (readyBound) {
			return;
		}

		readyBound = true;

		// Catch cases where $(document).ready() is called after the
		// browser event has already occurred.
		if (document.readyState === "complete") {
			return jQuery.ready();
		}

		// Mozilla, Opera and webkit nightlies currently support this event
		if (document.addEventListener) {
			// Use the handy event callback
			document.addEventListener("DOMContentLoaded", DOMContentLoaded, false);
			
			// A fallback to window.onload, that will always work
			window.addEventListener("load", jQuery.ready, false);

		// If IE event model is used
		} else if (document.attachEvent) {
			// ensure firing before onload,
			// maybe late but safe also for iframes
			document.attachEvent("onreadystatechange", DOMContentLoaded);
			
			// A fallback to window.onload, that will always work
			window.attachEvent("onload", jQuery.ready);

			// If IE and not a frame
			// continually check to see if the document is ready
			var toplevel = false;

			try {
				toplevel = window.frameElement == null;
			} catch(e) {}

			if (document.documentElement.doScroll && toplevel) {
				doScrollCheck();
			}
		}
	},

	// See test/unit/core.js for details concerning isFunction.
	// Since version 1.3, DOM methods and functions like alert
	// aren't supported. They return false on IE (#2968).
	isFunction: function(obj) {
		return toString.call(obj) === "[object Function]";
	},

	isArray: function(obj) {
		return toString.call(obj) === "[object Array]";
	},

	isPlainObject: function(obj) {
		// Must be an Object.
		// Because of IE, we also have to check the presence of the constructor property.
		// Make sure that DOM nodes and window objects don't pass through, as well
		if (!obj || toString.call(obj) !== "[object Object]" || obj.nodeType || obj.setInterval) {
			return false;
		}
		
		// Not own constructor property must be Object
		if (obj.constructor
			&& !hasOwnProperty.call(obj, "constructor")
			&& !hasOwnProperty.call(obj.constructor.prototype, "isPrototypeOf")) {
			return false;
		}
		
		// Own properties are enumerated firstly, so to speed up,
		// if last one is own, then all properties are own.
	
		var key;
		for (key in obj) {}
		
		return key === undefined || hasOwnProperty.call(obj, key);
	},

	isEmptyObject: function(obj) {
		for (var name in obj) {
			return false;
		}
		return true;
	},
	
	error: function(msg) {
		throw msg;
	},
	
	parseJSON: function(data) {
		if (typeof data !== "string" || !data) {
			return null;
		}

		// Make sure leading/trailing whitespace is removed (IE can't handle it)
		data = jQuery.trim(data);
		
		// Make sure the incoming data is actual JSON
		// Logic borrowed from http://json.org/json2.js
		if (/^[\],:{}\s]*$/.test(data.replace(/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g, "@")
			.replace(/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g, "]")
			.replace(/(?:^|:|,)(?:\s*\[)+/g, ""))) {

			// Try to use the native JSON parser first
			return window.JSON && window.JSON.parse ?
				window.JSON.parse(data) :
				(new Function("return " + data))();

		} else {
			jQuery.error("Invalid JSON: " + data);
		}
	},

	noop: function() {},

	// Evalulates a script in a global context
	globalEval: function(data) {
		if (data && rnotwhite.test(data)) {
			// Inspired by code by Andrea Giammarchi
			// http://webreflection.blogspot.com/2007/08/global-scope-evaluation-and-dom.html
			var head = document.getElementsByTagName("head")[0] || document.documentElement,
				script = document.createElement("script");

			script.type = "text/javascript";

			if (jQuery.support.scriptEval) {
				script.appendChild(document.createTextNode(data));
			} else {
				script.text = data;
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709).
			head.insertBefore(script, head.firstChild);
			head.removeChild(script);
		}
	},

	nodeName: function(elem, name) {
		return elem.nodeName && elem.nodeName.toUpperCase() === name.toUpperCase();
	},

	// args is for internal usage only
	each: function(object, callback, args) {
		var name, i = 0,
			length = object.length,
			isObj = length === undefined || jQuery.isFunction(object);

		if (args) {
			if (isObj) {
				for (name in object) {
					if (callback.apply(object[name], args) === false) {
						break;
					}
				}
			} else {
				for (; i < length;) {
					if (callback.apply(object[i++], args) === false) {
						break;
					}
				}
			}

		// A special, fast, case for the most common use of each
		} else {
			if (isObj) {
				for (name in object) {
					if (callback.call(object[name], name, object[name]) === false) {
						break;
					}
				}
			} else {
				for (var value = object[0];
					i < length && callback.call(value, i, value) !== false; value = object[++i]) {}
			}
		}

		return object;
	},

	trim: function(text) {
		return (text || "").replace(rtrim, "");
	},

	// results is for internal usage only
	makeArray: function(array, results) {
		var ret = results || [];

		if (array != null) {
			// The window, strings (and functions) also have 'length'
			// The extra typeof function check is to prevent crashes
			// in Safari 2 (See: #3039)
			if (array.length == null || typeof array === "string" || jQuery.isFunction(array) || (typeof array !== "function" && array.setInterval)) {
				push.call(ret, array);
			} else {
				jQuery.merge(ret, array);
			}
		}

		return ret;
	},

	inArray: function(elem, array) {
		if (array.indexOf) {
			return array.indexOf(elem);
		}

		for (var i = 0, length = array.length; i < length; i++) {
			if (array[i] === elem) {
				return i;
			}
		}

		return -1;
	},

	merge: function(first, second) {
		var i = first.length, j = 0;

		if (typeof second.length === "number") {
			for (var l = second.length; j < l; j++) {
				first[i++] = second[j];
			}
		
		} else {
			while (second[j] !== undefined) {
				first[i++] = second[j++];
			}
		}

		first.length = i;

		return first;
	},

	grep: function(elems, callback, inv) {
		var ret = [];

		// Go through the array, only saving the items
		// that pass the validator function
		for (var i = 0, length = elems.length; i < length; i++) {
			if (!inv !== !callback(elems[i], i)) {
				ret.push(elems[i]);
			}
		}

		return ret;
	},

	// arg is for internal usage only
	map: function(elems, callback, arg) {
		var ret = [], value;

		// Go through the array, translating each of the items to their
		// new value (or values).
		for (var i = 0, length = elems.length; i < length; i++) {
			value = callback(elems[i], i, arg);

			if (value != null) {
				ret[ret.length] = value;
			}
		}

		return ret.concat.apply([], ret);
	},

	// A global GUID counter for objects
	guid: 1,

	proxy: function(fn, proxy, thisObject) {
		if (arguments.length === 2) {
			if (typeof proxy === "string") {
				thisObject = fn;
				fn = thisObject[proxy];
				proxy = undefined;

			} else if (proxy && !jQuery.isFunction(proxy)) {
				thisObject = proxy;
				proxy = undefined;
			}
		}

		if (!proxy && fn) {
			proxy = function() {
				return fn.apply(thisObject || this, arguments);
			};
		}

		// Set the guid of unique handler to the same of original handler, so it can be removed
		if (fn) {
			proxy.guid = fn.guid = fn.guid || proxy.guid || jQuery.guid++;
		}

		// So proxy can be declared as an argument
		return proxy;
	},

	// Use of jQuery.browser is frowned upon.
	// More details: http://docs.jquery.com/Utilities/jQuery.browser
	uaMatch: function(ua) {
		ua = ua.toLowerCase();

		var match = /(webkit)[\/]([\w.]+)/.exec(ua) ||
			/(opera)(?:.*version)?[\/]([\w.]+)/.exec(ua) ||
			/(msie) ([\w.]+)/.exec(ua) ||
			!/compatible/.test(ua) && /(mozilla)(?:.*? rv:([\w.]+))?/.exec(ua) ||
		 	[];

		return { browser: match[1] || "", version: match[2] || "0" };
	},

	browser: {}
});

browserMatch = jQuery.uaMatch(userAgent);
if (browserMatch.browser) {
	jQuery.browser[browserMatch.browser] = true;
	jQuery.browser.version = browserMatch.version;
}

// Deprecated, use jQuery.browser.webkit instead
if (jQuery.browser.webkit) {
	jQuery.browser.safari = true;
}

if (indexOf) {
	jQuery.inArray = function(elem, array) {
		return indexOf.call(array, elem);
	};
}

// All jQuery objects should point back to these
rootjQuery = jQuery(document);

// Cleanup functions for the document ready method
if (document.addEventListener) {
	DOMContentLoaded = function() {
		document.removeEventListener("DOMContentLoaded", DOMContentLoaded, false);
		jQuery.ready();
	};

} else if (document.attachEvent) {
	DOMContentLoaded = function() {
		// Make sure body exists, at least, in case IE gets a little overzealous (ticket #5443).
		if (document.readyState === "complete") {
			document.detachEvent("onreadystatechange", DOMContentLoaded);
			jQuery.ready();
		}
	};
}

// The DOM ready check for Internet Explorer
function doScrollCheck() {
	if (jQuery.isReady) {
		return;
	}

	try {
		// If IE is used, use the trick by Diego Perini
		// http://javascript.nwbox.com/IEContentLoaded/
		document.documentElement.doScroll("left");
	} catch(error) {
		setTimeout(doScrollCheck, 1);
		return;
	}

	// and execute any waiting functions
	jQuery.ready();
}

function evalScript(i, elem) {
	if (elem.src) {
		jQuery.ajax({
			url: elem.src,
			async: false,
			dataType: "script"
		});
	} else {
		jQuery.globalEval(elem.text || elem.textContent || elem.innerHTML || "");
	}

	if (elem.parentNode) {
		elem.parentNode.removeChild(elem);
	}
}

// Mutifunctional method to get and set values to a collection
// The value/s can be optionally by executed if its a function
function access(elems, key, value, exec, fn, pass) {
	var length = elems.length;
	
	// Setting many attributes
	if (typeof key === "object") {
		for (var k in key) {
			access(elems, k, key[k], exec, fn, value);
		}
		return elems;
	}
	
	// Setting one attribute
	if (value !== undefined) {
		// Optionally, function values get executed if exec is true
		exec = !pass && exec && jQuery.isFunction(value);
		
		for (var i = 0; i < length; i++) {
			fn(elems[i], key, exec ? value.call(elems[i], i, fn(elems[i], key)) : value, pass);
		}
		
		return elems;
	}
	
	// Getting an attribute
	return length ? fn(elems[0], key) : undefined;
}

function now() {
	return (new Date).getTime();
}
(function() {

	jQuery.support = {};

	var root = document.documentElement,
		script = document.createElement("script"),
		div = document.createElement("div"),
		id = "script" + now();

	div.style.display = "none";
	div.innerHTML = " <link/><table></table>a<input type='checkbox'/>";

	var all = div.getElementsByTagName("*"),
		a = div.getElementsByTagName("a")[0];

	// Can't get basic test support
	if (!all || !all.length || !a) {
		return;
	}

	jQuery.support = {
		// IE strips leading whitespace when .innerHTML is used
		leadingWhitespace: div.firstChild.nodeType === 3,

		// Make sure that tbody elements aren't automatically inserted
		// IE will insert them into empty tables
		tbody: !div.getElementsByTagName("tbody").length,

		// Make sure that link elements get serialized correctly by innerHTML
		// This requires a wrapper element in IE
		htmlSerialize: !!div.getElementsByTagName("link").length,

		// Get the style information from getAttribute
		// (IE uses .cssText insted)
		style: /red/.test(a.getAttribute("style")),

		// Make sure that URLs aren't manipulated
		// (IE normalizes it by default)
		hrefNormalized: a.getAttribute("href") === "/a",

		// Make sure that element opacity exists
		// (IE uses filter instead)
		// Use a regex to work around a WebKit issue. See #5145
		opacity: /^0.55$/.test(a.style.opacity),

		// Verify style float existence
		// (IE uses styleFloat instead of cssFloat)
		cssFloat: !!a.style.cssFloat,

		// Make sure that if no value is specified for a checkbox
		// that it defaults to "on".
		// (WebKit defaults to "" instead)
		checkOn: div.getElementsByTagName("input")[0].value === "on",

		// Make sure that a selected-by-default option has a working selected property.
		// (WebKit defaults to false instead of true, IE too, if it's in an optgroup)
		optSelected: document.createElement("select").appendChild(document.createElement("option")).selected,

		parentNode: div.removeChild(div.appendChild(document.createElement("div"))).parentNode === null,

		// Will be defined later
		deleteExpando: true,
		checkClone: false,
		scriptEval: false,
		noCloneEvent: true,
		boxModel: null
	};

	script.type = "text/javascript";
	try {
		script.appendChild(document.createTextNode("window." + id + "=1;"));
	} catch(e) {}

	root.insertBefore(script, root.firstChild);

	// Make sure that the execution of code works by injecting a script
	// tag with appendChild/createTextNode
	// (IE doesn't support this, fails, and uses .text instead)
	if (window[id]) {
		jQuery.support.scriptEval = true;
		delete window[id];
	}

	// Test to see if it's possible to delete an expando from an element
	// Fails in Internet Explorer
	try {
		delete script.test;
	
	} catch(e) {
		jQuery.support.deleteExpando = false;
	}

	root.removeChild(script);

	if (div.attachEvent && div.fireEvent) {
		div.attachEvent("onclick", function click() {
			// Cloning a node shouldn't copy over any
			// bound event handlers (IE does this)
			jQuery.support.noCloneEvent = false;
			div.detachEvent("onclick", click);
		});
		div.cloneNode(true).fireEvent("onclick");
	}

	div = document.createElement("div");
	div.innerHTML = "<input type='radio' name='radiotest' checked='checked'/>";

	var fragment = document.createDocumentFragment();
	fragment.appendChild(div.firstChild);

	// WebKit doesn't clone checked state correctly in fragments
	jQuery.support.checkClone = fragment.cloneNode(true).cloneNode(true).lastChild.checked;

	// Figure out if the W3C box model works as expected
	// document.body must exist before we can do this
	jQuery(function() {
		var div = document.createElement("div");
		div.style.width = div.style.paddingLeft = "1px";

		document.body.appendChild(div);
		jQuery.boxModel = jQuery.support.boxModel = div.offsetWidth === 2;
		document.body.removeChild(div).style.display = 'none';

		div = null;
	});

	// Technique from Juriy Zaytsev
	// http://thinkweb2.com/projects/prototype/detecting-event-support-without-browser-sniffing/
	var eventSupported = function(eventName) {
		var el = document.createElement("div");
		eventName = "on" + eventName;

		var isSupported = (eventName in el);
		if (!isSupported) {
			el.setAttribute(eventName, "return;");
			isSupported = typeof el[eventName] === "function";
		}
		el = null;

		return isSupported;
	};
	
	jQuery.support.submitBubbles = eventSupported("submit");
	jQuery.support.changeBubbles = eventSupported("change");

	// release memory in IE
	root = script = div = all = a = null;
})();

jQuery.props = {
	"for": "htmlFor",
	"class": "className",
	readonly: "readOnly",
	maxlength: "maxLength",
	cellspacing: "cellSpacing",
	rowspan: "rowSpan",
	colspan: "colSpan",
	tabindex: "tabIndex",
	usemap: "useMap",
	frameborder: "frameBorder"
};
var expando = "jQuery" + now(), uuid = 0, windowData = {};

jQuery.extend({
	cache: {},
	
	expando:expando,

	// The following elements throw uncatchable exceptions if you
	// attempt to add expando properties to them.
	noData: {
		"embed": true,
		"object": true,
		"applet": true
	},

	data: function(elem, name, data) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache;

		if (!id && typeof name === "string" && data === undefined) {
			return null;
		}

		// Compute a unique ID for the element
		if (!id) {
			id = ++uuid;
		}

		// Avoid generating a new cache unless none exists and we
		// want to manipulate it.
		if (typeof name === "object") {
			elem[expando] = id;
			thisCache = cache[id] = jQuery.extend(true, {}, name);

		} else if (!cache[id]) {
			elem[expando] = id;
			cache[id] = {};
		}

		thisCache = cache[id];

		// Prevent overriding the named cache with undefined values
		if (data !== undefined) {
			thisCache[name] = data;
		}

		return typeof name === "string" ? thisCache[name] : thisCache;
	},

	removeData: function(elem, name) {
		if (elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()]) {
			return;
		}

		elem = elem == window ?
			windowData :
			elem;

		var id = elem[expando], cache = jQuery.cache, thisCache = cache[id];

		// If we want to remove a specific section of the element's data
		if (name) {
			if (thisCache) {
				// Remove the section of cache data
				delete thisCache[name];

				// If we've removed all the data, remove the element's cache
				if (jQuery.isEmptyObject(thisCache)) {
					jQuery.removeData(elem);
				}
			}

		// Otherwise, we want to remove all of the element's data
		} else {
			if (jQuery.support.deleteExpando) {
				delete elem[jQuery.expando];

			} else if (elem.removeAttribute) {
				elem.removeAttribute(jQuery.expando);
			}

			// Completely remove the data cache
			delete cache[id];
		}
	}
});

jQuery.fn.extend({
	data: function(key, value) {
		if (typeof key === "undefined" && this.length) {
			return jQuery.data(this[0]);

		} else if (typeof key === "object") {
			return this.each(function() {
				jQuery.data(this, key);
			});
		}

		var parts = key.split(".");
		parts[1] = parts[1] ? "." + parts[1] : "";

		if (value === undefined) {
			var data = this.triggerHandler("getData" + parts[1] + "!", [parts[0]]);

			if (data === undefined && this.length) {
				data = jQuery.data(this[0], key);
			}
			return data === undefined && parts[1] ?
				this.data(parts[0]) :
				data;
		} else {
			return this.trigger("setData" + parts[1] + "!", [parts[0], value]).each(function() {
				jQuery.data(this, key, value);
			});
		}
	},

	removeData: function(key) {
		return this.each(function() {
			jQuery.removeData(this, key);
		});
	}
});
jQuery.extend({
	queue: function(elem, type, data) {
		if (!elem) {
			return;
		}

		type = (type || "fx") + "queue";
		var q = jQuery.data(elem, type);

		// Speed up dequeue by getting out quickly if this is just a lookup
		if (!data) {
			return q || [];
		}

		if (!q || jQuery.isArray(data)) {
			q = jQuery.data(elem, type, jQuery.makeArray(data));

		} else {
			q.push(data);
		}

		return q;
	},

	dequeue: function(elem, type) {
		type = type || "fx";

		var queue = jQuery.queue(elem, type), fn = queue.shift();

		// If the fx queue is dequeued, always remove the progress sentinel
		if (fn === "inprogress") {
			fn = queue.shift();
		}

		if (fn) {
			// Add a progress sentinel to prevent the fx queue from being
			// automatically dequeued
			if (type === "fx") {
				queue.unshift("inprogress");
			}

			fn.call(elem, function() {
				jQuery.dequeue(elem, type);
			});
		}
	}
});

jQuery.fn.extend({
	queue: function(type, data) {
		if (typeof type !== "string") {
			data = type;
			type = "fx";
		}

		if (data === undefined) {
			return jQuery.queue(this[0], type);
		}
		return this.each(function(i, elem) {
			var queue = jQuery.queue(this, type, data);

			if (type === "fx" && queue[0] !== "inprogress") {
				jQuery.dequeue(this, type);
			}
		});
	},
	dequeue: function(type) {
		return this.each(function() {
			jQuery.dequeue(this, type);
		});
	},

	// Based off of the plugin by Clint Helfers, with permission.
	// http://blindsignals.com/index.php/2009/07/jquery-delay/
	delay: function(time, type) {
		time = jQuery.fx ? jQuery.fx.speeds[time] || time : time;
		type = type || "fx";

		return this.queue(type, function() {
			var elem = this;
			setTimeout(function() {
				jQuery.dequeue(elem, type);
			}, time);
		});
	},

	clearQueue: function(type) {
		return this.queue(type || "fx", []);
	}
});
var rclass = /[\n\t]/g,
	rspace = /\s+/,
	rreturn = /\r/g,
	rspecialurl = /href|src|style/,
	rtype = /(button|input)/i,
	rfocusable = /(button|input|object|select|textarea)/i,
	rclickable = /^(a|area)$/i,
	rradiocheck = /radio|checkbox/;

jQuery.fn.extend({
	attr: function(name, value) {
		return access(this, name, value, true, jQuery.attr);
	},

	removeAttr: function(name, fn) {
		return this.each(function(){
			jQuery.attr(this, name, "");
			if (this.nodeType === 1) {
				this.removeAttribute(name);
			}
		});
	},

	addClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.addClass(value.call(this, i, self.attr("class")));
			});
		}

		if (value && typeof value === "string") {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1) {
					if (!elem.className) {
						elem.className = value;

					} else {
						var className = " " + elem.className + " ", setClass = elem.className;
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							if (className.indexOf(" " + classNames[c] + " ") < 0) {
								setClass += " " + classNames[c];
							}
						}
						elem.className = jQuery.trim(setClass);
					}
				}
			}
		}

		return this;
	},

	removeClass: function(value) {
		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.removeClass(value.call(this, i, self.attr("class")));
			});
		}

		if ((value && typeof value === "string") || value === undefined) {
			var classNames = (value || "").split(rspace);

			for (var i = 0, l = this.length; i < l; i++) {
				var elem = this[i];

				if (elem.nodeType === 1 && elem.className) {
					if (value) {
						var className = (" " + elem.className + " ").replace(rclass, " ");
						for (var c = 0, cl = classNames.length; c < cl; c++) {
							className = className.replace(" " + classNames[c] + " ", " ");
						}
						elem.className = jQuery.trim(className);

					} else {
						elem.className = "";
					}
				}
			}
		}

		return this;
	},

	toggleClass: function(value, stateVal) {
		var type = typeof value, isBool = typeof stateVal === "boolean";

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.toggleClass(value.call(this, i, self.attr("class"), stateVal), stateVal);
			});
		}

		return this.each(function() {
			if (type === "string") {
				// toggle individual class names
				var className, i = 0, self = jQuery(this),
					state = stateVal,
					classNames = value.split(rspace);

				while ((className = classNames[i++])) {
					// check each className given, space seperated list
					state = isBool ? state : !self.hasClass(className);
					self[state ? "addClass" : "removeClass"](className);
				}

			} else if (type === "undefined" || type === "boolean") {
				if (this.className) {
					// store className if set
					jQuery.data(this, "__className__", this.className);
				}

				// toggle whole className
				this.className = this.className || value === false ? "" : jQuery.data(this, "__className__") || "";
			}
		});
	},

	hasClass: function(selector) {
		var className = " " + selector + " ";
		for (var i = 0, l = this.length; i < l; i++) {
			if ((" " + this[i].className + " ").replace(rclass, " ").indexOf(className) > -1) {
				return true;
			}
		}

		return false;
	},

	val: function(value) {
		if (value === undefined) {
			var elem = this[0];

			if (elem) {
				if (jQuery.nodeName(elem, "option")) {
					return (elem.attributes.value || {}).specified ? elem.value : elem.text;
				}

				// We need to handle select boxes special
				if (jQuery.nodeName(elem, "select")) {
					var index = elem.selectedIndex,
						values = [],
						options = elem.options,
						one = elem.type === "select-one";

					// Nothing was selected
					if (index < 0) {
						return null;
					}

					// Loop through all the selected options
					for (var i = one ? index : 0, max = one ? index + 1 : options.length; i < max; i++) {
						var option = options[i];

						if (option.selected) {
							// Get the specifc value for the option
							value = jQuery(option).val();

							// We don't need an array for one selects
							if (one) {
								return value;
							}

							// Multi-Selects return an array
							values.push(value);
						}
					}

					return values;
				}

				// Handle the case where in Webkit "" is returned instead of "on" if a value isn't specified
				if (rradiocheck.test(elem.type) && !jQuery.support.checkOn) {
					return elem.getAttribute("value") === null ? "on" : elem.value;
				}
				

				// Everything else, we just grab the value
				return (elem.value || "").replace(rreturn, "");

			}

			return undefined;
		}

		var isFunction = jQuery.isFunction(value);

		return this.each(function(i) {
			var self = jQuery(this), val = value;

			if (this.nodeType !== 1) {
				return;
			}

			if (isFunction) {
				val = value.call(this, i, self.val());
			}

			// Typecast each time if the value is a Function and the appended
			// value is therefore different each time.
			if (typeof val === "number") {
				val += "";
			}

			if (jQuery.isArray(val) && rradiocheck.test(this.type)) {
				this.checked = jQuery.inArray(self.val(), val) >= 0;

			} else if (jQuery.nodeName(this, "select")) {
				var values = jQuery.makeArray(val);

				jQuery("option", this).each(function() {
					this.selected = jQuery.inArray(jQuery(this).val(), values) >= 0;
				});

				if (!values.length) {
					this.selectedIndex = -1;
				}

			} else {
				this.value = val;
			}
		});
	}
});

jQuery.extend({
	attrFn: {
		val: true,
		css: true,
		html: true,
		text: true,
		data: true,
		width: true,
		height: true,
		offset: true
	},
		
	attr: function(elem, name, value, pass) {
		// don't set attributes on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		if (pass && name in jQuery.attrFn) {
			return jQuery(elem)[name](value);
		}

		var notxml = elem.nodeType !== 1 || !jQuery.isXMLDoc(elem),
			// Whether we are setting (or getting)
			set = value !== undefined;

		// Try to normalize/fix the name
		name = notxml && jQuery.props[name] || name;

		// Only do all the following if this is a node (faster for style)
		if (elem.nodeType === 1) {
			// These attributes require special treatment
			var special = rspecialurl.test(name);

			// Safari mis-reports the default selected property of an option
			// Accessing the parent's selectedIndex property fixes it
			if (name === "selected" && !jQuery.support.optSelected) {
				var parent = elem.parentNode;
				if (parent) {
					parent.selectedIndex;
	
					// Make sure that it also works with optgroups, see #5701
					if (parent.parentNode) {
						parent.parentNode.selectedIndex;
					}
				}
			}

			// If applicable, access the attribute via the DOM 0 way
			if (name in elem && notxml && !special) {
				if (set) {
					// We can't allow the type property to be changed (since it causes problems in IE)
					if (name === "type" && rtype.test(elem.nodeName) && elem.parentNode) {
						jQuery.error("type property can't be changed");
					}

					elem[name] = value;
				}

				// browsers index elements by id/name on forms, give priority to attributes.
				if (jQuery.nodeName(elem, "form") && elem.getAttributeNode(name)) {
					return elem.getAttributeNode(name).nodeValue;
				}

				// elem.tabIndex doesn't always return the correct value when it hasn't been explicitly set
				// http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/
				if (name === "tabIndex") {
					var attributeNode = elem.getAttributeNode("tabIndex");

					return attributeNode && attributeNode.specified ?
						attributeNode.value :
						rfocusable.test(elem.nodeName) || rclickable.test(elem.nodeName) && elem.href ?
							0 :
							undefined;
				}

				return elem[name];
			}

			if (!jQuery.support.style && notxml && name === "style") {
				if (set) {
					elem.style.cssText = "" + value;
				}

				return elem.style.cssText;
			}

			if (set) {
				// convert the value to a string (all browsers do this but IE) see #1070
				elem.setAttribute(name, "" + value);
			}

			var attr = !jQuery.support.hrefNormalized && notxml && special ?
					// Some attributes require a special call on IE
					elem.getAttribute(name, 2) :
					elem.getAttribute(name);

			// Non-existent attributes return null, we normalize to undefined
			return attr === null ? undefined : attr;
		}

		// elem is actually elem.style ... set the style
		// Using attr for specific style information is now deprecated. Use style instead.
		return jQuery.style(elem, name, value);
	}
});
var rnamespaces = /\.(.*)$/,
	fcleanup = function(nm) {
		return nm.replace(/[^\w\s\.\|`]/g, function(ch) {
			return "\\" + ch;
		});
	};

/*
 * A number of helper functions used for managing events.
 * Many of the ideas behind this code originated from
 * Dean Edwards' addEvent library.
 */
jQuery.event = {

	// Bind an event to an element
	// Original by Dean Edwards
	add: function(elem, types, handler, data) {
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		// For whatever reason, IE has trouble passing the window object
		// around, causing it to be cloned in the process
		if (elem.setInterval && (elem !== window && !elem.frameElement)) {
			elem = window;
		}

		var handleObjIn, handleObj;

		if (handler.handler) {
			handleObjIn = handler;
			handler = handleObjIn.handler;
		}

		// Make sure that the function being executed has a unique ID
		if (!handler.guid) {
			handler.guid = jQuery.guid++;
		}

		// Init the element's event structure
		var elemData = jQuery.data(elem);

		// If no elemData is found then we must be trying to bind to one of the
		// banned noData elements
		if (!elemData) {
			return;
		}

		var events = elemData.events = elemData.events || {},
			eventHandle = elemData.handle, eventHandle;

		if (!eventHandle) {
			elemData.handle = eventHandle = function() {
				// Handle the second event of a trigger and when
				// an event is called after a page has unloaded
				return typeof jQuery !== "undefined" && !jQuery.event.triggered ?
					jQuery.event.handle.apply(eventHandle.elem, arguments) :
					undefined;
			};
		}

		// Add elem as a property of the handle function
		// This is to prevent a memory leak with non-native events in IE.
		eventHandle.elem = elem;

		// Handle multiple events separated by a space
		// jQuery(...).bind("mouseover mouseout", fn);
		types = types.split(" ");

		var type, i = 0, namespaces;

		while ((type = types[i++])) {
			handleObj = handleObjIn ?
				jQuery.extend({}, handleObjIn) :
				{ handler: handler, data: data };

			// Namespaced event handlers
			if (type.indexOf(".") > -1) {
				namespaces = type.split(".");
				type = namespaces.shift();
				handleObj.namespace = namespaces.slice(0).sort().join(".");

			} else {
				namespaces = [];
				handleObj.namespace = "";
			}

			handleObj.type = type;
			handleObj.guid = handler.guid;

			// Get the current list of functions bound to this event
			var handlers = events[type],
				special = jQuery.event.special[type] || {};

			// Init the event handler queue
			if (!handlers) {
				handlers = events[type] = [];

				// Check for a special event handler
				// Only use addEventListener/attachEvent if the special
				// events handler returns false
				if (!special.setup || special.setup.call(elem, data, namespaces, eventHandle) === false) {
					// Bind the global event handler to the element
					if (elem.addEventListener) {
						elem.addEventListener(type, eventHandle, false);

					} else if (elem.attachEvent) {
						elem.attachEvent("on" + type, eventHandle);
					}
				}
			}
			
			if (special.add) {
				special.add.call(elem, handleObj);

				if (!handleObj.handler.guid) {
					handleObj.handler.guid = handler.guid;
				}
			}

			// Add the function to the element's handler list
			handlers.push(handleObj);

			// Keep track of which events have been used, for global triggering
			jQuery.event.global[type] = true;
		}

		// Nullify elem to prevent memory leaks in IE
		elem = null;
	},

	global: {},

	// Detach an event or set of events from an element
	remove: function(elem, types, handler, pos) {
		// don't do events on text and comment nodes
		if (elem.nodeType === 3 || elem.nodeType === 8) {
			return;
		}

		var ret, type, fn, i = 0, all, namespaces, namespace, special, eventType, handleObj, origType,
			elemData = jQuery.data(elem),
			events = elemData && elemData.events;

		if (!elemData || !events) {
			return;
		}

		// types is actually an event object here
		if (types && types.type) {
			handler = types.handler;
			types = types.type;
		}

		// Unbind all events for the element
		if (!types || typeof types === "string" && types.charAt(0) === ".") {
			types = types || "";

			for (type in events) {
				jQuery.event.remove(elem, type + types);
			}

			return;
		}

		// Handle multiple events separated by a space
		// jQuery(...).unbind("mouseover mouseout", fn);
		types = types.split(" ");

		while ((type = types[i++])) {
			origType = type;
			handleObj = null;
			all = type.indexOf(".") < 0;
			namespaces = [];

			if (!all) {
				// Namespaced event handlers
				namespaces = type.split(".");
				type = namespaces.shift();

				namespace = new RegExp("(^|\\.)" +
					jQuery.map(namespaces.slice(0).sort(), fcleanup).join("\\.(?:.*\\.)?") + "(\\.|$)")
			}

			eventType = events[type];

			if (!eventType) {
				continue;
			}

			if (!handler) {
				for (var j = 0; j < eventType.length; j++) {
					handleObj = eventType[j];

					if (all || namespace.test(handleObj.namespace)) {
						jQuery.event.remove(elem, origType, handleObj.handler, j);
						eventType.splice(j--, 1);
					}
				}

				continue;
			}

			special = jQuery.event.special[type] || {};

			for (var j = pos || 0; j < eventType.length; j++) {
				handleObj = eventType[j];

				if (handler.guid === handleObj.guid) {
					// remove the given handler for the given type
					if (all || namespace.test(handleObj.namespace)) {
						if (pos == null) {
							eventType.splice(j--, 1);
						}

						if (special.remove) {
							special.remove.call(elem, handleObj);
						}
					}

					if (pos != null) {
						break;
					}
				}
			}

			// remove generic event handler if no more handlers exist
			if (eventType.length === 0 || pos != null && eventType.length === 1) {
				if (!special.teardown || special.teardown.call(elem, namespaces) === false) {
					removeEvent(elem, type, elemData.handle);
				}

				ret = null;
				delete events[type];
			}
		}

		// Remove the expando if it's no longer used
		if (jQuery.isEmptyObject(events)) {
			var handle = elemData.handle;
			if (handle) {
				handle.elem = null;
			}

			delete elemData.events;
			delete elemData.handle;

			if (jQuery.isEmptyObject(elemData)) {
				jQuery.removeData(elem);
			}
		}
	},

	// bubbling is internal
	trigger: function(event, data, elem /*, bubbling */) {
		// Event object or event type
		var type = event.type || event,
			bubbling = arguments[3];

		if (!bubbling) {
			event = typeof event === "object" ?
				// jQuery.Event object
				event[expando] ? event :
				// Object literal
				jQuery.extend(jQuery.Event(type), event) :
				// Just the event type (string)
				jQuery.Event(type);

			if (type.indexOf("!") >= 0) {
				event.type = type = type.slice(0, -1);
				event.exclusive = true;
			}

			// Handle a global trigger
			if (!elem) {
				// Don't bubble custom events when global (to avoid too much overhead)
				event.stopPropagation();

				// Only trigger if we've ever bound an event for it
				if (jQuery.event.global[type]) {
					jQuery.each(jQuery.cache, function() {
						if (this.events && this.events[type]) {
							jQuery.event.trigger(event, data, this.handle.elem);
						}
					});
				}
			}

			// Handle triggering a single element

			// don't do events on text and comment nodes
			if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
				return undefined;
			}

			// Clean up in case it is reused
			event.result = undefined;
			event.target = elem;

			// Clone the incoming data, if any
			data = jQuery.makeArray(data);
			data.unshift(event);
		}

		event.currentTarget = elem;

		// Trigger the event, it is assumed that "handle" is a function
		var handle = jQuery.data(elem, "handle");
		if (handle) {
			handle.apply(elem, data);
		}

		var parent = elem.parentNode || elem.ownerDocument;

		// Trigger an inline bound script
		try {
			if (!(elem && elem.nodeName && jQuery.noData[elem.nodeName.toLowerCase()])) {
				if (elem["on" + type] && elem["on" + type].apply(elem, data) === false) {
					event.result = false;
				}
			}

		// prevent IE from throwing an error for some elements with some event types, see #3533
		} catch (e) {}

		if (!event.isPropagationStopped() && parent) {
			jQuery.event.trigger(event, data, parent, true);

		} else if (!event.isDefaultPrevented()) {
			var target = event.target, old,
				isClick = jQuery.nodeName(target, "a") && type === "click",
				special = jQuery.event.special[type] || {};

			if ((!special._default || special._default.call(elem, event) === false) &&
				!isClick && !(target && target.nodeName && jQuery.noData[target.nodeName.toLowerCase()])) {

				try {
					if (target[type]) {
						// Make sure that we don't accidentally re-trigger the onFOO events
						old = target["on" + type];

						if (old) {
							target["on" + type] = null;
						}

						jQuery.event.triggered = true;
						target[type]();
					}

				// prevent IE from throwing an error for some elements with some event types, see #3533
				} catch (e) {}

				if (old) {
					target["on" + type] = old;
				}

				jQuery.event.triggered = false;
			}
		}
	},

	handle: function(event) {
		var all, handlers, namespaces, namespace, events;

		event = arguments[0] = jQuery.event.fix(event || window.event);
		event.currentTarget = this;

		// Namespaced event handlers
		all = event.type.indexOf(".") < 0 && !event.exclusive;

		if (!all) {
			namespaces = event.type.split(".");
			event.type = namespaces.shift();
			namespace = new RegExp("(^|\\.)" + namespaces.slice(0).sort().join("\\.(?:.*\\.)?") + "(\\.|$)");
		}

		var events = jQuery.data(this, "events"), handlers = events[event.type];

		if (events && handlers) {
			// Clone the handlers to prevent manipulation
			handlers = handlers.slice(0);

			for (var j = 0, l = handlers.length; j < l; j++) {
				var handleObj = handlers[j];

				// Filter the functions by class
				if (all || namespace.test(handleObj.namespace)) {
					// Pass in a reference to the handler function itself
					// So that we can later remove it
					event.handler = handleObj.handler;
					event.data = handleObj.data;
					event.handleObj = handleObj;
	
					var ret = handleObj.handler.apply(this, arguments);

					if (ret !== undefined) {
						event.result = ret;
						if (ret === false) {
							event.preventDefault();
							event.stopPropagation();
						}
					}

					if (event.isImmediatePropagationStopped()) {
						break;
					}
				}
			}
		}

		return event.result;
	},

	props: "altKey attrChange attrName bubbles button cancelable charCode clientX clientY ctrlKey currentTarget data detail eventPhase fromElement handler keyCode layerX layerY metaKey newValue offsetX offsetY originalTarget pageX pageY prevValue relatedNode relatedTarget screenX screenY shiftKey srcElement target toElement view wheelDelta which".split(" "),

	fix: function(event) {
		if (event[expando]) {
			return event;
		}

		// store a copy of the original event object
		// and "clone" to set read-only properties
		var originalEvent = event;
		event = jQuery.Event(originalEvent);

		for (var i = this.props.length, prop; i;) {
			prop = this.props[--i];
			event[prop] = originalEvent[prop];
		}

		// Fix target property, if necessary
		if (!event.target) {
			event.target = event.srcElement || document; // Fixes #1925 where srcElement might not be defined either
		}

		// check if target is a textnode (safari)
		if (event.target.nodeType === 3) {
			event.target = event.target.parentNode;
		}

		// Add relatedTarget, if necessary
		if (!event.relatedTarget && event.fromElement) {
			event.relatedTarget = event.fromElement === event.target ? event.toElement : event.fromElement;
		}

		// Calculate pageX/Y if missing and clientX/Y available
		if (event.pageX == null && event.clientX != null) {
			var doc = document.documentElement, body = document.body;
			event.pageX = event.clientX + (doc && doc.scrollLeft || body && body.scrollLeft || 0) - (doc && doc.clientLeft || body && body.clientLeft || 0);
			event.pageY = event.clientY + (doc && doc.scrollTop || body && body.scrollTop || 0) - (doc && doc.clientTop || body && body.clientTop || 0);
		}

		// Add which for key events
		if (!event.which && ((event.charCode || event.charCode === 0) ? event.charCode : event.keyCode)) {
			event.which = event.charCode || event.keyCode;
		}

		// Add metaKey to non-Mac browsers (use ctrl for PC's and Meta for Macs)
		if (!event.metaKey && event.ctrlKey) {
			event.metaKey = event.ctrlKey;
		}

		// Add which for click: 1 === left; 2 === middle; 3 === right
		// Note: button is not normalized, so don't use it
		if (!event.which && event.button !== undefined) {
			event.which = (event.button & 1 ? 1 : (event.button & 2 ? 3 : (event.button & 4 ? 2 : 0)));
		}

		return event;
	},

	// Deprecated, use jQuery.guid instead
	guid: 1E8,

	// Deprecated, use jQuery.proxy instead
	proxy: jQuery.proxy,

	special: {
		ready: {
			// Make sure the ready event is setup
			setup: jQuery.bindReady,
			teardown: jQuery.noop
		},

		live: {
			add: function(handleObj) {
				jQuery.event.add(this, handleObj.origType, jQuery.extend({}, handleObj, {handler: liveHandler}));
			},

			remove: function(handleObj) {
				var remove = true,
					type = handleObj.origType.replace(rnamespaces, "");
				
				jQuery.each(jQuery.data(this, "events").live || [], function() {
					if (type === this.origType.replace(rnamespaces, "")) {
						remove = false;
						return false;
					}
				});

				if (remove) {
					jQuery.event.remove(this, handleObj.origType, liveHandler);
				}
			}

		},

		beforeunload: {
			setup: function(data, namespaces, eventHandle) {
				// We only want to do this special case on windows
				if (this.setInterval) {
					this.onbeforeunload = eventHandle;
				}

				return false;
			},
			teardown: function(namespaces, eventHandle) {
				if (this.onbeforeunload === eventHandle) {
					this.onbeforeunload = null;
				}
			}
		}
	}
};

var removeEvent = document.removeEventListener ?
	function(elem, type, handle) {
		elem.removeEventListener(type, handle, false);
	} :
	function(elem, type, handle) {
		elem.detachEvent("on" + type, handle);
	};

jQuery.Event = function(src) {
	// Allow instantiation without the 'new' keyword
	if (!this.preventDefault) {
		return new jQuery.Event(src);
	}

	// Event object
	if (src && src.type) {
		this.originalEvent = src;
		this.type = src.type;
	// Event type
	} else {
		this.type = src;
	}

	// timeStamp is buggy for some events on Firefox(#3843)
	// So we won't rely on the native value
	this.timeStamp = now();

	// Mark it as fixed
	this[expando] = true;
};

function returnFalse() {
	return false;
}
function returnTrue() {
	return true;
}

// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding
// http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
jQuery.Event.prototype = {
	preventDefault: function() {
		this.isDefaultPrevented = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		
		// if preventDefault exists run it on the original event
		if (e.preventDefault) {
			e.preventDefault();
		}
		// otherwise set the returnValue property of the original event to false (IE)
		e.returnValue = false;
	},
	stopPropagation: function() {
		this.isPropagationStopped = returnTrue;

		var e = this.originalEvent;
		if (!e) {
			return;
		}
		// if stopPropagation exists run it on the original event
		if (e.stopPropagation) {
			e.stopPropagation();
		}
		// otherwise set the cancelBubble property of the original event to true (IE)
		e.cancelBubble = true;
	},
	stopImmediatePropagation: function() {
		this.isImmediatePropagationStopped = returnTrue;
		this.stopPropagation();
	},
	isDefaultPrevented: returnFalse,
	isPropagationStopped: returnFalse,
	isImmediatePropagationStopped: returnFalse
};

// Checks if an event happened on an element within another element
// Used in jQuery.event.special.mouseenter and mouseleave handlers
var withinElement = function(event) {
	// Check if mouse(over|out) are still within the same parent element
	var parent = event.relatedTarget;

	// Firefox sometimes assigns relatedTarget a XUL element
	// which we cannot access the parentNode property of
	try {
		// Traverse up the tree
		while (parent && parent !== this) {
			parent = parent.parentNode;
		}

		if (parent !== this) {
			// set the correct event type
			event.type = event.data;

			// handle event if we actually just moused on to a non sub-element
			jQuery.event.handle.apply(this, arguments);
		}

	// assuming we've left the element since we most likely mousedover a xul element
	} catch(e) { }
},

// In case of event delegation, we only need to rename the event.type,
// liveHandler will take care of the rest.
delegate = function(event) {
	event.type = event.data;
	jQuery.event.handle.apply(this, arguments);
};

// Create mouseenter and mouseleave events
jQuery.each({
	mouseenter: "mouseover",
	mouseleave: "mouseout"
}, function(orig, fix) {
	jQuery.event.special[orig] = {
		setup: function(data) {
			jQuery.event.add(this, fix, data && data.selector ? delegate : withinElement, orig);
		},
		teardown: function(data) {
			jQuery.event.remove(this, fix, data && data.selector ? delegate : withinElement);
		}
	};
});

// submit delegation
if (!jQuery.support.submitBubbles) {

	jQuery.event.special.submit = {
		setup: function(data, namespaces) {
			if (this.nodeName.toLowerCase() !== "form") {
				jQuery.event.add(this, "click.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "submit" || type === "image") && jQuery(elem).closest("form").length) {
						return trigger("submit", this, arguments);
					}
				});
	
				jQuery.event.add(this, "keypress.specialSubmit", function(e) {
					var elem = e.target, type = elem.type;

					if ((type === "text" || type === "password") && jQuery(elem).closest("form").length && e.keyCode === 13) {
						return trigger("submit", this, arguments);
					}
				});

			} else {
				return false;
			}
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialSubmit");
		}
	};

}

// change delegation, happens here so we have bind.
if (!jQuery.support.changeBubbles) {

	var formElems = /textarea|input|select/i,

	changeFilters,

	getVal = function(elem) {
		var type = elem.type, val = elem.value;

		if (type === "radio" || type === "checkbox") {
			val = elem.checked;

		} else if (type === "select-multiple") {
			val = elem.selectedIndex > -1 ?
				jQuery.map(elem.options, function(elem) {
					return elem.selected;
				}).join("-") :
				"";

		} else if (elem.nodeName.toLowerCase() === "select") {
			val = elem.selectedIndex;
		}

		return val;
	},

	testChange = function testChange(e) {
		var elem = e.target, data, val;

		if (!formElems.test(elem.nodeName) || elem.readOnly) {
			return;
		}

		data = jQuery.data(elem, "_change_data");
		val = getVal(elem);

		// the current data will be also retrieved by beforeactivate
		if (e.type !== "focusout" || elem.type !== "radio") {
			jQuery.data(elem, "_change_data", val);
		}
		
		if (data === undefined || val === data) {
			return;
		}

		if (data != null || val) {
			e.type = "change";
			return jQuery.event.trigger(e, arguments[1], elem);
		}
	};

	jQuery.event.special.change = {
		filters: {
			focusout: testChange,

			click: function(e) {
				var elem = e.target, type = elem.type;

				if (type === "radio" || type === "checkbox" || elem.nodeName.toLowerCase() === "select") {
					return testChange.call(this, e);
				}
			},

			// Change has to be called before submit
			// Keydown will be called before keypress, which is used in submit-event delegation
			keydown: function(e) {
				var elem = e.target, type = elem.type;

				if ((e.keyCode === 13 && elem.nodeName.toLowerCase() !== "textarea") ||
					(e.keyCode === 32 && (type === "checkbox" || type === "radio")) ||
					type === "select-multiple") {
					return testChange.call(this, e);
				}
			},

			// Beforeactivate happens also before the previous element is blurred
			// with this event you can't trigger a change event, but you can store
			// information/focus[in] is not needed anymore
			beforeactivate: function(e) {
				var elem = e.target;
				jQuery.data(elem, "_change_data", getVal(elem));
			}
		},

		setup: function(data, namespaces) {
			if (this.type === "file") {
				return false;
			}

			for (var type in changeFilters) {
				jQuery.event.add(this, type + ".specialChange", changeFilters[type]);
			}

			return formElems.test(this.nodeName);
		},

		teardown: function(namespaces) {
			jQuery.event.remove(this, ".specialChange");

			return formElems.test(this.nodeName);
		}
	};

	changeFilters = jQuery.event.special.change.filters;
}

function trigger(type, elem, args) {
	args[0].type = type;
	return jQuery.event.handle.apply(elem, args);
}

// Create "bubbling" focus and blur events
if (document.addEventListener) {
	jQuery.each({ focus: "focusin", blur: "focusout" }, function(orig, fix) {
		jQuery.event.special[fix] = {
			setup: function() {
				this.addEventListener(orig, handler, true);
			},
			teardown: function() {
				this.removeEventListener(orig, handler, true);
			}
		};

		function handler(e) {
			e = jQuery.event.fix(e);
			e.type = fix;
			return jQuery.event.handle.call(this, e);
		}
	});
}

jQuery.each(["bind", "one"], function(i, name) {
	jQuery.fn[name] = function(type, data, fn) {
		// Handle object literals
		if (typeof type === "object") {
			for (var key in type) {
				this[name](key, data, type[key], fn);
			}
			return this;
		}
		
		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		var handler = name === "one" ? jQuery.proxy(fn, function(event) {
			jQuery(this).unbind(event, handler);
			return fn.apply(this, arguments);
		}) : fn;

		if (type === "unload" && name !== "one") {
			this.one(type, data, fn);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.add(this[i], type, handler, data);
			}
		}

		return this;
	};
});

jQuery.fn.extend({
	unbind: function(type, fn) {
		// Handle object literals
		if (typeof type === "object" && !type.preventDefault) {
			for (var key in type) {
				this.unbind(key, type[key]);
			}

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				jQuery.event.remove(this[i], type, fn);
			}
		}

		return this;
	},
	
	delegate: function(selector, types, data, fn) {
		return this.live(types, data, fn, selector);
	},
	
	undelegate: function(selector, types, fn) {
		if (arguments.length === 0) {
				return this.unbind("live");
		
		} else {
			return this.die(types, null, fn, selector);
		}
	},
	
	trigger: function(type, data) {
		return this.each(function() {
			jQuery.event.trigger(type, data, this);
		});
	},

	triggerHandler: function(type, data) {
		if (this[0]) {
			var event = jQuery.Event(type);
			event.preventDefault();
			event.stopPropagation();
			jQuery.event.trigger(event, data, this[0]);
			return event.result;
		}
	},

	toggle: function(fn) {
		// Save reference to arguments for access in closure
		var args = arguments, i = 1;

		// link all the functions, so any of them can unbind this click handler
		while (i < args.length) {
			jQuery.proxy(fn, args[i++]);
		}

		return this.click(jQuery.proxy(fn, function(event) {
			// Figure out which function to execute
			var lastToggle = (jQuery.data(this, "lastToggle" + fn.guid) || 0) % i;
			jQuery.data(this, "lastToggle" + fn.guid, lastToggle + 1);

			// Make sure that clicks stop
			event.preventDefault();

			// and execute the function
			return args[lastToggle].apply(this, arguments) || false;
		}));
	},

	hover: function(fnOver, fnOut) {
		return this.mouseenter(fnOver).mouseleave(fnOut || fnOver);
	}
});

var liveMap = {
	focus: "focusin",
	blur: "focusout",
	mouseenter: "mouseover",
	mouseleave: "mouseout"
};

jQuery.each(["live", "die"], function(i, name) {
	jQuery.fn[name] = function(types, data, fn, origSelector /* Internal Use Only */) {
		var type, i = 0, match, namespaces, preType,
			selector = origSelector || this.selector,
			context = origSelector ? this : jQuery(this.context);

		if (jQuery.isFunction(data)) {
			fn = data;
			data = undefined;
		}

		types = (types || "").split(" ");

		while ((type = types[i++]) != null) {
			match = rnamespaces.exec(type);
			namespaces = "";

			if (match) {
				namespaces = match[0];
				type = type.replace(rnamespaces, "");
			}

			if (type === "hover") {
				types.push("mouseenter" + namespaces, "mouseleave" + namespaces);
				continue;
			}

			preType = type;

			if (type === "focus" || type === "blur") {
				types.push(liveMap[type] + namespaces);
				type = type + namespaces;

			} else {
				type = (liveMap[type] || type) + namespaces;
			}

			if (name === "live") {
				// bind live handler
				context.each(function(){
					jQuery.event.add(this, liveConvert(type, selector),
						{ data: data, selector: selector, handler: fn, origType: type, origHandler: fn, preType: preType });
				});

			} else {
				// unbind live handler
				context.unbind(liveConvert(type, selector), fn);
			}
		}
		
		return this;
	}
});

function liveHandler(event) {
	var stop, elems = [], selectors = [], args = arguments,
		related, match, handleObj, elem, j, i, l, data,
		events = jQuery.data(this, "events");

	// Make sure we avoid non-left-click bubbling in Firefox (#3861)
	if (event.liveFired === this || !events || !events.live || event.button && event.type === "click") {
		return;
	}

	event.liveFired = this;

	var live = events.live.slice(0);

	for (j = 0; j < live.length; j++) {
		handleObj = live[j];

		if (handleObj.origType.replace(rnamespaces, "") === event.type) {
			selectors.push(handleObj.selector);

		} else {
			live.splice(j--, 1);
		}
	}

	match = jQuery(event.target).closest(selectors, event.currentTarget);

	for (i = 0, l = match.length; i < l; i++) {
		for (j = 0; j < live.length; j++) {
			handleObj = live[j];

			if (match[i].selector === handleObj.selector) {
				elem = match[i].elem;
				related = null;

				// Those two events require additional checking
				if (handleObj.preType === "mouseenter" || handleObj.preType === "mouseleave") {
					related = jQuery(event.relatedTarget).closest(handleObj.selector)[0];
				}

				if (!related || related !== elem) {
					elems.push({ elem: elem, handleObj: handleObj });
				}
			}
		}
	}

	for (i = 0, l = elems.length; i < l; i++) {
		match = elems[i];
		event.currentTarget = match.elem;
		event.data = match.handleObj.data;
		event.handleObj = match.handleObj;

		if (match.handleObj.origHandler.apply(match.elem, args) === false) {
			stop = false;
			break;
		}
	}

	return stop;
}

function liveConvert(type, selector) {
	return "live." + (type && type !== "*" ? type + "." : "") + selector.replace(/\./g, "`").replace(/ /g, "&");
}

jQuery.each(("blur focus focusin focusout load resize scroll unload click dblclick " +
	"mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave " +
	"change select submit keydown keypress keyup error").split(" "), function(i, name) {

	// Handle event binding
	jQuery.fn[name] = function(fn) {
		return fn ? this.bind(name, fn) : this.trigger(name);
	};

	if (jQuery.attrFn) {
		jQuery.attrFn[name] = true;
	}
});

// Prevent memory leaks in IE
// Window isn't included so as not to unbind existing unload events
// More info:
// - http://isaacschlueter.com/2006/10/msie-memory-leaks/
if (window.attachEvent && !window.addEventListener) {
	window.attachEvent("onunload", function() {
		for (var id in jQuery.cache) {
			if (jQuery.cache[id].handle) {
				// Try/Catch is to handle iframes being unloaded, see #4280
				try {
					jQuery.event.remove(jQuery.cache[id].handle.elem);
				} catch(e) {}
			}
		}
	});
}
/*!
 * Sizzle CSS Selector Engine - v1.0
 * Copyright 2009, The Dojo Foundation
 * Released under the MIT, BSD, and GPL Licenses.
 * More information: http://sizzlejs.com/
 */
(function(){

var chunker = /((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^[\]]*\]|['"][^'"]*['"]|[^[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,
	done = 0,
	toString = Object.prototype.toString,
	hasDuplicate = false,
	baseHasDuplicate = true;

// Here we check if the JavaScript engine is using some sort of
// optimization where it does not always call our comparision
// function. If that is the case, discard the hasDuplicate value.
// Thus far that includes Google Chrome.
[0, 0].sort(function(){
	baseHasDuplicate = false;
	return 0;
});

var Sizzle = function(selector, context, results, seed) {
	results = results || [];
	var origContext = context = context || document;

	if (context.nodeType !== 1 && context.nodeType !== 9) {
		return [];
	}
	
	if (!selector || typeof selector !== "string") {
		return results;
	}

	var parts = [], m, set, checkSet, extra, prune = true, contextXML = isXML(context),
		soFar = selector;
	
	// Reset the position of the chunker regexp (start from head)
	while ((chunker.exec(""), m = chunker.exec(soFar)) !== null) {
		soFar = m[3];
		
		parts.push(m[1]);
		
		if (m[2]) {
			extra = m[3];
			break;
		}
	}

	if (parts.length > 1 && origPOS.exec(selector)) {
		if (parts.length === 2 && Expr.relative[parts[0]]) {
			set = posProcess(parts[0] + parts[1], context);
		} else {
			set = Expr.relative[parts[0]] ?
				[context] :
				Sizzle(parts.shift(), context);

			while (parts.length) {
				selector = parts.shift();

				if (Expr.relative[selector]) {
					selector += parts.shift();
				}
				
				set = posProcess(selector, set);
			}
		}
	} else {
		// Take a shortcut and set the context if the root selector is an ID
		// (but not if it'll be faster if the inner selector is an ID)
		if (!seed && parts.length > 1 && context.nodeType === 9 && !contextXML &&
				Expr.match.ID.test(parts[0]) && !Expr.match.ID.test(parts[parts.length - 1])) {
			var ret = Sizzle.find(parts.shift(), context, contextXML);
			context = ret.expr ? Sizzle.filter(ret.expr, ret.set)[0] : ret.set[0];
		}

		if (context) {
			var ret = seed ?
				{ expr: parts.pop(), set: makeArray(seed) } :
				Sizzle.find(parts.pop(), parts.length === 1 && (parts[0] === "~" || parts[0] === "+") && context.parentNode ? context.parentNode : context, contextXML);
			set = ret.expr ? Sizzle.filter(ret.expr, ret.set) : ret.set;

			if (parts.length > 0) {
				checkSet = makeArray(set);
			} else {
				prune = false;
			}

			while (parts.length) {
				var cur = parts.pop(), pop = cur;

				if (!Expr.relative[cur]) {
					cur = "";
				} else {
					pop = parts.pop();
				}

				if (pop == null) {
					pop = context;
				}

				Expr.relative[cur](checkSet, pop, contextXML);
			}
		} else {
			checkSet = parts = [];
		}
	}

	if (!checkSet) {
		checkSet = set;
	}

	if (!checkSet) {
		Sizzle.error(cur || selector);
	}

	if (toString.call(checkSet) === "[object Array]") {
		if (!prune) {
			results.push.apply(results, checkSet);
		} else if (context && context.nodeType === 1) {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && (checkSet[i] === true || checkSet[i].nodeType === 1 && contains(context, checkSet[i]))) {
					results.push(set[i]);
				}
			}
		} else {
			for (var i = 0; checkSet[i] != null; i++) {
				if (checkSet[i] && checkSet[i].nodeType === 1) {
					results.push(set[i]);
				}
			}
		}
	} else {
		makeArray(checkSet, results);
	}

	if (extra) {
		Sizzle(extra, origContext, results, seed);
		Sizzle.uniqueSort(results);
	}

	return results;
};

Sizzle.uniqueSort = function(results){
	if (sortOrder) {
		hasDuplicate = baseHasDuplicate;
		results.sort(sortOrder);

		if (hasDuplicate) {
			for (var i = 1; i < results.length; i++) {
				if (results[i] === results[i-1]) {
					results.splice(i--, 1);
				}
			}
		}
	}

	return results;
};

Sizzle.matches = function(expr, set){
	return Sizzle(expr, null, null, set);
};

Sizzle.find = function(expr, context, isXML){
	var set, match;

	if (!expr) {
		return [];
	}

	for (var i = 0, l = Expr.order.length; i < l; i++) {
		var type = Expr.order[i], match;
		
		if ((match = Expr.leftMatch[type].exec(expr))) {
			var left = match[1];
			match.splice(1,1);

			if (left.substr(left.length - 1) !== "\\") {
				match[1] = (match[1] || "").replace(/\\/g, "");
				set = Expr.find[type](match, context, isXML);
				if (set != null) {
					expr = expr.replace(Expr.match[type], "");
					break;
				}
			}
		}
	}

	if (!set) {
		set = context.getElementsByTagName("*");
	}

	return {set: set, expr: expr};
};

Sizzle.filter = function(expr, set, inplace, not){
	var old = expr, result = [], curLoop = set, match, anyFound,
		isXMLFilter = set && set[0] && isXML(set[0]);

	while (expr && set.length) {
		for (var type in Expr.filter) {
			if ((match = Expr.leftMatch[type].exec(expr)) != null && match[2]) {
				var filter = Expr.filter[type], found, item, left = match[1];
				anyFound = false;

				match.splice(1,1);

				if (left.substr(left.length - 1) === "\\") {
					continue;
				}

				if (curLoop === result) {
					result = [];
				}

				if (Expr.preFilter[type]) {
					match = Expr.preFilter[type](match, curLoop, inplace, result, not, isXMLFilter);

					if (!match) {
						anyFound = found = true;
					} else if (match === true) {
						continue;
					}
				}

				if (match) {
					for (var i = 0; (item = curLoop[i]) != null; i++) {
						if (item) {
							found = filter(item, match, i, curLoop);
							var pass = not ^ !!found;

							if (inplace && found != null) {
								if (pass) {
									anyFound = true;
								} else {
									curLoop[i] = false;
								}
							} else if (pass) {
								result.push(item);
								anyFound = true;
							}
						}
					}
				}

				if (found !== undefined) {
					if (!inplace) {
						curLoop = result;
					}

					expr = expr.replace(Expr.match[type], "");

					if (!anyFound) {
						return [];
					}

					break;
				}
			}
		}

		// Improper expression
		if (expr === old) {
			if (anyFound == null) {
				Sizzle.error(expr);
			} else {
				break;
			}
		}

		old = expr;
	}

	return curLoop;
};

Sizzle.error = function(msg) {
	throw "Syntax error, unrecognized expression: " + msg;
};

var Expr = Sizzle.selectors = {
	order: ["ID", "NAME", "TAG"],
	match: {
		ID: /#((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		CLASS: /\.((?:[\w\u00c0-\uFFFF-]|\\.)+)/,
		NAME: /\[name=['"]*((?:[\w\u00c0-\uFFFF-]|\\.)+)['"]*\]/,
		ATTR: /\[\s*((?:[\w\u00c0-\uFFFF-]|\\.)+)\s*(?:(\S?=)\s*(['"]*)(.*?)\3|)\s*\]/,
		TAG: /^((?:[\w\u00c0-\uFFFF*-]|\\.)+)/,
		CHILD: /:(only|nth|last|first)-child(?:\((even|odd|[\dn+-]*)\))?/,
		POS: /:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^-]|$)/,
		PSEUDO: /:((?:[\w\u00c0-\uFFFF-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/
	},
	leftMatch: {},
	attrMap: {
		"class": "className",
		"for": "htmlFor"
	},
	attrHandle: {
		href: function(elem){
			return elem.getAttribute("href");
		}
	},
	relative: {
		"+": function(checkSet, part){
			var isPartStr = typeof part === "string",
				isTag = isPartStr && !/\W/.test(part),
				isPartStrNotTag = isPartStr && !isTag;

			if (isTag) {
				part = part.toLowerCase();
			}

			for (var i = 0, l = checkSet.length, elem; i < l; i++) {
				if ((elem = checkSet[i])) {
					while ((elem = elem.previousSibling) && elem.nodeType !== 1) {}

					checkSet[i] = isPartStrNotTag || elem && elem.nodeName.toLowerCase() === part ?
						elem || false :
						elem === part;
				}
			}

			if (isPartStrNotTag) {
				Sizzle.filter(part, checkSet, true);
			}
		},
		">": function(checkSet, part){
			var isPartStr = typeof part === "string";

			if (isPartStr && !/\W/.test(part)) {
				part = part.toLowerCase();

				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						var parent = elem.parentNode;
						checkSet[i] = parent.nodeName.toLowerCase() === part ? parent : false;
					}
				}
			} else {
				for (var i = 0, l = checkSet.length; i < l; i++) {
					var elem = checkSet[i];
					if (elem) {
						checkSet[i] = isPartStr ?
							elem.parentNode :
							elem.parentNode === part;
					}
				}

				if (isPartStr) {
					Sizzle.filter(part, checkSet, true);
				}
			}
		},
		"": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("parentNode", part, doneName, checkSet, nodeCheck, isXML);
		},
		"~": function(checkSet, part, isXML){
			var doneName = done++, checkFn = dirCheck;

			if (typeof part === "string" && !/\W/.test(part)) {
				var nodeCheck = part = part.toLowerCase();
				checkFn = dirNodeCheck;
			}

			checkFn("previousSibling", part, doneName, checkSet, nodeCheck, isXML);
		}
	},
	find: {
		ID: function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? [m] : [];
			}
		},
		NAME: function(match, context){
			if (typeof context.getElementsByName !== "undefined") {
				var ret = [], results = context.getElementsByName(match[1]);

				for (var i = 0, l = results.length; i < l; i++) {
					if (results[i].getAttribute("name") === match[1]) {
						ret.push(results[i]);
					}
				}

				return ret.length === 0 ? null : ret;
			}
		},
		TAG: function(match, context){
			return context.getElementsByTagName(match[1]);
		}
	},
	preFilter: {
		CLASS: function(match, curLoop, inplace, result, not, isXML){
			match = " " + match[1].replace(/\\/g, "") + " ";

			if (isXML) {
				return match;
			}

			for (var i = 0, elem; (elem = curLoop[i]) != null; i++) {
				if (elem) {
					if (not ^ (elem.className && (" " + elem.className + " ").replace(/[\t\n]/g, " ").indexOf(match) >= 0)) {
						if (!inplace) {
							result.push(elem);
						}
					} else if (inplace) {
						curLoop[i] = false;
					}
				}
			}

			return false;
		},
		ID: function(match){
			return match[1].replace(/\\/g, "");
		},
		TAG: function(match, curLoop){
			return match[1].toLowerCase();
		},
		CHILD: function(match){
			if (match[1] === "nth") {
				// parse equations like 'even', 'odd', '5', '2n', '3n+2', '4n-1', '-n+6'
				var test = /(-?)(\d*)n((?:\+|-)?\d*)/.exec(
					match[2] === "even" && "2n" || match[2] === "odd" && "2n+1" ||
					!/\D/.test(match[2]) && "0n+" + match[2] || match[2]);

				// calculate the numbers (first)n+(last) including if they are negative
				match[2] = (test[1] + (test[2] || 1)) - 0;
				match[3] = test[3] - 0;
			}

			// TODO: Move to normal caching system
			match[0] = done++;

			return match;
		},
		ATTR: function(match, curLoop, inplace, result, not, isXML){
			var name = match[1].replace(/\\/g, "");
			
			if (!isXML && Expr.attrMap[name]) {
				match[1] = Expr.attrMap[name];
			}

			if (match[2] === "~=") {
				match[4] = " " + match[4] + " ";
			}

			return match;
		},
		PSEUDO: function(match, curLoop, inplace, result, not){
			if (match[1] === "not") {
				// If we're dealing with a complex expression, or a simple one
				if ((chunker.exec(match[3]) || "").length > 1 || /^\w/.test(match[3])) {
					match[3] = Sizzle(match[3], null, null, curLoop);
				} else {
					var ret = Sizzle.filter(match[3], curLoop, inplace, true ^ not);
					if (!inplace) {
						result.push.apply(result, ret);
					}
					return false;
				}
			} else if (Expr.match.POS.test(match[0]) || Expr.match.CHILD.test(match[0])) {
				return true;
			}
			
			return match;
		},
		POS: function(match){
			match.unshift(true);
			return match;
		}
	},
	filters: {
		enabled: function(elem){
			return elem.disabled === false && elem.type !== "hidden";
		},
		disabled: function(elem){
			return elem.disabled === true;
		},
		checked: function(elem){
			return elem.checked === true;
		},
		selected: function(elem){
			// Accessing this property makes selected-by-default
			// options in Safari work properly
			elem.parentNode.selectedIndex;
			return elem.selected === true;
		},
		parent: function(elem){
			return !!elem.firstChild;
		},
		empty: function(elem){
			return !elem.firstChild;
		},
		has: function(elem, i, match){
			return !!Sizzle(match[3], elem).length;
		},
		header: function(elem){
			return /h\d/i.test(elem.nodeName);
		},
		text: function(elem){
			return "text" === elem.type;
		},
		radio: function(elem){
			return "radio" === elem.type;
		},
		checkbox: function(elem){
			return "checkbox" === elem.type;
		},
		file: function(elem){
			return "file" === elem.type;
		},
		password: function(elem){
			return "password" === elem.type;
		},
		submit: function(elem){
			return "submit" === elem.type;
		},
		image: function(elem){
			return "image" === elem.type;
		},
		reset: function(elem){
			return "reset" === elem.type;
		},
		button: function(elem){
			return "button" === elem.type || elem.nodeName.toLowerCase() === "button";
		},
		input: function(elem){
			return /input|select|textarea|button/i.test(elem.nodeName);
		}
	},
	setFilters: {
		first: function(elem, i){
			return i === 0;
		},
		last: function(elem, i, match, array){
			return i === array.length - 1;
		},
		even: function(elem, i){
			return i % 2 === 0;
		},
		odd: function(elem, i){
			return i % 2 === 1;
		},
		lt: function(elem, i, match){
			return i < match[3] - 0;
		},
		gt: function(elem, i, match){
			return i > match[3] - 0;
		},
		nth: function(elem, i, match){
			return match[3] - 0 === i;
		},
		eq: function(elem, i, match){
			return match[3] - 0 === i;
		}
	},
	filter: {
		PSEUDO: function(elem, match, i, array){
			var name = match[1], filter = Expr.filters[name];

			if (filter) {
				return filter(elem, i, match, array);
			} else if (name === "contains") {
				return (elem.textContent || elem.innerText || getText([elem]) || "").indexOf(match[3]) >= 0;
			} else if (name === "not") {
				var not = match[3];

				for (var i = 0, l = not.length; i < l; i++) {
					if (not[i] === elem) {
						return false;
					}
				}

				return true;
			} else {
				Sizzle.error("Syntax error, unrecognized expression: " + name);
			}
		},
		CHILD: function(elem, match){
			var type = match[1], node = elem;
			switch (type) {
				case 'only':
				case 'first':
					while ((node = node.previousSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					if (type === "first") {
						return true;
					}
					node = elem;
				case 'last':
					while ((node = node.nextSibling))	 {
						if (node.nodeType === 1) {
							return false;
						}
					}
					return true;
				case 'nth':
					var first = match[2], last = match[3];

					if (first === 1 && last === 0) {
						return true;
					}
					
					var doneName = match[0],
						parent = elem.parentNode;
	
					if (parent && (parent.sizcache !== doneName || !elem.nodeIndex)) {
						var count = 0;
						for (node = parent.firstChild; node; node = node.nextSibling) {
							if (node.nodeType === 1) {
								node.nodeIndex = ++count;
							}
						}
						parent.sizcache = doneName;
					}
					
					var diff = elem.nodeIndex - last;
					if (first === 0) {
						return diff === 0;
					} else {
						return (diff % first === 0 && diff / first >= 0);
					}
			}
		},
		ID: function(elem, match){
			return elem.nodeType === 1 && elem.getAttribute("id") === match;
		},
		TAG: function(elem, match){
			return (match === "*" && elem.nodeType === 1) || elem.nodeName.toLowerCase() === match;
		},
		CLASS: function(elem, match){
			return (" " + (elem.className || elem.getAttribute("class")) + " ")
				.indexOf(match) > -1;
		},
		ATTR: function(elem, match){
			var name = match[1],
				result = Expr.attrHandle[name] ?
					Expr.attrHandle[name](elem) :
					elem[name] != null ?
						elem[name] :
						elem.getAttribute(name),
				value = result + "",
				type = match[2],
				check = match[4];

			return result == null ?
				type === "!=" :
				type === "=" ?
				value === check :
				type === "*=" ?
				value.indexOf(check) >= 0 :
				type === "~=" ?
				(" " + value + " ").indexOf(check) >= 0 :
				!check ?
				value && result !== false :
				type === "!=" ?
				value !== check :
				type === "^=" ?
				value.indexOf(check) === 0 :
				type === "$=" ?
				value.substr(value.length - check.length) === check :
				type === "|=" ?
				value === check || value.substr(0, check.length + 1) === check + "-" :
				false;
		},
		POS: function(elem, match, i, array){
			var name = match[2], filter = Expr.setFilters[name];

			if (filter) {
				return filter(elem, i, match, array);
			}
		}
	}
};

var origPOS = Expr.match.POS;

for (var type in Expr.match) {
	Expr.match[type] = new RegExp(Expr.match[type].source + /(?![^\[]*\])(?![^\(]*\))/.source);
	Expr.leftMatch[type] = new RegExp(/(^(?:.|\r|\n)*?)/.source + Expr.match[type].source.replace(/\\(\d+)/g, function(all, num){
		return "\\" + (num - 0 + 1);
	}));
}

var makeArray = function(array, results) {
	array = Array.prototype.slice.call(array, 0);

	if (results) {
		results.push.apply(results, array);
		return results;
	}
	
	return array;
};

// Perform a simple check to determine if the browser is capable of
// converting a NodeList to an array using builtin methods.
// Also verifies that the returned array holds DOM nodes
// (which is not the case in the Blackberry browser)
try {
	Array.prototype.slice.call(document.documentElement.childNodes, 0)[0].nodeType;

// Provide a fallback method if it does not work
} catch(e){
	makeArray = function(array, results) {
		var ret = results || [];

		if (toString.call(array) === "[object Array]") {
			Array.prototype.push.apply(ret, array);
		} else {
			if (typeof array.length === "number") {
				for (var i = 0, l = array.length; i < l; i++) {
					ret.push(array[i]);
				}
			} else {
				for (var i = 0; array[i]; i++) {
					ret.push(array[i]);
				}
			}
		}

		return ret;
	};
}

var sortOrder;

if (document.documentElement.compareDocumentPosition) {
	sortOrder = function(a, b) {
		if (!a.compareDocumentPosition || !b.compareDocumentPosition) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.compareDocumentPosition ? -1 : 1;
		}

		var ret = a.compareDocumentPosition(b) & 4 ? -1 : a === b ? 0 : 1;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if ("sourceIndex" in document.documentElement) {
	sortOrder = function(a, b) {
		if (!a.sourceIndex || !b.sourceIndex) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.sourceIndex ? -1 : 1;
		}

		var ret = a.sourceIndex - b.sourceIndex;
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
} else if (document.createRange) {
	sortOrder = function(a, b) {
		if (!a.ownerDocument || !b.ownerDocument) {
			if (a == b) {
				hasDuplicate = true;
			}
			return a.ownerDocument ? -1 : 1;
		}

		var aRange = a.ownerDocument.createRange(), bRange = b.ownerDocument.createRange();
		aRange.setStart(a, 0);
		aRange.setEnd(a, 0);
		bRange.setStart(b, 0);
		bRange.setEnd(b, 0);
		var ret = aRange.compareBoundaryPoints(Range.START_TO_END, bRange);
		if (ret === 0) {
			hasDuplicate = true;
		}
		return ret;
	};
}

// Utility function for retreiving the text value of an array of DOM nodes
function getText(elems) {
	var ret = "", elem;

	for (var i = 0; elems[i]; i++) {
		elem = elems[i];

		// Get the text from text nodes and CDATA nodes
		if (elem.nodeType === 3 || elem.nodeType === 4) {
			ret += elem.nodeValue;

		// Traverse everything else, except comment nodes
		} else if (elem.nodeType !== 8) {
			ret += getText(elem.childNodes);
		}
	}

	return ret;
}

// Check to see if the browser returns elements by name when
// querying by getElementById (and provide a workaround)
(function(){
	// We're going to inject a fake input element with a specified name
	var form = document.createElement("div"),
		id = "script" + (new Date).getTime();
	form.innerHTML = "";

	// Inject it into the root element, check its status, and remove it quickly
	var root = document.documentElement;
	root.insertBefore(form, root.firstChild);

	// The workaround has to do additional checks after a getElementById
	// Which slows things down for other browsers (hence the branching)
	if (document.getElementById(id)) {
		Expr.find.ID = function(match, context, isXML){
			if (typeof context.getElementById !== "undefined" && !isXML) {
				var m = context.getElementById(match[1]);
				return m ? m.id === match[1] || typeof m.getAttributeNode !== "undefined" && m.getAttributeNode("id").nodeValue === match[1] ? [m] : undefined : [];
			}
		};

		Expr.filter.ID = function(elem, match){
			var node = typeof elem.getAttributeNode !== "undefined" && elem.getAttributeNode("id");
			return elem.nodeType === 1 && node && node.nodeValue === match;
		};
	}

	root.removeChild(form);
	root = form = null; // release memory in IE
})();

(function(){
	// Check to see if the browser returns only elements
	// when doing getElementsByTagName("*")

	// Create a fake element
	var div = document.createElement("div");
	div.appendChild(document.createComment(""));

	// Make sure no comments are found
	if (div.getElementsByTagName("*").length > 0) {
		Expr.find.TAG = function(match, context){
			var results = context.getElementsByTagName(match[1]);

			// Filter out possible comments
			if (match[1] === "*") {
				var tmp = [];

				for (var i = 0; results[i]; i++) {
					if (results[i].nodeType === 1) {
						tmp.push(results[i]);
					}
				}

				results = tmp;
			}

			return results;
		};
	}

	// Check to see if an attribute returns normalized href attributes
	div.innerHTML = "";
	if (div.firstChild && typeof div.firstChild.getAttribute !== "undefined" &&
			div.firstChild.getAttribute("href") !== "#") {
		Expr.attrHandle.href = function(elem){
			return elem.getAttribute("href", 2);
		};
	}

	div = null; // release memory in IE
})();

if (document.querySelectorAll) {
	(function(){
		var oldSizzle = Sizzle, div = document.createElement("div");
		div.innerHTML = "<p class='TEST'></p>";

		// Safari can't handle uppercase or unicode characters when
		// in quirks mode.
		if (div.querySelectorAll && div.querySelectorAll(".TEST").length === 0) {
			return;
		}
	
		Sizzle = function(query, context, extra, seed){
			context = context || document;

			// Only use querySelectorAll on non-XML documents
			// (ID selectors don't work in non-HTML documents)
			if (!seed && context.nodeType === 9 && !isXML(context)) {
				try {
					return makeArray(context.querySelectorAll(query), extra);
				} catch(e){}
			}
		
			return oldSizzle(query, context, extra, seed);
		};

		for (var prop in oldSizzle) {
			Sizzle[prop] = oldSizzle[prop];
		}

		div = null; // release memory in IE
	})();
}

(function(){
	var div = document.createElement("div");

	div.innerHTML = "<div class='test e'></div><div class='test'></div>";

	// Opera can't find a second classname (in 9.6)
	// Also, make sure that getElementsByClassName actually exists
	if (!div.getElementsByClassName || div.getElementsByClassName("e").length === 0) {
		return;
	}

	// Safari caches class attributes, doesn't catch changes (in 3.2)
	div.lastChild.className = "e";

	if (div.getElementsByClassName("e").length === 1) {
		return;
	}
	
	Expr.order.splice(1, 0, "CLASS");
	Expr.find.CLASS = function(match, context, isXML) {
		if (typeof context.getElementsByClassName !== "undefined" && !isXML) {
			return context.getElementsByClassName(match[1]);
		}
	};

	div = null; // release memory in IE
})();

function dirNodeCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1 && !isXML){
					elem.sizcache = doneName;
					elem.sizset = i;
				}

				if (elem.nodeName.toLowerCase() === cur) {
					match = elem;
					break;
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

function dirCheck(dir, cur, doneName, checkSet, nodeCheck, isXML) {
	for (var i = 0, l = checkSet.length; i < l; i++) {
		var elem = checkSet[i];
		if (elem) {
			elem = elem[dir];
			var match = false;

			while (elem) {
				if (elem.sizcache === doneName) {
					match = checkSet[elem.sizset];
					break;
				}

				if (elem.nodeType === 1) {
					if (!isXML) {
						elem.sizcache = doneName;
						elem.sizset = i;
					}
					if (typeof cur !== "string") {
						if (elem === cur) {
							match = true;
							break;
						}

					} else if (Sizzle.filter(cur, [elem]).length > 0) {
						match = elem;
						break;
					}
				}

				elem = elem[dir];
			}

			checkSet[i] = match;
		}
	}
}

var contains = document.compareDocumentPosition ? function(a, b){
	return !!(a.compareDocumentPosition(b) & 16);
} : function(a, b){
	return a !== b && (a.contains ? a.contains(b) : true);
};

var isXML = function(elem){
	// documentElement is verified for cases where it doesn't yet exist
	// (such as loading iframes in IE - #4833)
	var documentElement = (elem ? elem.ownerDocument || elem : 0).documentElement;
	return documentElement ? documentElement.nodeName !== "HTML" : false;
};

var posProcess = function(selector, context){
	var tmpSet = [], later = "", match,
		root = context.nodeType ? [context] : context;

	// Position selectors must be done after the filter
	// And so must :not(positional) so we move all PSEUDOs to the end
	while ((match = Expr.match.PSEUDO.exec(selector))) {
		later += match[0];
		selector = selector.replace(Expr.match.PSEUDO, "");
	}

	selector = Expr.relative[selector] ? selector + "*" : selector;

	for (var i = 0, l = root.length; i < l; i++) {
		Sizzle(selector, root[i], tmpSet);
	}

	return Sizzle.filter(later, tmpSet);
};

// EXPOSE
jQuery.find = Sizzle;
jQuery.expr = Sizzle.selectors;
jQuery.expr[":"] = jQuery.expr.filters;
jQuery.unique = Sizzle.uniqueSort;
jQuery.text = getText;
jQuery.isXMLDoc = isXML;
jQuery.contains = contains;

return;

window.Sizzle = Sizzle;

})();
var runtil = /Until$/,
	rparentsprev = /^(?:parents|prevUntil|prevAll)/,
	// Note: This RegExp should be improved, or likely pulled from Sizzle
	rmultiselector = /,/,
	slice = Array.prototype.slice;

// Implement the identical functionality for filter and not
var winnow = function(elements, qualifier, keep) {
	if (jQuery.isFunction(qualifier)) {
		return jQuery.grep(elements, function(elem, i) {
			return !!qualifier.call(elem, i, elem) === keep;
		});

	} else if (qualifier.nodeType) {
		return jQuery.grep(elements, function(elem, i) {
			return (elem === qualifier) === keep;
		});

	} else if (typeof qualifier === "string") {
		var filtered = jQuery.grep(elements, function(elem) {
			return elem.nodeType === 1;
		});

		if (isSimple.test(qualifier)) {
			return jQuery.filter(qualifier, filtered, !keep);
		} else {
			qualifier = jQuery.filter(qualifier, filtered);
		}
	}

	return jQuery.grep(elements, function(elem, i) {
		return (jQuery.inArray(elem, qualifier) >= 0) === keep;
	});
};

jQuery.fn.extend({
	find: function(selector) {
		var ret = this.pushStack("", "find", selector), length = 0;

		for (var i = 0, l = this.length; i < l; i++) {
			length = ret.length;
			jQuery.find(selector, this[i], ret);

			if (i > 0) {
				// Make sure that the results are unique
				for (var n = length; n < ret.length; n++) {
					for (var r = 0; r < length; r++) {
						if (ret[r] === ret[n]) {
							ret.splice(n--, 1);
							break;
						}
					}
				}
			}
		}

		return ret;
	},

	has: function(target) {
		var targets = jQuery(target);
		return this.filter(function() {
			for (var i = 0, l = targets.length; i < l; i++) {
				if (jQuery.contains(this, targets[i])) {
					return true;
				}
			}
		});
	},

	not: function(selector) {
		return this.pushStack(winnow(this, selector, false), "not", selector);
	},

	filter: function(selector) {
		return this.pushStack(winnow(this, selector, true), "filter", selector);
	},
	
	is: function(selector) {
		return !!selector && jQuery.filter(selector, this).length > 0;
	},

	closest: function(selectors, context) {
		if (jQuery.isArray(selectors)) {
			var ret = [], cur = this[0], match, matches = {}, selector;

			if (cur && selectors.length) {
				for (var i = 0, l = selectors.length; i < l; i++) {
					selector = selectors[i];

					if (!matches[selector]) {
						matches[selector] = jQuery.expr.match.POS.test(selector) ?
							jQuery(selector, context || this.context) :
							selector;
					}
				}

				while (cur && cur.ownerDocument && cur !== context) {
					for (selector in matches) {
						match = matches[selector];

						if (match.jquery ? match.index(cur) > -1 : jQuery(cur).is(match)) {
							ret.push({ selector: selector, elem: cur });
							delete matches[selector];
						}
					}
					cur = cur.parentNode;
				}
			}

			return ret;
		}

		var pos = jQuery.expr.match.POS.test(selectors) ?
			jQuery(selectors, context || this.context) : null;

		return this.map(function(i, cur) {
			while (cur && cur.ownerDocument && cur !== context) {
				if (pos ? pos.index(cur) > -1 : jQuery(cur).is(selectors)) {
					return cur;
				}
				cur = cur.parentNode;
			}
			return null;
		});
	},
	
	// Determine the position of an element within
	// the matched set of elements
	index: function(elem) {
		if (!elem || typeof elem === "string") {
			return jQuery.inArray(this[0],
				// If it receives a string, the selector is used
				// If it receives nothing, the siblings are used
				elem ? jQuery(elem) : this.parent().children());
		}
		// Locate the position of the desired element
		return jQuery.inArray(
			// If it receives a jQuery object, the first element is used
			elem.jquery ? elem[0] : elem, this);
	},

	add: function(selector, context) {
		var set = typeof selector === "string" ?
				jQuery(selector, context || this.context) :
				jQuery.makeArray(selector),
			all = jQuery.merge(this.get(), set);

		return this.pushStack(isDisconnected(set[0]) || isDisconnected(all[0]) ?
			all :
			jQuery.unique(all));
	},

	andSelf: function() {
		return this.add(this.prevObject);
	}
});

// A painfully simple check to see if an element is disconnected
// from a document (should be improved, where feasible).
function isDisconnected(node) {
	return !node || !node.parentNode || node.parentNode.nodeType === 11;
}

jQuery.each({
	parent: function(elem) {
		var parent = elem.parentNode;
		return parent && parent.nodeType !== 11 ? parent : null;
	},
	parents: function(elem) {
		return jQuery.dir(elem, "parentNode");
	},
	parentsUntil: function(elem, i, until) {
		return jQuery.dir(elem, "parentNode", until);
	},
	next: function(elem) {
		return jQuery.nth(elem, 2, "nextSibling");
	},
	prev: function(elem) {
		return jQuery.nth(elem, 2, "previousSibling");
	},
	nextAll: function(elem) {
		return jQuery.dir(elem, "nextSibling");
	},
	prevAll: function(elem) {
		return jQuery.dir(elem, "previousSibling");
	},
	nextUntil: function(elem, i, until) {
		return jQuery.dir(elem, "nextSibling", until);
	},
	prevUntil: function(elem, i, until) {
		return jQuery.dir(elem, "previousSibling", until);
	},
	siblings: function(elem) {
		return jQuery.sibling(elem.parentNode.firstChild, elem);
	},
	children: function(elem) {
		return jQuery.sibling(elem.firstChild);
	},
	contents: function(elem) {
		return jQuery.nodeName(elem, "iframe") ?
			elem.contentDocument || elem.contentWindow.document :
			jQuery.makeArray(elem.childNodes);
	}
}, function(name, fn) {
	jQuery.fn[name] = function(until, selector) {
		var ret = jQuery.map(this, fn, until);
		
		if (!runtil.test(name)) {
			selector = until;
		}

		if (selector && typeof selector === "string") {
			ret = jQuery.filter(selector, ret);
		}

		ret = this.length > 1 ? jQuery.unique(ret) : ret;

		if ((this.length > 1 || rmultiselector.test(selector)) && rparentsprev.test(name)) {
			ret = ret.reverse();
		}

		return this.pushStack(ret, name, slice.call(arguments).join(","));
	};
});

jQuery.extend({
	filter: function(expr, elems, not) {
		if (not) {
			expr = ":not(" + expr + ")";
		}

		return jQuery.find.matches(expr, elems);
	},
	
	dir: function(elem, dir, until) {
		var matched = [], cur = elem[dir];
		while (cur && cur.nodeType !== 9 && (until === undefined || cur.nodeType !== 1 || !jQuery(cur).is(until))) {
			if (cur.nodeType === 1) {
				matched.push(cur);
			}
			cur = cur[dir];
		}
		return matched;
	},

	nth: function(cur, result, dir, elem) {
		result = result || 1;
		var num = 0;

		for (; cur; cur = cur[dir]) {
			if (cur.nodeType === 1 && ++num === result) {
				break;
			}
		}

		return cur;
	},

	sibling: function(n, elem) {
		var r = [];

		for (; n; n = n.nextSibling) {
			if (n.nodeType === 1 && n !== elem) {
				r.push(n);
			}
		}

		return r;
	}
});
var rinlinejQuery = / jQuery\d+="(?:\d+|null)"/g,
	rleadingWhitespace = /^\s+/,
	rxhtmlTag = /(<([\w:]+)[^>]*?)\/>/g,
	rselfClosing = /^(?:area|br|col|embed|hr|img|input|link|meta|param)$/i,
	rtagName = /<([\w:]+)/,
	rtbody = /<tbody/i,
	rhtml = /<|&#?\w+;/,
	rnocache = /<script|<object|<embed|<option|<style/i,
	rchecked = /checked\s*(?:[^=]|=\s*.checked.)/i, // checked="checked" or checked (html5)
	fcloseTag = function(all, front, tag) {
		return rselfClosing.test(tag) ?
			all :
			front + "></" + tag + ">";
	},
	wrapMap = {
		option: [1, "<select multiple='multiple'>", "</select>"],
		legend: [1, "<fieldset>", "</fieldset>"],
		thead: [1, "<table>", "</table>"],
		tr: [2, "<table><tbody>", "</tbody></table>"],
		td: [3, "<table><tbody><tr>", "</tr></tbody></table>"],
		col: [2, "<table><tbody></tbody><colgroup>", "</colgroup></table>"],
		area: [1, "<map>", "</map>"],
		_default: [0, "", ""]
	};

wrapMap.optgroup = wrapMap.option;
wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead;
wrapMap.th = wrapMap.td;

// IE can't serialize <link> and <script> tags normally
if (!jQuery.support.htmlSerialize) {
	wrapMap._default = [1, "div<div>", "</div>"];
}

jQuery.fn.extend({
	text: function(text) {
		if (jQuery.isFunction(text)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self.text(text.call(this, i, self.text()));
			});
		}

		if (typeof text !== "object" && text !== undefined) {
			return this.empty().append((this[0] && this[0].ownerDocument || document).createTextNode(text));
		}

		return jQuery.text(this);
	},

	wrapAll: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapAll(html.call(this, i));
			});
		}

		if (this[0]) {
			// The elements to wrap the target around
			var wrap = jQuery(html, this[0].ownerDocument).eq(0).clone(true);

			if (this[0].parentNode) {
				wrap.insertBefore(this[0]);
			}

			wrap.map(function() {
				var elem = this;

				while (elem.firstChild && elem.firstChild.nodeType === 1) {
					elem = elem.firstChild;
				}

				return elem;
			}).append(this);
		}

		return this;
	},

	wrapInner: function(html) {
		if (jQuery.isFunction(html)) {
			return this.each(function(i) {
				jQuery(this).wrapInner(html.call(this, i));
			});
		}

		return this.each(function() {
			var self = jQuery(this), contents = self.contents();

			if (contents.length) {
				contents.wrapAll(html);

			} else {
				self.append(html);
			}
		});
	},

	wrap: function(html) {
		return this.each(function() {
			jQuery(this).wrapAll(html);
		});
	},

	unwrap: function() {
		return this.parent().each(function() {
			if (!jQuery.nodeName(this, "body")) {
				jQuery(this).replaceWith(this.childNodes);
			}
		}).end();
	},

	append: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.appendChild(elem);
			}
		});
	},

	prepend: function() {
		return this.domManip(arguments, true, function(elem) {
			if (this.nodeType === 1) {
				this.insertBefore(elem, this.firstChild);
			}
		});
	},

	before: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this);
			});
		} else if (arguments.length) {
			var set = jQuery(arguments[0]);
			set.push.apply(set, this.toArray());
			return this.pushStack(set, "before", arguments);
		}
	},

	after: function() {
		if (this[0] && this[0].parentNode) {
			return this.domManip(arguments, false, function(elem) {
				this.parentNode.insertBefore(elem, this.nextSibling);
			});
		} else if (arguments.length) {
			var set = this.pushStack(this, "after", arguments);
			set.push.apply(set, jQuery(arguments[0]).toArray());
			return set;
		}
	},
	
	// keepData is for internal use only--do not document
	remove: function(selector, keepData) {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			if (!selector || jQuery.filter(selector, [elem]).length) {
				if (!keepData && elem.nodeType === 1) {
					jQuery.cleanData(elem.getElementsByTagName("*"));
					jQuery.cleanData([elem]);
				}

				if (elem.parentNode) {
					 elem.parentNode.removeChild(elem);
				}
			}
		}
		
		return this;
	},

	empty: function() {
		for (var i = 0, elem; (elem = this[i]) != null; i++) {
			// Remove element nodes and prevent memory leaks
			if (elem.nodeType === 1) {
				jQuery.cleanData(elem.getElementsByTagName("*"));
			}

			// Remove any remaining nodes
			while (elem.firstChild) {
				elem.removeChild(elem.firstChild);
			}
		}
		
		return this;
	},

	clone: function(events) {
		// Do the clone
		var ret = this.map(function() {
			if (!jQuery.support.noCloneEvent && !jQuery.isXMLDoc(this)) {
				// IE copies events bound via attachEvent when
				// using cloneNode. Calling detachEvent on the
				// clone will also remove the events from the orignal
				// In order to get around this, we use innerHTML.
				// Unfortunately, this means some modifications to
				// attributes in IE that are actually only stored
				// as properties will not be copied (such as the
				// the name attribute on an input).
				var html = this.outerHTML, ownerDocument = this.ownerDocument;
				if (!html) {
					var div = ownerDocument.createElement("div");
					div.appendChild(this.cloneNode(true));
					html = div.innerHTML;
				}

				return jQuery.clean([html.replace(rinlinejQuery, "")
					// Handle the case in IE 8 where action=/test/> self-closes a tag
					.replace(/=([^="'>\s]+\/)>/g, '="$1">')
					.replace(rleadingWhitespace, "")], ownerDocument)[0];
			} else {
				return this.cloneNode(true);
			}
		});

		// Copy the events from the original to the clone
		if (events === true) {
			cloneCopyEvent(this, ret);
			cloneCopyEvent(this.find("*"), ret.find("*"));
		}

		// Return the cloned set
		return ret;
	},

	html: function(value) {
		if (value === undefined) {
			return this[0] && this[0].nodeType === 1 ?
				this[0].innerHTML.replace(rinlinejQuery, "") :
				null;

		// See if we can take a shortcut and just use innerHTML
		} else if (typeof value === "string" && !rnocache.test(value) &&
			(jQuery.support.leadingWhitespace || !rleadingWhitespace.test(value)) &&
			!wrapMap[(rtagName.exec(value) || ["", ""])[1].toLowerCase()]) {

			value = value.replace(rxhtmlTag, fcloseTag);

			try {
				for (var i = 0, l = this.length; i < l; i++) {
					// Remove element nodes and prevent memory leaks
					if (this[i].nodeType === 1) {
						jQuery.cleanData(this[i].getElementsByTagName("*"));
						this[i].innerHTML = value;
					}
				}

			// If using innerHTML throws an exception, use the fallback method
			} catch(e) {
				this.empty().append(value);
			}

		} else if (jQuery.isFunction(value)) {
			this.each(function(i){
				var self = jQuery(this), old = self.html();
				self.empty().append(function(){
					return value.call(this, i, old);
				});
			});

		} else {
			this.empty().append(value);
		}

		return this;
	},

	replaceWith: function(value) {
		if (this[0] && this[0].parentNode) {
			// Make sure that the elements are removed from the DOM before they are inserted
			// this can help fix replacing a parent with child elements
			if (jQuery.isFunction(value)) {
				return this.each(function(i) {
					var self = jQuery(this), old = self.html();
					self.replaceWith(value.call(this, i, old));
				});
			}

			if (typeof value !== "string") {
				value = jQuery(value).detach();
			}

			return this.each(function() {
				var next = this.nextSibling, parent = this.parentNode;

				jQuery(this).remove();

				if (next) {
					jQuery(next).before(value);
				} else {
					jQuery(parent).append(value);
				}
			});
		} else {
			return this.pushStack(jQuery(jQuery.isFunction(value) ? value() : value), "replaceWith", value);
		}
	},

	detach: function(selector) {
		return this.remove(selector, true);
	},

	domManip: function(args, table, callback) {
		var results, first, value = args[0], scripts = [], fragment, parent;

		// We can't cloneNode fragments that contain checked, in WebKit
		if (!jQuery.support.checkClone && arguments.length === 3 && typeof value === "string" && rchecked.test(value)) {
			return this.each(function() {
				jQuery(this).domManip(args, table, callback, true);
			});
		}

		if (jQuery.isFunction(value)) {
			return this.each(function(i) {
				var self = jQuery(this);
				args[0] = value.call(this, i, table ? self.html() : undefined);
				self.domManip(args, table, callback);
			});
		}

		if (this[0]) {
			parent = value && value.parentNode;

			// If we're in a fragment, just use that instead of building a new one
			if (jQuery.support.parentNode && parent && parent.nodeType === 11 && parent.childNodes.length === this.length) {
				results = { fragment: parent };

			} else {
				results = buildFragment(args, this, scripts);
			}
			
			fragment = results.fragment;
			
			if (fragment.childNodes.length === 1) {
				first = fragment = fragment.firstChild;
			} else {
				first = fragment.firstChild;
			}

			if (first) {
				table = table && jQuery.nodeName(first, "tr");

				for (var i = 0, l = this.length; i < l; i++) {
					callback.call(
						table ?
							root(this[i], first) :
							this[i],
						i > 0 || results.cacheable || this.length > 1 ?
							fragment.cloneNode(true) :
							fragment
);
				}
			}

			if (scripts.length) {
				jQuery.each(scripts, evalScript);
			}
		}

		return this;

		function root(elem, cur) {
			return jQuery.nodeName(elem, "table") ?
				(elem.getElementsByTagName("tbody")[0] ||
				elem.appendChild(elem.ownerDocument.createElement("tbody"))) :
				elem;
		}
	}
});

function cloneCopyEvent(orig, ret) {
	var i = 0;

	ret.each(function() {
		if (this.nodeName !== (orig[i] && orig[i].nodeName)) {
			return;
		}

		var oldData = jQuery.data(orig[i++]), curData = jQuery.data(this, oldData), events = oldData && oldData.events;

		if (events) {
			delete curData.handle;
			curData.events = {};

			for (var type in events) {
				for (var handler in events[type]) {
					jQuery.event.add(this, type, events[type][handler], events[type][handler].data);
				}
			}
		}
	});
}

function buildFragment(args, nodes, scripts) {
	var fragment, cacheable, cacheresults,
		doc = (nodes && nodes[0] ? nodes[0].ownerDocument || nodes[0] : document);

	// Only cache "small" (1/2 KB) strings that are associated with the main document
	// Cloning options loses the selected state, so don't cache them
	// IE 6 doesn't like it when you put <object> or <embed> elements in a fragment
	// Also, WebKit does not clone 'checked' attributes on cloneNode, so don't cache
	if (args.length === 1 && typeof args[0] === "string" && args[0].length < 512 && doc === document &&
		!rnocache.test(args[0]) && (jQuery.support.checkClone || !rchecked.test(args[0]))) {

		cacheable = true;
		cacheresults = jQuery.fragments[args[0]];
		if (cacheresults) {
			if (cacheresults !== 1) {
				fragment = cacheresults;
			}
		}
	}

	if (!fragment) {
		fragment = doc.createDocumentFragment();
		jQuery.clean(args, doc, fragment, scripts);
	}

	if (cacheable) {
		jQuery.fragments[args[0]] = cacheresults ? fragment : 1;
	}

	return { fragment: fragment, cacheable: cacheable };
}

jQuery.fragments = {};

jQuery.each({
	appendTo: "append",
	prependTo: "prepend",
	insertBefore: "before",
	insertAfter: "after",
	replaceAll: "replaceWith"
}, function(name, original) {
	jQuery.fn[name] = function(selector) {
		var ret = [], insert = jQuery(selector),
			parent = this.length === 1 && this[0].parentNode;
		
		if (parent && parent.nodeType === 11 && parent.childNodes.length === 1 && insert.length === 1) {
			insert[original](this[0]);
			return this;
			
		} else {
			for (var i = 0, l = insert.length; i < l; i++) {
				var elems = (i > 0 ? this.clone(true) : this).get();
				jQuery.fn[original].apply(jQuery(insert[i]), elems);
				ret = ret.concat(elems);
			}
		
			return this.pushStack(ret, name, insert.selector);
		}
	};
});

jQuery.extend({
	clean: function(elems, context, fragment, scripts) {
		context = context || document;

		// !context.createElement fails in IE with an error but returns typeof 'object'
		if (typeof context.createElement === "undefined") {
			context = context.ownerDocument || context[0] && context[0].ownerDocument || document;
		}

		var ret = [];

		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			if (typeof elem === "number") {
				elem += "";
			}

			if (!elem) {
				continue;
			}

			// Convert html string into DOM nodes
			if (typeof elem === "string" && !rhtml.test(elem)) {
				elem = context.createTextNode(elem);

			} else if (typeof elem === "string") {
				// Fix "XHTML"-style tags in all browsers
				elem = elem.replace(rxhtmlTag, fcloseTag);

				// Trim whitespace, otherwise indexOf won't work as expected
				var tag = (rtagName.exec(elem) || ["", ""])[1].toLowerCase(),
					wrap = wrapMap[tag] || wrapMap._default,
					depth = wrap[0],
					div = context.createElement("div");

				// Go to html and back, then peel off extra wrappers
				div.innerHTML = wrap[1] + elem + wrap[2];

				// Move to the right depth
				while (depth--) {
					div = div.lastChild;
				}

				// Remove IE's autoinserted <tbody> from table fragments
				if (!jQuery.support.tbody) {

					// String was a <table>, *may* have spurious <tbody>
					var hasBody = rtbody.test(elem),
						tbody = tag === "table" && !hasBody ?
							div.firstChild && div.firstChild.childNodes :

							// String was a bare <thead> or <tfoot>
							wrap[1] === "<table>" && !hasBody ?
								div.childNodes :
								[];

					for (var j = tbody.length - 1; j >= 0 ; --j) {
						if (jQuery.nodeName(tbody[j], "tbody") && !tbody[j].childNodes.length) {
							tbody[j].parentNode.removeChild(tbody[j]);
						}
					}

				}

				// IE completely kills leading whitespace when innerHTML is used
				if (!jQuery.support.leadingWhitespace && rleadingWhitespace.test(elem)) {
					div.insertBefore(context.createTextNode(rleadingWhitespace.exec(elem)[0]), div.firstChild);
				}

				elem = div.childNodes;
			}

			if (elem.nodeType) {
				ret.push(elem);
			} else {
				ret = jQuery.merge(ret, elem);
			}
		}

		if (fragment) {
			for (var i = 0; ret[i]; i++) {
				if (scripts && jQuery.nodeName(ret[i], "script") && (!ret[i].type || ret[i].type.toLowerCase() === "text/javascript")) {
					scripts.push(ret[i].parentNode ? ret[i].parentNode.removeChild(ret[i]) : ret[i]);
				
				} else {
					if (ret[i].nodeType === 1) {
						ret.splice.apply(ret, [i + 1, 0].concat(jQuery.makeArray(ret[i].getElementsByTagName("script"))));
					}
					fragment.appendChild(ret[i]);
				}
			}
		}

		return ret;
	},
	
	cleanData: function(elems) {
		var data, id, cache = jQuery.cache,
			special = jQuery.event.special,
			deleteExpando = jQuery.support.deleteExpando;
		
		for (var i = 0, elem; (elem = elems[i]) != null; i++) {
			id = elem[jQuery.expando];
			
			if (id) {
				data = cache[id];
				
				if (data.events) {
					for (var type in data.events) {
						if (special[type]) {
							jQuery.event.remove(elem, type);

						} else {
							removeEvent(elem, type, data.handle);
						}
					}
				}
				
				if (deleteExpando) {
					delete elem[jQuery.expando];

				} else if (elem.removeAttribute) {
					elem.removeAttribute(jQuery.expando);
				}
				
				delete cache[id];
			}
		}
	}
});
// exclude the following css properties to add px
var rexclude = /z-?index|font-?weight|opacity|zoom|line-?height/i,
	ralpha = /alpha\([^)]*\)/,
	ropacity = /opacity=([^)]*)/,
	rfloat = /float/i,
	rdashAlpha = /-([a-z])/ig,
	rupper = /([A-Z])/g,
	rnumpx = /^-?\d+(?:px)?$/i,
	rnum = /^-?\d/,

	cssShow = { position: "absolute", visibility: "hidden", display:"block" },
	cssWidth = ["Left", "Right"],
	cssHeight = ["Top", "Bottom"],

	// cache check for defaultView.getComputedStyle
	getComputedStyle = document.defaultView && document.defaultView.getComputedStyle,
	// normalize float css property
	styleFloat = jQuery.support.cssFloat ? "cssFloat" : "styleFloat",
	fcamelCase = function(all, letter) {
		return letter.toUpperCase();
	};

jQuery.fn.css = function(name, value) {
	return access(this, name, value, true, function(elem, name, value) {
		if (value === undefined) {
			return jQuery.curCSS(elem, name);
		}
		
		if (typeof value === "number" && !rexclude.test(name)) {
			value += "px";
		}

		jQuery.style(elem, name, value);
	});
};

jQuery.extend({
	style: function(elem, name, value) {
		// don't set styles on text and comment nodes
		if (!elem || elem.nodeType === 3 || elem.nodeType === 8) {
			return undefined;
		}

		// ignore negative width and height values #1599
		if ((name === "width" || name === "height") && parseFloat(value) < 0) {
			value = undefined;
		}

		var style = elem.style || elem, set = value !== undefined;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity") {
			if (set) {
				// IE has trouble with opacity if it does not have layout
				// Force it by setting the zoom level
				style.zoom = 1;

				// Set the alpha filter to set the opacity
				var opacity = parseInt(value, 10) + "" === "NaN" ? "" : "alpha(opacity=" + value * 100 + ")";
				var filter = style.filter || jQuery.curCSS(elem, "filter") || "";
				style.filter = ralpha.test(filter) ? filter.replace(ralpha, opacity) : opacity;
			}

			return style.filter && style.filter.indexOf("opacity=") >= 0 ?
				(parseFloat(ropacity.exec(style.filter)[1]) / 100) + "":
				"";
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		name = name.replace(rdashAlpha, fcamelCase);

		if (set) {
			style[name] = value;
		}

		return style[name];
	},

	css: function(elem, name, force, extra) {
		if (name === "width" || name === "height") {
			var val, props = cssShow, which = name === "width" ? cssWidth : cssHeight;

			function getWH() {
				val = name === "width" ? elem.offsetWidth : elem.offsetHeight;

				if (extra === "border") {
					return;
				}

				jQuery.each(which, function() {
					if (!extra) {
						val -= parseFloat(jQuery.curCSS(elem, "padding" + this, true)) || 0;
					}

					if (extra === "margin") {
						val += parseFloat(jQuery.curCSS(elem, "margin" + this, true)) || 0;
					} else {
						val -= parseFloat(jQuery.curCSS(elem, "border" + this + "Width", true)) || 0;
					}
				});
			}

			if (elem.offsetWidth !== 0) {
				getWH();
			} else {
				jQuery.swap(elem, props, getWH);
			}

			return Math.max(0, Math.round(val));
		}

		return jQuery.curCSS(elem, name, force);
	},

	curCSS: function(elem, name, force) {
		var ret, style = elem.style, filter;

		// IE uses filters for opacity
		if (!jQuery.support.opacity && name === "opacity" && elem.currentStyle) {
			ret = ropacity.test(elem.currentStyle.filter || "") ?
				(parseFloat(RegExp.$1) / 100) + "" :
				"";

			return ret === "" ?
				"1" :
				ret;
		}

		// Make sure we're using the right name for getting the float value
		if (rfloat.test(name)) {
			name = styleFloat;
		}

		if (!force && style && style[name]) {
			ret = style[name];

		} else if (getComputedStyle) {

			// Only "float" is needed here
			if (rfloat.test(name)) {
				name = "float";
			}

			name = name.replace(rupper, "-$1").toLowerCase();

			var defaultView = elem.ownerDocument.defaultView;

			if (!defaultView) {
				return null;
			}

			var computedStyle = defaultView.getComputedStyle(elem, null);

			if (computedStyle) {
				ret = computedStyle.getPropertyValue(name);
			}

			// We should always get a number back from opacity
			if (name === "opacity" && ret === "") {
				ret = "1";
			}

		} else if (elem.currentStyle) {
			var camelCase = name.replace(rdashAlpha, fcamelCase);

			ret = elem.currentStyle[name] || elem.currentStyle[camelCase];

			// From the awesome hack by Dean Edwards
			// http://erik.eae.net/archives/2007/07/27/18.54.15/#comment-102291

			// If we're not dealing with a regular pixel number
			// but a number that has a weird ending, we need to convert it to pixels
			if (!rnumpx.test(ret) && rnum.test(ret)) {
				// Remember the original values
				var left = style.left, rsLeft = elem.runtimeStyle.left;

				// Put in the new values to get a computed value out
				elem.runtimeStyle.left = elem.currentStyle.left;
				style.left = camelCase === "fontSize" ? "1em" : (ret || 0);
				ret = style.pixelLeft + "px";

				// Revert the changed values
				style.left = left;
				elem.runtimeStyle.left = rsLeft;
			}
		}

		return ret;
	},

	// A method for quickly swapping in/out CSS properties to get correct calculations
	swap: function(elem, options, callback) {
		var old = {};

		// Remember the old values, and insert the new ones
		for (var name in options) {
			old[name] = elem.style[name];
			elem.style[name] = options[name];
		}

		callback.call(elem);

		// Revert the old values
		for (var name in options) {
			elem.style[name] = old[name];
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.hidden = function(elem) {
		var width = elem.offsetWidth, height = elem.offsetHeight,
			skip = elem.nodeName.toLowerCase() === "tr";

		return width === 0 && height === 0 && !skip ?
			true :
			width > 0 && height > 0 && !skip ?
				false :
				jQuery.curCSS(elem, "display") === "none";
	};

	jQuery.expr.filters.visible = function(elem) {
		return !jQuery.expr.filters.hidden(elem);
	};
}
var jsc = now(),
	rscript = /<script(.|\s)*?\/script>/gi,
	rselectTextarea = /select|textarea/i,
	rinput = /color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week/i,
	jsre = /=\?(&|$)/,
	rquery = /\?/,
	rts = /(\?|&)_=.*?(&|$)/,
	rurl = /^(\w+:)?\/\/([^\/?#]+)/,
	r20 = /%20/g,

	// Keep a copy of the old load method
	_load = jQuery.fn.load;

jQuery.fn.extend({
	load: function(url, params, callback) {
		if (typeof url !== "string") {
			return _load.call(this, url);

		// Don't do a request if no elements are being requested
		} else if (!this.length) {
			return this;
		}

		var off = url.indexOf(" ");
		if (off >= 0) {
			var selector = url.slice(off, url.length);
			url = url.slice(0, off);
		}

		// Default to a GET request
		var type = "GET";

		// If the second parameter was provided
		if (params) {
			// If it's a function
			if (jQuery.isFunction(params)) {
				// We assume that it's the callback
				callback = params;
				params = null;

			// Otherwise, build a param string
			} else if (typeof params === "object") {
				params = jQuery.param(params, jQuery.ajaxSettings.traditional);
				type = "POST";
			}
		}

		var self = this;

		// Request the remote document
		jQuery.ajax({
			url: url,
			type: type,
			dataType: "html",
			data: params,
			complete: function(res, status) {
				// If successful, inject the HTML into all the matched elements
				if (status === "success" || status === "notmodified") {
					// See if a selector was specified
					self.html(selector ?
						// Create a dummy div to hold the results
						jQuery("<div />")
							// inject the contents of the document in, removing the scripts
							// to avoid any 'Permission Denied' errors in IE
							.append(res.responseText.replace(rscript, ""))

							// Locate the specified elements
							.find(selector) :

						// If not, just inject the full result
						res.responseText);
				}

				if (callback) {
					self.each(callback, [res.responseText, status, res]);
				}
			}
		});

		return this;
	},

	serialize: function() {
		return jQuery.param(this.serializeArray());
	},
	serializeArray: function() {
		return this.map(function() {
			return this.elements ? jQuery.makeArray(this.elements) : this;
		})
		.filter(function() {
			return this.name && !this.disabled &&
				(this.checked || rselectTextarea.test(this.nodeName) ||
					rinput.test(this.type));
		})
		.map(function(i, elem) {
			var val = jQuery(this).val();

			return val == null ?
				null :
				jQuery.isArray(val) ?
					jQuery.map(val, function(val, i) {
						return { name: elem.name, value: val };
					}) :
					{ name: elem.name, value: val };
		}).get();
	}
});

// Attach a bunch of functions for handling common AJAX events
jQuery.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "), function(i, o) {
	jQuery.fn[o] = function(f) {
		return this.bind(o, f);
	};
});

jQuery.extend({

	get: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = null;
		}

		return jQuery.ajax({
			type: "GET",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	getScript: function(url, callback) {
		return jQuery.get(url, null, callback, "script");
	},

	getJSON: function(url, data, callback) {
		return jQuery.get(url, data, callback, "json");
	},

	post: function(url, data, callback, type) {
		// shift arguments if data argument was omited
		if (jQuery.isFunction(data)) {
			type = type || callback;
			callback = data;
			data = {};
		}

		return jQuery.ajax({
			type: "POST",
			url: url,
			data: data,
			success: callback,
			dataType: type
		});
	},

	ajaxSetup: function(settings) {
		jQuery.extend(jQuery.ajaxSettings, settings);
	},

	ajaxSettings: {
		url: location.href,
		global: true,
		type: "GET",
		contentType: "application/x-www-form-urlencoded",
		processData: true,
		async: true,
		/*
		timeout: 0,
		data: null,
		username: null,
		password: null,
		traditional: false,
		*/
		// Create the request object; Microsoft failed to properly
		// implement the XMLHttpRequest in IE7 (can't request local files),
		// so we use the ActiveXObject when it is available
		// This function can be overriden by calling jQuery.ajaxSetup
		xhr: window.XMLHttpRequest && (window.location.protocol !== "file:" || !window.ActiveXObject) ?
			function() {
				return new window.XMLHttpRequest();
			} :
			function() {
				try {
					return new window.ActiveXObject("Microsoft.XMLHTTP");
				} catch(e) {}
			},
		accepts: {
			xml: "application/xml, text/xml",
			html: "text/html",
			script: "text/javascript, application/javascript",
			json: "application/json, text/javascript",
			text: "text/plain",
			_default: "*/*"
		}
	},

	// Last-Modified header cache for next request
	lastModified: {},
	etag: {},

	ajax: function(origSettings) {
		var s = jQuery.extend(true, {}, jQuery.ajaxSettings, origSettings);
		
		var jsonp, status, data,
			callbackContext = origSettings && origSettings.context || s,
			type = s.type.toUpperCase();

		// convert data if not already a string
		if (s.data && s.processData && typeof s.data !== "string") {
			s.data = jQuery.param(s.data, s.traditional);
		}

		// Handle JSONP Parameter Callbacks
		if (s.dataType === "jsonp") {
			if (type === "GET") {
				if (!jsre.test(s.url)) {
					s.url += (rquery.test(s.url) ? "&" : "?") + (s.jsonp || "callback") + "=?";
				}
			} else if (!s.data || !jsre.test(s.data)) {
				s.data = (s.data ? s.data + "&" : "") + (s.jsonp || "callback") + "=?";
			}
			s.dataType = "json";
		}

		// Build temporary JSONP function
		if (s.dataType === "json" && (s.data && jsre.test(s.data) || jsre.test(s.url))) {
			jsonp = s.jsonpCallback || ("jsonp" + jsc++);

			// Replace the =? sequence both in the query string and the data
			if (s.data) {
				s.data = (s.data + "").replace(jsre, "=" + jsonp + "$1");
			}

			s.url = s.url.replace(jsre, "=" + jsonp + "$1");

			// We need to make sure
			// that a JSONP style response is executed properly
			s.dataType = "script";

			// Handle JSONP-style loading
			window[jsonp] = window[jsonp] || function(tmp) {
				data = tmp;
				success();
				complete();
				// Garbage collect
				window[jsonp] = undefined;

				try {
					delete window[jsonp];
				} catch(e) {}

				if (head) {
					head.removeChild(script);
				}
			};
		}

		if (s.dataType === "script" && s.cache === null) {
			s.cache = false;
		}

		if (s.cache === false && type === "GET") {
			var ts = now();

			// try replacing _= if it is there
			var ret = s.url.replace(rts, "$1_=" + ts + "$2");

			// if nothing was replaced, add timestamp to the end
			s.url = ret + ((ret === s.url) ? (rquery.test(s.url) ? "&" : "?") + "_=" + ts : "");
		}

		// If data is available, append data to url for get requests
		if (s.data && type === "GET") {
			s.url += (rquery.test(s.url) ? "&" : "?") + s.data;
		}

		// Watch for a new set of requests
		if (s.global && ! jQuery.active++) {
			jQuery.event.trigger("ajaxStart");
		}

		// Matches an absolute URL, and saves the domain
		var parts = rurl.exec(s.url),
			remote = parts && (parts[1] && parts[1] !== location.protocol || parts[2] !== location.host);

		// If we're requesting a remote document
		// and trying to load JSON or Script with a GET
		if (s.dataType === "script" && type === "GET" && remote) {
			var head = document.getElementsByTagName("head")[0] || document.documentElement;
			var script = document.createElement("script");
			script.src = s.url;
			if (s.scriptCharset) {
				script.charset = s.scriptCharset;
			}

			// Handle Script loading
			if (!jsonp) {
				var done = false;

				// Attach handlers for all browsers
				script.onload = script.onreadystatechange = function() {
					if (!done && (!this.readyState ||
							this.readyState === "loaded" || this.readyState === "complete")) {
						done = true;
						success();
						complete();

						// Handle memory leak in IE
						script.onload = script.onreadystatechange = null;
						if (head && script.parentNode) {
							head.removeChild(script);
						}
					}
				};
			}

			// Use insertBefore instead of appendChild to circumvent an IE6 bug.
			// This arises when a base node is used (#2709 and #4378).
			head.insertBefore(script, head.firstChild);

			// We handle everything using the script element injection
			return undefined;
		}

		var requestDone = false;

		// Create the request object
		var xhr = s.xhr();

		if (!xhr) {
			return;
		}

		// Open the socket
		// Passing null username, generates a login popup on Opera (#2865)
		if (s.username) {
			xhr.open(type, s.url, s.async, s.username, s.password);
		} else {
			xhr.open(type, s.url, s.async);
		}

		// Need an extra try/catch for cross domain requests in Firefox 3
		try {
			// Set the correct header, if data is being sent
			if (s.data || origSettings && origSettings.contentType) {
				xhr.setRequestHeader("Content-Type", s.contentType);
			}

			// Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode.
			if (s.ifModified) {
				if (jQuery.lastModified[s.url]) {
					xhr.setRequestHeader("If-Modified-Since", jQuery.lastModified[s.url]);
				}

				if (jQuery.etag[s.url]) {
					xhr.setRequestHeader("If-None-Match", jQuery.etag[s.url]);
				}
			}

			// Set header so the called script knows that it's an XMLHttpRequest
			// Only send the header if it's not a remote XHR
			if (!remote) {
				xhr.setRequestHeader("X-Requested-With", "XMLHttpRequest");
			}

			// Set the Accepts header for the server, depending on the dataType
			xhr.setRequestHeader("Accept", s.dataType && s.accepts[s.dataType] ?
				s.accepts[s.dataType] + ", */*" :
				s.accepts._default);
		} catch(e) {}

		// Allow custom headers/mimetypes and early abort
		if (s.beforeSend && s.beforeSend.call(callbackContext, xhr, s) === false) {
			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}

			// close opended socket
			xhr.abort();
			return false;
		}

		if (s.global) {
			trigger("ajaxSend", [xhr, s]);
		}

		// Wait for a response to come back
		var onreadystatechange = xhr.onreadystatechange = function(isTimeout) {
			// The request was aborted
			if (!xhr || xhr.readyState === 0 || isTimeout === "abort") {
				// Opera doesn't call onreadystatechange before this point
				// so we simulate the call
				if (!requestDone) {
					complete();
				}

				requestDone = true;
				if (xhr) {
					xhr.onreadystatechange = jQuery.noop;
				}

			// The transfer is complete and the data is available, or the request timed out
			} else if (!requestDone && xhr && (xhr.readyState === 4 || isTimeout === "timeout")) {
				requestDone = true;
				xhr.onreadystatechange = jQuery.noop;

				status = isTimeout === "timeout" ?
					"timeout" :
					!jQuery.httpSuccess(xhr) ?
						"error" :
						s.ifModified && jQuery.httpNotModified(xhr, s.url) ?
							"notmodified" :
							"success";

				var errMsg;

				if (status === "success") {
					// Watch for, and catch, XML document parse errors
					try {
						// process the data (runs the xml through httpData regardless of callback)
						data = jQuery.httpData(xhr, s.dataType, s);
					} catch(err) {
						status = "parsererror";
						errMsg = err;
					}
				}

				// Make sure that the request was successful or notmodified
				if (status === "success" || status === "notmodified") {
					// JSONP handles its own success callback
					if (!jsonp) {
						success();
					}
				} else {
					jQuery.handleError(s, xhr, status, errMsg);
				}

				// Fire the complete handlers
				complete();

				if (isTimeout === "timeout") {
					xhr.abort();
				}

				// Stop memory leaks
				if (s.async) {
					xhr = null;
				}
			}
		};

		// Override the abort handler, if we can (IE doesn't allow it, but that's OK)
		// Opera doesn't fire onreadystatechange at all on abort
		try {
			var oldAbort = xhr.abort;
			xhr.abort = function() {
				if (xhr) {
					oldAbort.call(xhr);
				}

				onreadystatechange("abort");
			};
		} catch(e) { }

		// Timeout checker
		if (s.async && s.timeout > 0) {
			setTimeout(function() {
				// Check to see if the request is still happening
				if (xhr && !requestDone) {
					onreadystatechange("timeout");
				}
			}, s.timeout);
		}

		// Send the data
		try {
			xhr.send(type === "POST" || type === "PUT" || type === "DELETE" ? s.data : null);
		} catch(e) {
			jQuery.handleError(s, xhr, null, e);
			// Fire the complete handlers
			complete();
		}

		// firefox 1.5 doesn't fire statechange for sync requests
		if (!s.async) {
			onreadystatechange();
		}

		function success() {
			// If a local callback was specified, fire it and pass it the data
			if (s.success) {
				s.success.call(callbackContext, data, status, xhr);
			}

			// Fire the global callback
			if (s.global) {
				trigger("ajaxSuccess", [xhr, s]);
			}
		}

		function complete() {
			// Process result
			if (s.complete) {
				s.complete.call(callbackContext, xhr, status);
			}

			// The request was completed
			if (s.global) {
				trigger("ajaxComplete", [xhr, s]);
			}

			// Handle the global AJAX counter
			if (s.global && ! --jQuery.active) {
				jQuery.event.trigger("ajaxStop");
			}
		}
		
		function trigger(type, args) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger(type, args);
		}

		// return XMLHttpRequest to allow aborting the request etc.
		return xhr;
	},

	handleError: function(s, xhr, status, e) {
		// If a local callback was specified, fire it
		if (s.error) {
			s.error.call(s.context || s, xhr, status, e);
		}

		// Fire the global callback
		if (s.global) {
			(s.context ? jQuery(s.context) : jQuery.event).trigger("ajaxError", [xhr, s, e]);
		}
	},

	// Counter for holding the number of active queries
	active: 0,

	// Determines if an XMLHttpRequest was successful or not
	httpSuccess: function(xhr) {
		try {
			// IE error sometimes returns 1223 when it should be 204 so treat it as success, see #1450
			return !xhr.status && location.protocol === "file:" ||
				// Opera returns 0 when status is 304
				(xhr.status >= 200 && xhr.status < 300) ||
				xhr.status === 304 || xhr.status === 1223 || xhr.status === 0;
		} catch(e) {}

		return false;
	},

	// Determines if an XMLHttpRequest returns NotModified
	httpNotModified: function(xhr, url) {
		var lastModified = xhr.getResponseHeader("Last-Modified"),
			etag = xhr.getResponseHeader("Etag");

		if (lastModified) {
			jQuery.lastModified[url] = lastModified;
		}

		if (etag) {
			jQuery.etag[url] = etag;
		}

		// Opera returns 0 when status is 304
		return xhr.status === 304 || xhr.status === 0;
	},

	httpData: function(xhr, type, s) {
		var ct = xhr.getResponseHeader("content-type") || "",
			xml = type === "xml" || !type && ct.indexOf("xml") >= 0,
			data = xml ? xhr.responseXML : xhr.responseText;

		if (xml && data.documentElement.nodeName === "parsererror") {
			jQuery.error("parsererror");
		}

		// Allow a pre-filtering function to sanitize the response
		// s is checked to keep backwards compatibility
		if (s && s.dataFilter) {
			data = s.dataFilter(data, type);
		}

		// The filter can actually parse the response
		if (typeof data === "string") {
			// Get the JavaScript object, if JSON is used.
			if (type === "json" || !type && ct.indexOf("json") >= 0) {
				data = jQuery.parseJSON(data);

			// If the type is "script", eval it in global context
			} else if (type === "script" || !type && ct.indexOf("javascript") >= 0) {
				jQuery.globalEval(data);
			}
		}

		return data;
	},

	// Serialize an array of form elements or a set of
	// key/values into a query string
	param: function(a, traditional) {
		var s = [];
		
		// Set traditional to true for jQuery <= 1.3.2 behavior.
		if (traditional === undefined) {
			traditional = jQuery.ajaxSettings.traditional;
		}
		
		// If an array was passed in, assume that it is an array of form elements.
		if (jQuery.isArray(a) || a.jquery) {
			// Serialize the form elements
			jQuery.each(a, function() {
				add(this.name, this.value);
			});
			
		} else {
			// If traditional, encode the "old" way (the way 1.3.2 or older
			// did it), otherwise encode params recursively.
			for (var prefix in a) {
				buildParams(prefix, a[prefix]);
			}
		}

		// Return the resulting serialization
		return s.join("&").replace(r20, "+");

		function buildParams(prefix, obj) {
			if (jQuery.isArray(obj)) {
				// Serialize array item.
				jQuery.each(obj, function(i, v) {
					if (traditional || /\[\]$/.test(prefix)) {
						// Treat each array item as a scalar.
						add(prefix, v);
					} else {
						// If array item is non-scalar (array or object), encode its
						// numeric index to resolve deserialization ambiguity issues.
						// Note that rack (as of 1.0.0) can't currently deserialize
						// nested arrays properly, and attempting to do so may cause
						// a server error. Possible fixes are to modify rack's
						// deserialization algorithm or to provide an option or flag
						// to force array serialization to be shallow.
						buildParams(prefix + "[" + (typeof v === "object" || jQuery.isArray(v) ? i : "") + "]", v);
					}
				});
					
			} else if (!traditional && obj != null && typeof obj === "object") {
				// Serialize object item.
				jQuery.each(obj, function(k, v) {
					buildParams(prefix + "[" + k + "]", v);
				});
					
			} else {
				// Serialize scalar item.
				add(prefix, obj);
			}
		}

		function add(key, value) {
			// If value is a function, invoke it and return its value
			value = jQuery.isFunction(value) ? value() : value;
			s[s.length] = encodeURIComponent(key) + "=" + encodeURIComponent(value);
		}
	}
});
var elemdisplay = {},
	rfxtypes = /toggle|show|hide/,
	rfxnum = /^([+-]=)?([\d+-.]+)(.*)$/,
	timerId,
	fxAttrs = [
		// height animations
		["height", "marginTop", "marginBottom", "paddingTop", "paddingBottom"],
		// width animations
		["width", "marginLeft", "marginRight", "paddingLeft", "paddingRight"],
		// opacity animations
		["opacity"]
];

jQuery.fn.extend({
	show: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("show", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");

				this[i].style.display = old || "";

				if (jQuery.css(this[i], "display") === "none") {
					var nodeName = this[i].nodeName, display;

					if (elemdisplay[nodeName]) {
						display = elemdisplay[nodeName];

					} else {
						var elem = jQuery("<" + nodeName + " />").appendTo("body");

						display = elem.css("display");

						if (display === "none") {
							display = "block";
						}

						elem.remove();

						elemdisplay[nodeName] = display;
					}

					jQuery.data(this[i], "olddisplay", display);
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = jQuery.data(this[j], "olddisplay") || "";
			}

			return this;
		}
	},

	hide: function(speed, callback) {
		if (speed || speed === 0) {
			return this.animate(genFx("hide", 3), speed, callback);

		} else {
			for (var i = 0, l = this.length; i < l; i++) {
				var old = jQuery.data(this[i], "olddisplay");
				if (!old && old !== "none") {
					jQuery.data(this[i], "olddisplay", jQuery.css(this[i], "display"));
				}
			}

			// Set the display of the elements in a second loop
			// to avoid the constant reflow
			for (var j = 0, k = this.length; j < k; j++) {
				this[j].style.display = "none";
			}

			return this;
		}
	},

	// Save the old toggle function
	_toggle: jQuery.fn.toggle,

	toggle: function(fn, fn2) {
		var bool = typeof fn === "boolean";

		if (jQuery.isFunction(fn) && jQuery.isFunction(fn2)) {
			this._toggle.apply(this, arguments);

		} else if (fn == null || bool) {
			this.each(function() {
				var state = bool ? fn : jQuery(this).is(":hidden");
				jQuery(this)[state ? "show" : "hide"]();
			});

		} else {
			this.animate(genFx("toggle", 3), fn, fn2);
		}

		return this;
	},

	fadeTo: function(speed, to, callback) {
		return this.filter(":hidden").css("opacity", 0).show().end()
					.animate({opacity: to}, speed, callback);
	},

	animate: function(prop, speed, easing, callback) {
		var optall = jQuery.speed(speed, easing, callback);

		if (jQuery.isEmptyObject(prop)) {
			return this.each(optall.complete);
		}

		return this[optall.queue === false ? "each" : "queue"](function() {
			var opt = jQuery.extend({}, optall), p,
				hidden = this.nodeType === 1 && jQuery(this).is(":hidden"),
				self = this;

			for (p in prop) {
				var name = p.replace(rdashAlpha, fcamelCase);

				if (p !== name) {
					prop[name] = prop[p];
					delete prop[p];
					p = name;
				}

				if (prop[p] === "hide" && hidden || prop[p] === "show" && !hidden) {
					return opt.complete.call(this);
				}

				if ((p === "height" || p === "width") && this.style) {
					// Store display property
					opt.display = jQuery.css(this, "display");

					// Make sure that nothing sneaks out
					opt.overflow = this.style.overflow;
				}

				if (jQuery.isArray(prop[p])) {
					// Create (if needed) and add to specialEasing
					(opt.specialEasing = opt.specialEasing || {})[p] = prop[p][1];
					prop[p] = prop[p][0];
				}
			}

			if (opt.overflow != null) {
				this.style.overflow = "hidden";
			}

			opt.curAnim = jQuery.extend({}, prop);

			jQuery.each(prop, function(name, val) {
				var e = new jQuery.fx(self, opt, name);

				if (rfxtypes.test(val)) {
					e[val === "toggle" ? hidden ? "show" : "hide" : val](prop);

				} else {
					var parts = rfxnum.exec(val),
						start = e.cur(true) || 0;

					if (parts) {
						var end = parseFloat(parts[2]),
							unit = parts[3] || "px";

						// We need to compute starting value
						if (unit !== "px") {
							self.style[name] = (end || 1) + unit;
							start = ((end || 1) / e.cur(true)) * start;
							self.style[name] = start + unit;
						}

						// If a +=/-= token was provided, we're doing a relative animation
						if (parts[1]) {
							end = ((parts[1] === "-=" ? -1 : 1) * end) + start;
						}

						e.custom(start, end, unit);

					} else {
						e.custom(start, val, "");
					}
				}
			});

			// For JS strict compliance
			return true;
		});
	},

	stop: function(clearQueue, gotoEnd) {
		var timers = jQuery.timers;

		if (clearQueue) {
			this.queue([]);
		}

		this.each(function() {
			// go in reverse order so anything added to the queue during the loop is ignored
			for (var i = timers.length - 1; i >= 0; i--) {
				if (timers[i].elem === this) {
					if (gotoEnd) {
						// force the next step to be the last
						timers[i](true);
					}

					timers.splice(i, 1);
				}
			}
		});

		// start the next in the queue if the last step wasn't forced
		if (!gotoEnd) {
			this.dequeue();
		}

		return this;
	}

});

// Generate shortcuts for custom animations
jQuery.each({
	slideDown: genFx("show", 1),
	slideUp: genFx("hide", 1),
	slideToggle: genFx("toggle", 1),
	fadeIn: { opacity: "show" },
	fadeOut: { opacity: "hide" }
}, function(name, props) {
	jQuery.fn[name] = function(speed, callback) {
		return this.animate(props, speed, callback);
	};
});

jQuery.extend({
	speed: function(speed, easing, fn) {
		var opt = speed && typeof speed === "object" ? speed : {
			complete: fn || !fn && easing ||
				jQuery.isFunction(speed) && speed,
			duration: speed,
			easing: fn && easing || easing && !jQuery.isFunction(easing) && easing
		};

		opt.duration = jQuery.fx.off ? 0 : typeof opt.duration === "number" ? opt.duration :
			jQuery.fx.speeds[opt.duration] || jQuery.fx.speeds._default;

		// Queueing
		opt.old = opt.complete;
		opt.complete = function() {
			if (opt.queue !== false) {
				jQuery(this).dequeue();
			}
			if (jQuery.isFunction(opt.old)) {
				opt.old.call(this);
			}
		};

		return opt;
	},

	easing: {
		linear: function(p, n, firstNum, diff) {
			return firstNum + diff * p;
		},
		swing: function(p, n, firstNum, diff) {
			return ((-Math.cos(p*Math.PI)/2) + 0.5) * diff + firstNum;
		}
	},

	timers: [],

	fx: function(elem, options, prop) {
		this.options = options;
		this.elem = elem;
		this.prop = prop;

		if (!options.orig) {
			options.orig = {};
		}
	}

});

jQuery.fx.prototype = {
	// Simple function for setting a style value
	update: function() {
		if (this.options.step) {
			this.options.step.call(this.elem, this.now, this);
		}

		(jQuery.fx.step[this.prop] || jQuery.fx.step._default)(this);

		// Set display property to block for height/width animations
		if ((this.prop === "height" || this.prop === "width") && this.elem.style) {
			this.elem.style.display = "block";
		}
	},

	// Get the current size
	cur: function(force) {
		if (this.elem[this.prop] != null && (!this.elem.style || this.elem.style[this.prop] == null)) {
			return this.elem[this.prop];
		}

		var r = parseFloat(jQuery.css(this.elem, this.prop, force));
		return r && r > -10000 ? r : parseFloat(jQuery.curCSS(this.elem, this.prop)) || 0;
	},

	// Start an animation from one number to another
	custom: function(from, to, unit) {
		this.startTime = now();
		this.start = from;
		this.end = to;
		this.unit = unit || this.unit || "px";
		this.now = this.start;
		this.pos = this.state = 0;

		var self = this;
		function t(gotoEnd) {
			return self.step(gotoEnd);
		}

		t.elem = this.elem;

		if (t() && jQuery.timers.push(t) && !timerId) {
			timerId = setInterval(jQuery.fx.tick, 13);
		}
	},

	// Simple 'show' function
	show: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.show = true;

		// Begin the animation
		// Make sure that we start at a small width/height to avoid any
		// flash of content
		this.custom(this.prop === "width" || this.prop === "height" ? 1 : 0, this.cur());

		// Start by showing the element
		jQuery(this.elem).show();
	},

	// Simple 'hide' function
	hide: function() {
		// Remember where we started, so that we can go back to it later
		this.options.orig[this.prop] = jQuery.style(this.elem, this.prop);
		this.options.hide = true;

		// Begin the animation
		this.custom(this.cur(), 0);
	},

	// Each step of an animation
	step: function(gotoEnd) {
		var t = now(), done = true;

		if (gotoEnd || t >= this.options.duration + this.startTime) {
			this.now = this.end;
			this.pos = this.state = 1;
			this.update();

			this.options.curAnim[this.prop] = true;

			for (var i in this.options.curAnim) {
				if (this.options.curAnim[i] !== true) {
					done = false;
				}
			}

			if (done) {
				if (this.options.display != null) {
					// Reset the overflow
					this.elem.style.overflow = this.options.overflow;

					// Reset the display
					var old = jQuery.data(this.elem, "olddisplay");
					this.elem.style.display = old ? old : this.options.display;

					if (jQuery.css(this.elem, "display") === "none") {
						this.elem.style.display = "block";
					}
				}

				// Hide the element if the "hide" operation was done
				if (this.options.hide) {
					jQuery(this.elem).hide();
				}

				// Reset the properties, if the item has been hidden or shown
				if (this.options.hide || this.options.show) {
					for (var p in this.options.curAnim) {
						jQuery.style(this.elem, p, this.options.orig[p]);
					}
				}

				// Execute the complete function
				this.options.complete.call(this.elem);
			}

			return false;

		} else {
			var n = t - this.startTime;
			this.state = n / this.options.duration;

			// Perform the easing function, defaults to swing
			var specialEasing = this.options.specialEasing && this.options.specialEasing[this.prop];
			var defaultEasing = this.options.easing || (jQuery.easing.swing ? "swing" : "linear");
			this.pos = jQuery.easing[specialEasing || defaultEasing](this.state, n, 0, 1, this.options.duration);
			this.now = this.start + ((this.end - this.start) * this.pos);

			// Perform the next step of the animation
			this.update();
		}

		return true;
	}
};

jQuery.extend(jQuery.fx, {
	tick: function() {
		var timers = jQuery.timers;

		for (var i = 0; i < timers.length; i++) {
			if (!timers[i]()) {
				timers.splice(i--, 1);
			}
		}

		if (!timers.length) {
			jQuery.fx.stop();
		}
	},
		
	stop: function() {
		clearInterval(timerId);
		timerId = null;
	},
	
	speeds: {
		slow: 600,
 		fast: 200,
 		// Default speed
 		_default: 400
	},

	step: {
		opacity: function(fx) {
			jQuery.style(fx.elem, "opacity", fx.now);
		},

		_default: function(fx) {
			if (fx.elem.style && fx.elem.style[fx.prop] != null) {
				fx.elem.style[fx.prop] = (fx.prop === "width" || fx.prop === "height" ? Math.max(0, fx.now) : fx.now) + fx.unit;
			} else {
				fx.elem[fx.prop] = fx.now;
			}
		}
	}
});

if (jQuery.expr && jQuery.expr.filters) {
	jQuery.expr.filters.animated = function(elem) {
		return jQuery.grep(jQuery.timers, function(fn) {
			return elem === fn.elem;
		}).length;
	};
}

function genFx(type, num) {
	var obj = {};

	jQuery.each(fxAttrs.concat.apply([], fxAttrs.slice(0,num)), function() {
		obj[this] = type;
	});

	return obj;
}
if ("getBoundingClientRect" in document.documentElement) {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		var box = elem.getBoundingClientRect(), doc = elem.ownerDocument, body = doc.body, docElem = doc.documentElement,
			clientTop = docElem.clientTop || body.clientTop || 0, clientLeft = docElem.clientLeft || body.clientLeft || 0,
			top = box.top + (self.pageYOffset || jQuery.support.boxModel && docElem.scrollTop || body.scrollTop) - clientTop,
			left = box.left + (self.pageXOffset || jQuery.support.boxModel && docElem.scrollLeft || body.scrollLeft) - clientLeft;

		return { top: top, left: left };
	};

} else {
	jQuery.fn.offset = function(options) {
		var elem = this[0];

		if (options) {
			return this.each(function(i) {
				jQuery.offset.setOffset(this, options, i);
			});
		}

		if (!elem || !elem.ownerDocument) {
			return null;
		}

		if (elem === elem.ownerDocument.body) {
			return jQuery.offset.bodyOffset(elem);
		}

		jQuery.offset.initialize();

		var offsetParent = elem.offsetParent, prevOffsetParent = elem,
			doc = elem.ownerDocument, computedStyle, docElem = doc.documentElement,
			body = doc.body, defaultView = doc.defaultView,
			prevComputedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle,
			top = elem.offsetTop, left = elem.offsetLeft;

		while ((elem = elem.parentNode) && elem !== body && elem !== docElem) {
			if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
				break;
			}

			computedStyle = defaultView ? defaultView.getComputedStyle(elem, null) : elem.currentStyle;
			top -= elem.scrollTop;
			left -= elem.scrollLeft;

			if (elem === offsetParent) {
				top += elem.offsetTop;
				left += elem.offsetLeft;

				if (jQuery.offset.doesNotAddBorder && !(jQuery.offset.doesAddBorderForTableAndCells && /^t(able|d|h)$/i.test(elem.nodeName))) {
					top += parseFloat(computedStyle.borderTopWidth) || 0;
					left += parseFloat(computedStyle.borderLeftWidth) || 0;
				}

				prevOffsetParent = offsetParent, offsetParent = elem.offsetParent;
			}

			if (jQuery.offset.subtractsBorderForOverflowNotVisible && computedStyle.overflow !== "visible") {
				top += parseFloat(computedStyle.borderTopWidth) || 0;
				left += parseFloat(computedStyle.borderLeftWidth) || 0;
			}

			prevComputedStyle = computedStyle;
		}

		if (prevComputedStyle.position === "relative" || prevComputedStyle.position === "static") {
			top += body.offsetTop;
			left += body.offsetLeft;
		}

		if (jQuery.offset.supportsFixedPosition && prevComputedStyle.position === "fixed") {
			top += Math.max(docElem.scrollTop, body.scrollTop);
			left += Math.max(docElem.scrollLeft, body.scrollLeft);
		}

		return { top: top, left: left };
	};
}

jQuery.offset = {
	initialize: function() {
		var body = document.body, container = document.createElement("div"), innerDiv, checkDiv, table, td, bodyMarginTop = parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0,
			html = "<div style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;'><div></div></div><table style='position:absolute;top:0;left:0;margin:0;border:5px solid #000;padding:0;width:1px;height:1px;' cellpadding='0' cellspacing='0'><tr><td></td></tr></table>";

		jQuery.extend(container.style, { position: "absolute", top: 0, left: 0, margin: 0, border: 0, width: "1px", height: "1px", visibility: "hidden" });

		container.innerHTML = html;
		body.insertBefore(container, body.firstChild);
		innerDiv = container.firstChild;
		checkDiv = innerDiv.firstChild;
		td = innerDiv.nextSibling.firstChild.firstChild;

		this.doesNotAddBorder = (checkDiv.offsetTop !== 5);
		this.doesAddBorderForTableAndCells = (td.offsetTop === 5);

		checkDiv.style.position = "fixed", checkDiv.style.top = "20px";
		// safari subtracts parent border width here which is 5px
		this.supportsFixedPosition = (checkDiv.offsetTop === 20 || checkDiv.offsetTop === 15);
		checkDiv.style.position = checkDiv.style.top = "";

		innerDiv.style.overflow = "hidden", innerDiv.style.position = "relative";
		this.subtractsBorderForOverflowNotVisible = (checkDiv.offsetTop === -5);

		this.doesNotIncludeMarginInBodyOffset = (body.offsetTop !== bodyMarginTop);

		body.removeChild(container);
		body = container = innerDiv = checkDiv = table = td = null;
		jQuery.offset.initialize = jQuery.noop;
	},

	bodyOffset: function(body) {
		var top = body.offsetTop, left = body.offsetLeft;

		jQuery.offset.initialize();

		if (jQuery.offset.doesNotIncludeMarginInBodyOffset) {
			top += parseFloat(jQuery.curCSS(body, "marginTop", true)) || 0;
			left += parseFloat(jQuery.curCSS(body, "marginLeft", true)) || 0;
		}

		return { top: top, left: left };
	},
	
	setOffset: function(elem, options, i) {
		// set position first, in-case top/left are set even on static elem
		if (/static/.test(jQuery.curCSS(elem, "position"))) {
			elem.style.position = "relative";
		}
		var curElem = jQuery(elem),
			curOffset = curElem.offset(),
			curTop = parseInt(jQuery.curCSS(elem, "top", true), 10) || 0,
			curLeft = parseInt(jQuery.curCSS(elem, "left", true), 10) || 0;

		if (jQuery.isFunction(options)) {
			options = options.call(elem, i, curOffset);
		}

		var props = {
			top: (options.top - curOffset.top) + curTop,
			left: (options.left - curOffset.left) + curLeft
		};
		
		if ("using" in options) {
			options.using.call(elem, props);
		} else {
			curElem.css(props);
		}
	}
};

jQuery.fn.extend({
	position: function() {
		if (!this[0]) {
			return null;
		}

		var elem = this[0],

		// Get *real* offsetParent
		offsetParent = this.offsetParent(),

		// Get correct offsets
		offset = this.offset(),
		parentOffset = /^body|html$/i.test(offsetParent[0].nodeName) ? { top: 0, left: 0 } : offsetParent.offset();

		// Subtract element margins
		// note: when an element has margin: auto the offsetLeft and marginLeft
		// are the same in Safari causing offset.left to incorrectly be 0
		offset.top -= parseFloat(jQuery.curCSS(elem, "marginTop", true)) || 0;
		offset.left -= parseFloat(jQuery.curCSS(elem, "marginLeft", true)) || 0;

		// Add offsetParent borders
		parentOffset.top += parseFloat(jQuery.curCSS(offsetParent[0], "borderTopWidth", true)) || 0;
		parentOffset.left += parseFloat(jQuery.curCSS(offsetParent[0], "borderLeftWidth", true)) || 0;

		// Subtract the two offsets
		return {
			top: offset.top - parentOffset.top,
			left: offset.left - parentOffset.left
		};
	},

	offsetParent: function() {
		return this.map(function() {
			var offsetParent = this.offsetParent || document.body;
			while (offsetParent && (!/^body|html$/i.test(offsetParent.nodeName) && jQuery.css(offsetParent, "position") === "static")) {
				offsetParent = offsetParent.offsetParent;
			}
			return offsetParent;
		});
	}
});

// Create scrollLeft and scrollTop methods
jQuery.each(["Left", "Top"], function(i, name) {
	var method = "scroll" + name;

	jQuery.fn[method] = function(val) {
		var elem = this[0], win;
		
		if (!elem) {
			return null;
		}

		if (val !== undefined) {
			// Set the scroll offset
			return this.each(function() {
				win = getWindow(this);

				if (win) {
					win.scrollTo(
						!i ? val : jQuery(win).scrollLeft(),
						 i ? val : jQuery(win).scrollTop()
);

				} else {
					this[method] = val;
				}
			});
		} else {
			win = getWindow(elem);

			// Return the scroll offset
			return win ? ("pageXOffset" in win) ? win[i ? "pageYOffset" : "pageXOffset"] :
				jQuery.support.boxModel && win.document.documentElement[method] ||
					win.document.body[method] :
				elem[method];
		}
	};
});

function getWindow(elem) {
	return ("scrollTo" in elem && elem.document) ?
		elem :
		elem.nodeType === 9 ?
			elem.defaultView || elem.parentWindow :
			false;
}
// Create innerHeight, innerWidth, outerHeight and outerWidth methods
jQuery.each(["Height", "Width"], function(i, name) {

	var type = name.toLowerCase();

	// innerHeight and innerWidth
	jQuery.fn["inner" + name] = function() {
		return this[0] ?
			jQuery.css(this[0], type, false, "padding") :
			null;
	};

	// outerHeight and outerWidth
	jQuery.fn["outer" + name] = function(margin) {
		return this[0] ?
			jQuery.css(this[0], type, false, margin ? "margin" : "border") :
			null;
	};

	jQuery.fn[type] = function(size) {
		// Get window width or height
		var elem = this[0];
		if (!elem) {
			return size == null ? null : this;
		}
		
		if (jQuery.isFunction(size)) {
			return this.each(function(i) {
				var self = jQuery(this);
				self[type](size.call(this, i, self[type]()));
			});
		}

		return ("scrollTo" in elem && elem.document) ? // does it walk and quack like a window?
			// Everyone else use document.documentElement or document.body depending on Quirks vs Standards mode
			elem.document.compatMode === "CSS1Compat" && elem.document.documentElement["client" + name] ||
			elem.document.body["client" + name] :

			// Get document width or height
			(elem.nodeType === 9) ? // is it a document
				// Either scroll[Width/Height] or offset[Width/Height], whichever is greater
				Math.max(
					elem.documentElement["client" + name],
					elem.body["scroll" + name], elem.documentElement["scroll" + name],
					elem.body["offset" + name], elem.documentElement["offset" + name]
) :

				// Get or set width or height on the element
				size === undefined ?
					// Get width or height on the element
					jQuery.css(elem, type) :

					// Set the width or height on the element (default to pixels if value is unitless)
					this.css(type, typeof size === "string" ? size : size + "px");
	};

});
// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

})(window);

OEBPS/images/cover.png
(O

The Open
University

Intracellular
transport

OEBPS/images/s377book3chapter12_f032hi.jpg
minus end,

OEBPS/images/s377book3chapter12_f019hi.jpg

OEBPS/images/s377book3chapter12_f034hi.jpg
VESICLE
cargo proteins

coat
protein

microtubule

OEBPS/toc.html
Contents

	
		Chapter 1
	

	
		Chapter 2
	

	
		Chapter 3
	

	
		Chapter 4
	

	
		Chapter 5
	

	
		Chapter 6
	

	
		Chapter 7
	

OEBPS/answer13.html

		Answer

		The lumens of the two compartments have different pH values (Section 2.2), which affects the charge on amino acid side-chains and therefore protein folding and conformation.

	

OEBPS/images/s377book3chapter12_f021hi.jpg
Golgi cisterna

exoplasmic_|
face

integral proteins
excluded from

transport vesicles

Soluble cargo
protein

depolymerization
of coat

ARE_GDP

OEBPS/answer15.html

		Answer

		The microtubule network extends from the MTOC, which is located near the nucleus, and the Golgi network is also located near the nucleus.

	

OEBPS/images/s377book3chapter12_f045hi.jpg
Jectin
domain

molecule:| Poselectin E-selectin Leselectin
expressed on: | platelets, endothelium | endothelium leukocytes
igand expressed on: | platelets, endothelium, | leukoeytes specialized

neutropils

endothclium

OEBPS/images/s377book3chapter12_f013hi.jpg

OEBPS/images/s377book3chapter12_f028hi.jpg
oligosaccharyl
transferase’

ribosome!

cvroso

Key @ ehone @ oo

@ Faccigcosimine (®) phosphae

OEBPS/images/s377book3chapter12_f003hi.jpg
»
i nd 355 30 S0 I WD~ plsnd

@

® Tncreasing proportion
of actin-ADP

> »
S »» »»>» »

wcadmilling e

©

OEBPS/images/s377book3chapter12_f020hi.jpg
dynamin dynamin Gre

‘monomers ring. hydrolysis

OEBPS/titlepage.html
Intracellular transport

	The Open University

OEBPS/answer11.html

		Answer

		Clathrin, AP2 and ARF (see Table 3).

	

OEBPS/images/s377book3chapter12_f025hi.jpg
GDI displacement " guanine nucleotide:
factor ‘exchange factor

OEBPS/images/s377book3chapter12_f041hi.jpg
[E—
100nm

OEBPS/images/s377book3chapter12_f044hi.jpg

OEBPS/images/s377book3chapter12_f043hi.jpg
fluorescence

stimulation
——————————|

time

OEBPS/images/s377book3chapter12_f033hi.jpg
binding kinesin

sites, —

minus plus
end end
(@)
ATP \
(b)
(c)
ADP +P;
@ microtubule

OEBPS/answer09.html

		Answer

		To deliver their cargo to the right compartment, the transport vesicles must be able to recognise and fuse with the correct target membrane. This means that they need to carry molecules that address them to the target membrane.

	

OEBPS/images/s377book3chapter12_f014hi.jpg

OEBPS/answer12.html

		Answer

		COPII coats the anterograde vesicles and COPI the retrograde vesicles (see Figure 16).

	

OEBPS/images/s377book3chapter12_f027hi.jpg

OEBPS/answer07.html

		Answer

		Constitutive secretion is a process concerned with the function of the individual cell, and is therefore primarily regulated by the mechanisms of protein production, which are intrinsic to the cell. Regulated secretion is related to a cell's interactions with other cells and therefore is responsive to external stimuli.

	

OEBPS/images/s377book3chapter12_f001hi.jpg
 microtubule

OEBPS/answer23.html

		Answer

		They are all examples of regulated secretion except for numbers 4 and 6. Hormones, neurotransmitters, the proteolytic enzymes in the gut and mediators are all secreted at relatively short notice in response to an external stimulus. The release of the IL-4 receptor to the plasma membrane occurs in response to activation of the B cell but is regulated at the level of mRNA transcription; likewise collagen production by fibroblasts. In the case of unregulated secretion, the cell is producing molecules that affect itself or its immediate environment.

	

OEBPS/js/jquery.tablesorter.js
/*
 *
 * TableSorter 2.0 - Client-side table sorting with ease!
 * Version 2.0.3
 * @requires jQuery v1.2.3
 *
 * Copyright (c) 2007 Christian Bach
 * Examples and docs at: http://tablesorter.com
 * Dual licensed under the MIT and GPL licenses:
 * http://www.opensource.org/licenses/mit-license.php
 * http://www.gnu.org/licenses/gpl.html
 *
 */
/**
 *
 * @description Create a sortable table with multi-column sorting capabilitys
 *
 * @example $('table').tablesorter();
 * @desc Create a simple tablesorter interface.
 *
 * @example $('table').tablesorter({ sortList:[[0,0],[1,0]] });
 * @desc Create a tablesorter interface and sort on the first and secound column in ascending order.
 *
 * @example $('table').tablesorter({ headers: { 0: { sorter: false}, 1: {sorter: false} } });
 * @desc Create a tablesorter interface and disableing the first and secound column headers.
 *
 * @example $('table').tablesorter({ 0: {sorter:"integer"}, 1: {sorter:"currency"} });
 * @desc Create a tablesorter interface and set a column parser for the first and secound column.
 *
 *
 * @param Object settings An object literal containing key/value pairs to provide optional settings.
 *
 * @option String cssHeader (optional) 			A string of the class name to be appended to sortable tr elements in the thead of the table.
 * 												Default value: "header"
 *
 * @option String cssAsc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a ascending sort.
 * 												Default value: "headerSortUp"
 *
 * @option String cssDesc (optional) 			A string of the class name to be appended to sortable tr elements in the thead on a descending sort.
 * 												Default value: "headerSortDown"
 *
 * @option String sortInitialOrder (optional) 	A string of the inital sorting order can be asc or desc.
 * 												Default value: "asc"
 *
 * @option String sortMultisortKey (optional) 	A string of the multi-column sort key.
 * 												Default value: "shiftKey"
 *
 * @option String textExtraction (optional) 	A string of the text-extraction method to use.
 * 												For complex html structures inside td cell set this option to "complex",
 * 												on large tables the complex option can be slow.
 * 												Default value: "simple"
 *
 * @option Object headers (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortList (optional) 			An array containing the forces sorting rules.
 * 												This option let's you specify a default sorting rule.
 * 												Default value: null
 *
 * @option Array sortForce (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is prepended to user-selected rules.
 * 												Default value: null
 *
 * @option Array sortAppend (optional) 			An array containing forced sorting rules.
 * 												This option let's you specify a default sorting rule, which is appended to user-selected rules.
 * 												Default value: null
 *
 * @option Boolean widthFixed (optional) 		Boolean flag indicating if tablesorter should apply fixed widths to the table columns.
 * 												This is usefull when using the pager companion plugin.
 * 												This options requires the dimension jquery plugin.
 * 												Default value: false
 *
 * @option Boolean cancelSelection (optional) 	Boolean flag indicating if tablesorter should cancel selection of the table headers text.
 * 												Default value: true
 *
 * @option Boolean debug (optional) 			Boolean flag indicating if tablesorter should display debuging information usefull for development.
 *
 * @type jQuery
 *
 * @name tablesorter
 *
 * @cat Plugins/Tablesorter
 *
 * @author Christian Bach/christian.bach@polyester.se
 */

(function($) {
	$.extend({
		tablesorter: new function() {
			
			var parsers = [], widgets = [];
			
			this.defaults = {
				cssHeader: "header",
				cssAsc: "headerSortUp",
				cssDesc: "headerSortDown",
				sortInitialOrder: "asc",
				sortMultiSortKey: "shiftKey",
				sortForce: null,
				sortAppend: null,
				textExtraction: "simple",
				parsers: {},
				widgets: [],		
				widgetZebra: {css: ["even","odd"]},
				headers: {},
				widthFixed: false,
				cancelSelection: true,
				sortList: [],
				headerList: [],
				dateFormat: "us",
				decimal: '.',
				debug: false
			};
			
			/* debuging utils */
			function benchmark(s,d) {
				log(s + "," + (new Date().getTime() - d.getTime()) + "ms");
			}
			
			this.benchmark = benchmark;
			
			function log(s) {
				if (typeof console != "undefined" && typeof console.debug != "undefined") {
					console.log(s);
				} else {
					alert(s);
				}
			}
						
			/* parsers utils */
			function buildParserCache(table,$headers) {
				
				if(table.config.debug) { var parsersDebug = ""; }
				
				var rows = table.tBodies[0].rows;
				
				if(table.tBodies[0].rows[0]) {

					var list = [], cells = rows[0].cells, l = cells.length;
					
					for (var i=0;i < l; i++) {
						var p = false;
						
						if($.metadata && ($($headers[i]).metadata() && $($headers[i]).metadata().sorter)) {
						
							p = getParserById($($headers[i]).metadata().sorter);	
						
						} else if((table.config.headers[i] && table.config.headers[i].sorter)) {
	
							p = getParserById(table.config.headers[i].sorter);
						}
						if(!p) {
							p = detectParserForColumn(table,cells[i]);
						}
	
						if(table.config.debug) { parsersDebug += "column:" + i + " parser:" +p.id + "\n"; }
	
						list.push(p);
					}
				}
				
				if(table.config.debug) { log(parsersDebug); }

				return list;
			};
			
			function detectParserForColumn(table,node) {
				var l = parsers.length;
				for(var i=1; i < l; i++) {
					if(parsers[i].is($.trim(getElementText(table.config,node)),table,node)) {
						return parsers[i];
					}
				}
				// 0 is always the generic parser (text)
				return parsers[0];
			}
			
			function getParserById(name) {
				var l = parsers.length;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == name.toLowerCase()) {	
						return parsers[i];
					}
				}
				return false;
			}
			
			/* utils */
			function buildCache(table) {
				
				if(table.config.debug) { var cacheTime = new Date(); }
				
				
				var totalRows = (table.tBodies[0] && table.tBodies[0].rows.length) || 0,
					totalCells = (table.tBodies[0].rows[0] && table.tBodies[0].rows[0].cells.length) || 0,
					parsers = table.config.parsers,
					cache = {row: [], normalized: []};
				
					for (var i=0;i < totalRows; ++i) {
					
						/** Add the table data to main data array */
						var c = table.tBodies[0].rows[i], cols = [];
					
						cache.row.push($(c));
						
						for(var j=0; j < totalCells; ++j) {
							cols.push(parsers[j].format(getElementText(table.config,c.cells[j]),table,c.cells[j]));	
						}
												
						cols.push(i); // add position for rowCache
						cache.normalized.push(cols);
						cols = null;
					};
				
				if(table.config.debug) { benchmark("Building cache for " + totalRows + " rows:", cacheTime); }
				
				return cache;
			};
			
			function getElementText(config,node) {
				
				if(!node) return "";
								
				var t = "";
				
				if(config.textExtraction == "simple") {
					if(node.childNodes[0] && node.childNodes[0].hasChildNodes()) {
						t = node.childNodes[0].innerHTML;
					} else {
						t = node.innerHTML;
					}
				} else {
					if(typeof(config.textExtraction) == "function") {
						t = config.textExtraction(node);
					} else {
						t = $(node).text();
					}	
				}
				return t;
			}
			
			function appendToTable(table,cache) {
				
				if(table.config.debug) {var appendTime = new Date()}
				
				var c = cache,
					r = c.row,
					n= c.normalized,
					totalRows = n.length,
					checkCell = (n[0].length-1),
					tableBody = $(table.tBodies[0]),
					rows = [];
				
				for (var i=0;i < totalRows; i++) {
					rows.push(r[n[i][checkCell]]);	
					if(!table.config.appender) {
						
						var o = r[n[i][checkCell]];
						var l = o.length;
						for(var j=0; j < l; j++) {
							
							tableBody[0].appendChild(o[j]);
						
						}
						
						//tableBody.append(r[n[i][checkCell]]);
					}
				}	
				
				if(table.config.appender) {
				
					table.config.appender(table,rows);	
				}
				
				rows = null;
				
				if(table.config.debug) { benchmark("Rebuilt table:", appendTime); }
								
				//apply table widgets
				applyWidget(table);
				
				// trigger sortend
				setTimeout(function() {
					$(table).trigger("sortEnd");	
				},0);
				
			};
			
			function buildHeaders(table) {
				
				if(table.config.debug) { var time = new Date(); }
				
				var meta = ($.metadata) ? true : false, tableHeadersRows = [];
			
				for(var i = 0; i < table.tHead.rows.length; i++) { tableHeadersRows[i]=0; };
				
				$tableHeaders = $("thead th",table);
		
				$tableHeaders.each(function(index) {
							
					this.count = 0;
					this.column = index;
					this.order = formatSortingOrder(table.config.sortInitialOrder);
					
					if(checkHeaderMetadata(this) || checkHeaderOptions(table,index)) this.sortDisabled = true;
					
					if(!this.sortDisabled) {
						$(this).addClass(table.config.cssHeader);
					}
					
					// add cell to headerList
					table.config.headerList[index]= this;
				});
				
				if(table.config.debug) { benchmark("Built headers:", time); log($tableHeaders); }
				
				return $tableHeaders;
				
			};
						
		 	function checkCellColSpan(table, rows, row) {
 var arr = [], r = table.tHead.rows, c = r[row].cells;
				
				for(var i=0; i < c.length; i++) {
					var cell = c[i];
					
					if (cell.colSpan > 1) {
						arr = arr.concat(checkCellColSpan(table, headerArr,row++));
					} else {
						if(table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row+1])) {
							arr.push(cell);
						}
						//headerArr[row] = (i+row);
					}
				}
				return arr;
			};
			
			function checkHeaderMetadata(cell) {
				if(($.metadata) && ($(cell).metadata().sorter === false)) { return true; };
				return false;
			}
			
			function checkHeaderOptions(table,i) {	
				if((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { return true; };
				return false;
			}
			
			function applyWidget(table) {
				var c = table.config.widgets;
				var l = c.length;
				for(var i=0; i < l; i++) {
					
					getWidgetById(c[i]).format(table);
				}
				
			}
			
			function getWidgetById(name) {
				var l = widgets.length;
				for(var i=0; i < l; i++) {
					if(widgets[i].id.toLowerCase() == name.toLowerCase()) {
						return widgets[i];
					}
				}
			};
			
			function formatSortingOrder(v) {
				
				if(typeof(v) != "Number") {
					i = (v.toLowerCase() == "desc") ? 1 : 0;
				} else {
					i = (v == (0 || 1)) ? v : 0;
				}
				return i;
			}
			
			function isValueInArray(v, a) {
				var l = a.length;
				for(var i=0; i < l; i++) {
					if(a[i][0] == v) {
						return true;	
					}
				}
				return false;
			}
				
			function setHeadersCss(table,$headers, list, css) {
				// remove all header information
				$headers.removeClass(css[0]).removeClass(css[1]);
				
				var h = [];
				$headers.each(function(offset) {
						if(!this.sortDisabled) {
							h[this.column] = $(this);					
						}
				});
				
				var l = list.length;
				for(var i=0; i < l; i++) {
					h[list[i][0]].addClass(css[list[i][1]]);
				}
			}
			
			function fixColumnWidth(table,$headers) {
				var c = table.config;
				if(c.widthFixed) {
					var colgroup = $('<colgroup>');
					$("tr:first td",table.tBodies[0]).each(function() {
						colgroup.append($('<col>').css('width',$(this).width()));
					});
					$(table).prepend(colgroup);
				};
			}
			
			function updateHeaderSortCount(table,sortList) {
				var c = table.config, l = sortList.length;
				for(var i=0; i < l; i++) {
					var s = sortList[i], o = c.headerList[s[0]];
					o.count = s[1];
					o.count++;
				}
			}
			
			/* sorting methods */
			function multisort(table,sortList,cache) {
				
				if(table.config.debug) { var sortTime = new Date(); }
				
				var dynamicExp = "var sortWrapper = function(a,b) {", l = sortList.length;
					
				for(var i=0; i < l; i++) {
					
					var c = sortList[i][0];
					var order = sortList[i][1];
					var s = (getCachedSortType(table.config.parsers,c) == "text") ? ((order == 0) ? "sortText" : "sortTextDesc") : ((order == 0) ? "sortNumeric" : "sortNumericDesc");
					
					var e = "e" + i;
					
					dynamicExp += "var " + e + " = " + s + "(a[" + c + "],b[" + c + "]); ";
					dynamicExp += "if(" + e + ") { return " + e + "; } ";
					dynamicExp += "else { ";
				}
				
				// if value is the same keep orignal order	
				var orgOrderCol = cache.normalized[0].length - 1;
				dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];";
						
				for(var i=0; i < l; i++) {
					dynamicExp += "}; ";
				}
				
				dynamicExp += "return 0; ";	
				dynamicExp += "}; ";	
				
				eval(dynamicExp);
				
				cache.normalized.sort(sortWrapper);
				
				if(table.config.debug) { benchmark("Sorting on " + sortList.toString() + " and dir " + order+ " time:", sortTime); }
				
				return cache;
			};
			
			function sortText(a,b) {
				return ((a < b) ? -1 : ((a > b) ? 1 : 0));
			};
			
			function sortTextDesc(a,b) {
				return ((b < a) ? -1 : ((b > a) ? 1 : 0));
			};	
			
	 		function sortNumeric(a,b) {
				return a-b;
			};
			
			function sortNumericDesc(a,b) {
				return b-a;
			};
			
			function getCachedSortType(parsers,i) {
				return parsers[i].type;
			};
			
			/* public methods */
			this.construct = function(settings) {

				return this.each(function() {
					
					if(!this.tHead || !this.tBodies) return;
					
					var $this, $document,$headers, cache, config, shiftDown = 0, sortOrder;
					
					this.config = {};
					
					config = $.extend(this.config, $.tablesorter.defaults, settings);
					
					// store common expression for speed					
					$this = $(this);
					
					// build headers
					$headers = buildHeaders(this);
					
					// try to auto detect column type, and store in tables config
					this.config.parsers = buildParserCache(this,$headers);
					
					
					// build the cache for the tbody cells
					cache = buildCache(this);
					
					// get the css class names, could be done else where.
					var sortCSS = [config.cssDesc,config.cssAsc];
					
					// fixate columns if the users supplies the fixedWidth option
					fixColumnWidth(this);
					
					// apply event handling to headers
					// this is to big, perhaps break it out?
					$headers.click(function(e) {
						
						$this.trigger("sortStart");
						
						var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0;
						
						if(!this.sortDisabled && totalRows > 0) {
							
							
							// store exp, for speed
							var $cell = $(this);
	
							// get current column index
							var i = this.column;
							
							// get current column sort order
							this.order = this.count++ % 2;
							
							// user only whants to sort on one column
							if(!e[config.sortMultiSortKey]) {
								
								// flush the sort list
								config.sortList = [];
								
								if(config.sortForce != null) {
									var a = config.sortForce;
									for(var j=0; j < a.length; j++) {
										if(a[j][0] != i) {
											config.sortList.push(a[j]);
										}
									}
								}
								
								// add column to sort list
								config.sortList.push([i,this.order]);
							
							// multi column sorting
							} else {
								// the user has clicked on an all ready sortet column.
								if(isValueInArray(i,config.sortList)) {	
									
									// revers the sorting direction for all tables.
									for(var j=0; j < config.sortList.length; j++) {
										var s = config.sortList[j], o = config.headerList[s[0]];
										if(s[0] == i) {
											o.count = s[1];
											o.count++;
											s[1] = o.count % 2;
										}
									}	
								} else {
									// add column to sort list array
									config.sortList.push([i,this.order]);
								}
							};
							setTimeout(function() {
								//set css for headers
								setHeadersCss($this[0],$headers,config.sortList,sortCSS);
								appendToTable($this[0],multisort($this[0],config.sortList,cache));
							},1);
							// stop normal event by returning false
							return false;
						}
					// cancel selection	
					}).mousedown(function() {
						if(config.cancelSelection) {
							this.onselectstart = function() {return false};
							return false;
						}
					});
					
					// apply easy methods that trigger binded events
					$this.bind("update",function() {
						
						// rebuild parsers.
						this.config.parsers = buildParserCache(this,$headers);
						
						// rebuild the cache map
						cache = buildCache(this);
						
					}).bind("sorton",function(e,list) {
						
						$(this).trigger("sortStart");
						
						config.sortList = list;
						
						// update and store the sortlist
						var sortList = config.sortList;
						
						// update header count index
						updateHeaderSortCount(this,sortList);
						
						//set css for headers
						setHeadersCss(this,$headers,sortList,sortCSS);
						
						
						// sort the table and append it to the dom
						appendToTable(this,multisort(this,sortList,cache));

					}).bind("appendCache",function() {
						
						appendToTable(this,cache);
					
					}).bind("applyWidgetId",function(e,id) {
						
						getWidgetById(id).format(this);
						
					}).bind("applyWidgets",function() {
						// apply widgets
						applyWidget(this);
					});
					
					if($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) {
						config.sortList = $(this).metadata().sortlist;
					}
					// if user has supplied a sort list to constructor.
					if(config.sortList.length > 0) {
						$this.trigger("sorton",[config.sortList]);	
					}
					
					// apply widgets
					applyWidget(this);
				});
			};
			
			this.addParser = function(parser) {
				var l = parsers.length, a = true;
				for(var i=0; i < l; i++) {
					if(parsers[i].id.toLowerCase() == parser.id.toLowerCase()) {
						a = false;
					}
				}
				if(a) { parsers.push(parser); };
			};
			
			this.addWidget = function(widget) {
				widgets.push(widget);
			};
			
			this.formatFloat = function(s) {
				var i = parseFloat(s);
				return (isNaN(i)) ? 0 : i;
			};
			this.formatInt = function(s) {
				var i = parseInt(s);
				return (isNaN(i)) ? 0 : i;
			};
			
			this.isDigit = function(s,config) {
				var DECIMAL = '\\' + config.decimal;
				var exp = '/(^[+]?0(' + DECIMAL +'0+)?$)|(^([-+]?[1-9][0-9]*)$)|(^([-+]?((0?|[1-9][0-9]*)' + DECIMAL +'(0*[1-9][0-9]*)))$)|(^[-+]?[1-9]+[0-9]*' + DECIMAL +'0+$)/';
				return RegExp(exp).test($.trim(s));
			};
			
			this.clearTableBody = function(table) {
				if($.browser.msie) {
					function empty() {
						while (this.firstChild) this.removeChild(this.firstChild);
					}
					empty.apply(table.tBodies[0]);
				} else {
					table.tBodies[0].innerHTML = "";
				}
			};
		}
	});
	
	// extend plugin scope
	$.fn.extend({
 tablesorter: $.tablesorter.construct
	});
	
	var ts = $.tablesorter;
	
	// add default parsers
	ts.addParser({
		id: "text",
		is: function(s) {
			return true;
		},
		format: function(s) {
			return $.trim(s.toLowerCase());
		},
		type: "text"
	});
	
	ts.addParser({
		id: "digit",
		is: function(s,table) {
			var c = table.config;
			return $.tablesorter.isDigit(s,c);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "currency",
		is: function(s) {
			return /^[Â£$â�¬?.]/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/[^0-9.]/g),""));
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "ipAddress",
		is: function(s) {
			return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s);
		},
		format: function(s) {
			var a = s.split("."), r = "", l = a.length;
			for(var i = 0; i < l; i++) {
				var item = a[i];
			 	if(item.length == 2) {
					r += "0" + item;
			 	} else {
					r += item;
			 	}
			}
			return $.tablesorter.formatFloat(r);
		},
		type: "numeric"
	});
	
	ts.addParser({
		id: "url",
		is: function(s) {
			return /^(https?|ftp|file):\/\/$/.test(s);
		},
		format: function(s) {
			return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//),''));
		},
		type: "text"
	});
	
	ts.addParser({
		id: "isoDate",
		is: function(s) {
			return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s);
		},
		format: function(s) {
			return $.tablesorter.formatFloat((s != "") ? new Date(s.replace(new RegExp(/-/g),"/")).getTime() : "0");
		},
		type: "numeric"
	});
		
	ts.addParser({
		id: "percent",
		is: function(s) {
			return /\%$/.test($.trim(s));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g),""));
		},
		type: "numeric"
	});

	ts.addParser({
		id: "usLongDate",
		is: function(s) {
			return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/));
		},
		format: function(s) {
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
		id: "shortDate",
		is: function(s) {
			return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s);
		},
		format: function(s,table) {
			var c = table.config;
			s = s.replace(/\-/g,"/");
			if(c.dateFormat == "us") {
				// reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2");
			} else if(c.dateFormat == "uk") {
				//reformat the string in ISO format
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1");
			} else if(c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") {
				s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3");	
			}
			return $.tablesorter.formatFloat(new Date(s).getTime());
		},
		type: "numeric"
	});

	ts.addParser({
	 id: "time",
	 is: function(s) {
	 return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s);
	 },
	 format: function(s) {
	 return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime());
	 },
	 type: "numeric"
	});
	
	
	ts.addParser({
	 id: "metadata",
	 is: function(s) {
	 return false;
	 },
	 format: function(s,table,cell) {
			var c = table.config, p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName;
	 return $(cell).metadata()[p];
	 },
	 type: "numeric"
	});
	
	// add default widgets
	ts.addWidget({
		id: "zebra",
		format: function(table) {
			if(table.config.debug) { var time = new Date(); }
			$("tr:visible",table.tBodies[0])
	 .filter(':even')
	 .removeClass(table.config.widgetZebra.css[1]).addClass(table.config.widgetZebra.css[0])
	 .end().filter(':odd')
	 .removeClass(table.config.widgetZebra.css[0]).addClass(table.config.widgetZebra.css[1]);
			if(table.config.debug) { $.tablesorter.benchmark("Applying Zebra widget", time); }
		}
	});	
})(jQuery);

OEBPS/answer02.html

		Answer

		Because the actin monomer concentration exceeds the critical concentration of T actin, the plus end will grow. However, because the actin monomer concentration is below the critical concentration of D actin, the minus end will shrink.

	

OEBPS/answer25.html

		Answer

		The rate of release of insulin by b cells in the pancreas is regulated by intracellular [Ca2+] – see Section 2.4.

	

OEBPS/answer06.html

		Answer

		Proteins and lipids must be directed to either the basolateral or the apical zones by different routes.

	

OEBPS/answer24.html

		Answer

		It is present on the membrane of the synaptic vesicle and briefly on the plasma membrane, after the vesicle has fused to release its cargo (see Figure 26).

	

OEBPS/images/s377book3chapter12_f035hi.jpg
e gy

o

L)

e

=7

-
o

©
g
b ‘mv;\..ﬁ. '

OEBPS/images/s377book3chapter12_f038hi.jpg
apoplotic:
cell debris bacterium antibody

scavenger
receptor

A

(I

Iysosome ~ \
P

TGEp TNFa
110

OEBPS/images/audiobook-cover.png

OEBPS/answer18.html

		Answer

		Different motor proteins can associate with the same vesicle – some moving to the minus end of the tubule and others to the plus end.

	

OEBPS/answer08.html

		Answer

		The endothelial cells that line blood vessels have large numbers of caveolae, which are particularly evident in clusters near the plasma membrane.

	

OEBPS/answer20.html

		Answer

		Molecules pass from early endosomes to late endosomes, and from there may move to lysosomes or recycle to the plasma membrane or intersect with secretory vesicles from the Golgi. Some molecules such as the bacterial toxins (Box 4) move to the Golgi network and the ER.

	

OEBPS/answer03.html

		Answer

		It will grow slowly from its minus end. The plus end is capped, so nothing happens there. The level of actin-ATP is high so the fibre will grow, but because it is at the minus end (low activity), it will do so only slowly.

	

OEBPS/answer19.html

		Answer

		Water and most gases cross the membrane by simple diffusion. Glucose and amino acids are taken up by facilitated diffusion on carrier molecules. Ions cross through pores or specific transporters, which may require energy, depending on the ion, the membrane potential and the concentration gradient across the membrane.

	

OEBPS/answer14.html

		Answer

		At the plasma membrane. Constitutive secretion is the default pathway (Section 2.4) and specific signals are needed to retain proteins in the ER and the Golgi or to direct them to the secretory pathways or lysosomes.

	

OEBPS/images/s377book3chapter12_f009hi.jpg
(2) coat formation

@ transport

® uncoating.

target membrane

OEBPS/answer27.html

		Answer

		E-selectin expression is enhanced by increasing protein synthesis, which takes several hours, and inflammation is a process that develops over a period of hours or days. P-selectin expression is rapidly increased by release from intracellular stores: blood clotting is, of necessity, a speedy response.

	

OEBPS/images/s377book3chapter12_f007hi.jpg
whulinGTP
wbuln GDP o0

— s slow
rowth

— rapid tetraction

OEBPS/table06.html

		Table 6 Lipid modification of proteins and their membrane affinity.

		
			
				
							Modification
							Addition
							Substrates
							Membrane affinity, K
						D
					
				

			
			
				
							farnesylation
							post-translation
							cytosolic proteins
							100 μmol l−1
					
				

				
							geranylgeranylation
							post-translation
							cytosolic proteins
							2 μmol l−1
					
				

				
							
						N-myristoylation
							co-translation
							nascentpolypeptide
							80 μmol l−1
					
				

				
							palmitoylation
							post-translation
							membrane protein
							5 μmol l−1
					
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/s377book3chapter12_f004hi.jpg
©

actin flaments
‘and o-actinin

@

actin flaments
and fimbrin

OEBPS/images/s377book3chapter12_f039hi.jpg

OEBPS/images/s377book3chapter12_f036hi.jpg
_ growth factor

membrane
receptor

plasma

ubiquitin
membrane q

adaptor
protein

OEBPS/table04.html

		Table 4 Intracellular localisation of some Rab proteins.

		
			
				
							Type of Rab
							Cellular compartment
				

			
			
				
							Rab1
							ER and Golgi network
				

				
							Rab2
							
						cis Golgi network
				

				
							Rab6
							medial and trans Golgi network
				

				
							Rab5A
							clathrin-coated vesicles
				

				
							Rab5C and Rab4
							early endosomes
				

				
							Rab7
							late endosomes
				

				
							Rab8
							basolateral secretory vesicles
				

				
							Rab3
							synaptic and secretory vesicles
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/table03.html

		Table 3 Protein and G protein components of coated vesicles.

		
			
				
							Vesicle
							Coat and adaptor proteins
							Small G protein
							Transport step
				

			
			
				
							clathrin
							clathrin heavy and light chains, AP2
							ARF
							plasma membrane → endosome
				

				
							
							clathrin heavy and light chains, AP1
							ARF
							Golgi → endosome
				

				
							
							clathrin heavy and light chains, AP3
							ARF
							Golgi → lysosome
				

				
							COPI
							COP α, β, β′, γ, δ, ε, ζ
							ARF
							Golgi → ER; between Golgi cisternae
				

				
							COPII
							
						Sec23/Sec24 complex;

						Sec13/Sec31 complex; Sec1β

					
							Sar1
							ER → Golgi
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/images/s377book3chapter12_f012hi.jpg
v pmctar '

wransferrin EGF receptor

—iL 1=

OEBPS/images/s377book3chapter12_f024hi.jpg
SYNAPTIC VESICLE

synaptotagmin _ SNARE complex

synaptobrevin synaptophysin

newrexin Ca® channel syntaxin SYNAPTIC CLEFT

OEBPS/images/s377book3chapter12_f029hi.jpg
ERLUMEN

R
elucosidase

e

ER
mannosidase

—

exitto
Golgi

correetly
folded

protein

OEBPS/table05.html

		Table 5 Signal sequences

		
			
				
							Function of signal sequence
							Example of signal sequence
				

			
			
				
							import into nucleus
							PPKKKRKV
				

				
							export from nucleus
							
						LALKLAGLDI
					
				

				
							import into mitochondria
							
						
							+H3N-MLSLRQSIRFFKPATRTLCSSRYLL

					
				

				
							import into peroxisome
							SKL-COO−
					
				

				
							import into ER
							
						
							+H3N-MMSFVSLLLVGILFWATEAEQLTKCEVFN

					
				

				
							return to ER
							KDEL-COO−
					
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/table01.html

		Table 1 Examples of intermediate filament proteins.

		
			
				
							Intermediate filament
							Polypeptides
							Expressed in
				

			
			
				
							nuclear
							lamins A, B and C
							nuclear lamina
				

				
							epithelial
							keratins
							epithelial cells
				

				
							axonal
							neurofilament proteins
							neurons
				

				
							vimentin-like
							vimentin
							many mesenchymal cells
				

				
							
							desmin
							muscle
				

				
							
							glial fibrillary acidic protein (GFAP)
							astrocytes, some Schwann cells
				

			
		

		
			► Reveal options

		

		
			

			

			Sort table

			Select column heads to sort the table.

			
				
					Reset

				
			

		

	

OEBPS/answer10.html

		Answer

		The proteins ARF and Sar1, which initiate assembly of the coats, and go through a similar cycle of activation, protein recruitment, transfer on vesicles and GTP hydrolysis and dissociation at the target membrane.

	

OEBPS/answer26.html

		Answer

		If a cell responds to a stimulus by changing its level of protein synthesis, it will take time before any change is seen in the level of expression at the cell surface (>2 h). But if it responds by releasing molecules from intracellular stores (secretory vesicles), the level of expression on the plasma membrane will increase within seconds.

	

OEBPS/images/s377book3chapter12_f030hi.jpg
— s

—0-;0-.

Golgi Golgi
D Neacetyl- enzymes.
‘lucosamine

transferase.

OEBPS/answer17.html

		Answer

		It means that kinesin does not let go of the microtubule between steps, so the cargo is permanently attached and less likely to be lost from its trackway, which could lead to its misdirection.

	

OEBPS/answer05.html

		Answer

		Early and late endosomes, lysosomes, peroxisomes, the endoplasmic reticulum, the cis, medial and trans Golgi network, secretory vesicles, the nucleus, mitochondrion, and chloroplast.

	

OEBPS/images/s377book3chapter12_f010hi.jpg
GuT EpTELIN

OEBPS/images/s377book3chapter12_f040hi.jpg
MHC class Il =
antibody anigen peptide

7

carly
endosome

i g1

4 m MiC s ‘
" L od " |
o £
Iysosome ' |
@’ E
lysosome '

MHC class 11
molecule

rans Golgi

OEBPS/answer16.html

		Answer

		From the nerve terminal to the nerve body. Dyneins transport towards the minus end of microtubules, which is located in the MTOC near the nucleus.

	

