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Narrator: 
But the gradient vector isn’t just useful for finding slopes of paths on hillsides.  In a conducting 
material heat energy will flow from a hot region to a cooler one.  The temperature field is a 
scalar field, while the flow of heat energy, having both magnitude and direction, must be a 
vector field.  It turns out that they too are related.  Engineers often have to calculate 
temperature distributions and heat flow patterns.  The nuclear reactor in this power station 
generates heat by the controlled nuclear fission of uranium, heat which is then used to 
produce steam, which in turn drives turbines which generate electricity.  Inside the reactor 
itself there are fuel elements consisting of long stainless steel rods containing uranium fuel.  
The rods get very hot as heat is generated inside them by nuclear fission. 
 
Dr. Paul Hutt: (Nuclear Electric, Gloucester) 
The temperature in the fuel can reach up to typically 900 degrees C in the centre of the fuel, 
that’s conducted away to the edge of the fuel and out to the coolant.  The fuel temperature on 
the edge of the fuel is typically about 450 degrees C.  This is a fuel can for an AGL fuel rod.  
This is an empty fuel can, there’s no uranium in this.  It has a diameter of about one 
centimetre and is approximately a meter long.  The helical ribs are to aid transfer of heat 
away from the fuel pins. 
 
Narrator: 
For reasons of thermodynamic efficiency it is essential to run the reactor as hot as possible, 
but on the other hand it’s important not to allow the temperature to approach the melting 
points of any of the materials.  How could we calculate the temperature distribution in the rod?  
To answer this question, we’ll need first to identify the relevant scalar and vector fields in the 
rod, and then the relationships between them.  The fuel rods inside most modern nuclear 
reactors are quite complicated in structure so let’s look at a simple model, consisting of a 
single uranium rod.  We’ll assume that the rod is very long and cylindrical, with its axis along 
the z axis.  Inside this single rod we’ll assume that heat is being generated by nuclear fission 
at a constant rate uniformly throughout the rod that is the heat generating is continuous.  And 
we’ll also assume that the rod is in its steady state; that is, the temperature varies with 
position, but is constant in time.  The rod will be very hot, but much hotter in the centre than 
on the outside surface where it’s in contact with the coolant.  The temperature of each point 
within the rod can be described by the scalar field we’ll call capital �.  We’re assuming the rod 
is very long and the heat flow is radial. So capital � is a function only of x and y.  There’s also 
the field describing the flow of heat energy within the rod.  This is a vector field, J.  The 
magnitude of J is the rate of flow of heat energy across unit area, measured in Watts per 
square metre.  So are there any other fields we should model?  Well the heat energy is 
generated by fission reactions within the rod, so there must be another field which represents 
the heat energy source, that is, the rate of heat energy generation per unit volume at each 
point of the fuel rod.  This is another scalar field, which we’ll call S, and which will be 
measured in Watts per cubic metre.  These three fields, the vector field J, and the two scalar 
fields, � and S must be related in some way.  But how?  You might not be surprised to know 
that the flow of heat energy field J is related to the gradient of the temperature field:  J = - � 
grad �.  Using the definition of grad in terms of partial derivatives from earlier, that means J is 
related to � by this equation.  This equation shows that the flow of heat energy is directed 
against the temperature gradient, i.e. from hot to cold.  But where does the heat source field S 
fit into all this?  Well, S is the source of the heat energy produced while J describes how it 
flows, so we ought to be able to find a relationship between S and J by energy conservation.  
And you’ll see later in the unit how this is done, resulting in this equation.  The sum of these 
two partial derivatives of J is a scalar field, which we call the divergence of J, or div J for 



 

short.  So we have the relationship: div J = S.  Now we have two equations relating the fields 
�, J and S in the fuel rod.  However we could relate the temperature field � and the heat 
source field S directly, by a single second order partial differential equation.  I’d like you to 
have a go at that in a moment.  You’ll probably find it easier to use these representations of 
grad and div.  See if you can eliminate J from the two equations to get a second order partial 
differential equation relating � and S.  This is the equation you should have got.  It means 
that if we know the heat source field S, the thermal conductivity �, and the boundary 
conditions, in this case that’s the constant steady state temperature on the surface of the rod, 
we can solve this equation for the temperature field �. This equation is called Poisson’s 
equations, and it’s the basis of calculations of temperature distributions in steady state heat 
flow problems. 
 
Dr. Paul Hutt: 
The practical use of this calculation for us is that we need to find essentially by calculation 
what the fuel temperatures are.  We need to assure ourselves that the temperatures remain 
within acceptable limits, and working backwards we can then control the power which is 
generated in that fuel rod to keep the fuel within acceptable limits.  Another part of the 
calculation we have to do is to determine the neutron distribution in the reactor and again 
that’s a very similar equation – it’s a diffusion equation for the neutron density.  So again its a 
divergence of the…of the gradient of the neutron flux concentration, and we solve that over 
the whole reactor mathematically a very similar problem we have to solve finding the neutron 
density within a reactor. 
 

 


	Grad, Div & Curl 

